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1 Definice
1.1 Uvod
1.1.1 Operace s &isly

n
e Suma: E a; =ay+ ... +ap,
i=1

n
e Produkt: Hai =ai ... an

i=1
e Horni celd ¢ast: [x] je nejblizs{ vyssi celé ¢islo k x
e Dolni celd &ast: |z| je nejblizsi nizsi celé ¢islo k
1.1.2 Mmnozinové operace
e Rovnost: A=B < (ACB)A(BCA)
e Inkluze: ACB «<— (x€ A) = (z € B)

e Sjednoceni: AUB < (z € A)V (z € B)

Prinik: ANB < (x € A)A(z € B)

Rozdil: A\ B < (x € A)A(x ¢ B)

Symetricka diference: AAB = (A\B)U(B\A) < (z€ A) @ (z € B)

Potence (mnoZina podmnozin): P(A4) =24 = {B | B C A} ... mnozina vech podmnozin

1.1.3 Mohutnost

| M| je pocet prvku v mnoziné M.

1.1.4 TUsporadané k-tice a Kartézsky soucin
e Usporadané k-tice: (z,y) = {{z},{z,y}}
e Kartézsky souéin: A x B := {(a,b) | a € A,b € B}

1.2 Relace
1.2.1 Relace mezi mnozinami, relace na mnoziné

¢ Relace mezi mnozinami: Relace R C X X Y je podmnozina kartézského souc¢inu dvou mnozin X a Y.
e Relace na mnoziné: Relace R na X je podmnozina kartézského sou¢inu dvou identickych mnozin, tj.

X=Y = RCXxX.

1.2.2 Operace s relacemi
e Inverze: Pro relaci R definujeme inverzni relaci R~! piedpisem R~ = {(y,2) | (z,vy) € R}
e Skladani relace: Necht mame relace RC X xY a S CY x Z, potom slozend relace, kde T C X x Z, je
T=RoS:={(x,z) | Jy: xRy NySz}

1.2.3 Funkce (zobrazeni) a jejich druhy

Funkce (zobrazeni): Funkce f: X — Y jerelace f C X x Y takovd, ze (Vo € X)(3ly € Y) : xfy.
e prosté (injektivni): Funkce f: X — Y je prostd <= pro vSechna Y existuje nejvyse jedno Vx € X.
¢ na (surjektivni): Funkce f: X — Y je prostd <= pro vSechna Y existuje alespon jedno Vz € X.

¢ vzajemné jednoznacéné (bijektivni): Funkce f: X — Y je bijektivni <= je prostd i na. ( 3z )



1.2.4 Vlastnosti relaci
e Reflexivita: Relce R na X je reflevivni <= Va € X : xRx. (Lze zapsat jako: R C Ax)
e Symetrie: Relce R na X je symetrickd <= Vr,y € X : xRy <= yRz. (Také: R=R™!)
e Antisymetrie: Relce R na X je antisymetrickd <= Vx,y € X :tRyAyRrx = z=vy. (RNR™!1 C Ax)

e Transitivita: Relce R na X je tranzitioni <= Vz,y,z € X : xRy AyRz = xzRz. (Také: RoRC R)

1.2.5 Ekvivalence, ekvivalenéni tfida, rozklad mnoziny

e Ekvivalence: Relace R na X je ekvivalentni <= je reflexivoni, symetrickd a tranzitioni.

e Ekvivalenéni tiida: R[z] = {y € X | xRy} ... Pro relaci R ekvivalentni na X je R[r] mnozina Vz,y € X
vzajemné ekvivalentnich mezi sebou.

e Rozklad mnoziny: ¢ = X\ R = {R[z] | # € X }... Necht mdme relaci R na X a rozklad mnoziny ¢ = X \ R.
Potom existuje pravé jedna ekvivalence na R.
1.3 Usporadani
1.3.1 Uspoiadani
Usporadani Relace R na X je usporddani <= je reflexivni, antisymetrickd a tranzitivni.
o Ciasteéné: Prvky nemusi byt porovnatelné.
e Linedrni: Uspordddni je linedrni <= Vx,y € X : xRy V yRx. Prvky jsou porovnatelné (=trichomické).
e Ostré: Usporadani je ostré <= je ireflexioni - zadny prvek neni v relaci sam se sebou.

e Usporadand mnozina: Takovd dvojice (X, R), kde X je mnozina a R je uspofddéni na ni.

1.3.2 Hasselv diagram a bezprostiedniho predchtdce

e Hassetuv diagram: Graf zndzornujici usporddani. V zakreslovani se nepouzivd, z diuvodu piehlednosti,
reflexivita a tranzitivita. Zakresluje se od spoda vzhuru vzdy jen bezprostiedni predchudce.

e Bezprostiedniho pfedchiidce: Necht X je CUM, potom prvek z € X je bezprostrednim predchidcem
prvku y € X pravé tehdy, kdyz « < y A Pt € X spliujici z <t < y.

1.3.3 Prvky
Necht (X, <) je CUM:
e Nejveétsi: potom a € X je nejuétsi prvek, pokud Vo € X plati a = x.
e Nejmensi: potom a € X je nejmensi prvek, pokud Vo € X plati a <X z.
¢ Maximalni: potom a € X je mazimdini prvek, pokud Az € X, pro které z > a.

e Minimalni: potom a € X je minimdini prvek, pokud Az € X, pro které z < a.

1.3.4 Retézce
Necht (X, <) je CUM a A C X, potom pro
¢ Retézec plati, ze Va,b € A jsou porovnatelné.

e Antifetézec plati, ze Pa,b € A, které jsou riizné a porovnatelné.

1.3.5 Parametry alpha a omega
e Parametr w: Vysku uspoiddéni v P: w(P) = max{P}. (mazimum z délek Tetézci)

e Parametr a: Sitka uspofadéani v P: a(P) = maz{|A|; A nezavisla v P}. (mazimum z délek antiretézci)



1.4 Kominatorické pocéitani

1.4.1 Klesajici mocnina

Necht N je n-prvkova a X je z-prvkovd mnozina. Klesajici mnoZina £ je rovna poctu véech prostych f: N — X:
2t=x-(x—1)-...-(x—n+1)

1.4.2 Charakteristicka funkce podmnoziny

Necht A C X, potom charakteristickd funkce podmnoziny je zobrazeni Cy : X — {1,0}.

1 pokud z € A

(Vo € X): CalX) = {0 pokud =z ¢ A

1.4.3 Notace pro mnozinu vSech k-prvkovych podmnozin

Necht N je mnozina. potom (JZ ) je mnoZina véech k-prvkovych podmmnozZin mnoziny N.

(})-tacn:ia-n

[WIEOE®

1.4.4 Kombinacni éislo a Pascaltuv trojihelnik

Zarovén plati:

¢ Kombinaéni éislo (binomicky koeficient): Pro ¢isla n, k > 0 plati:

(Z) ik ne(n-1)- . (n-k+1)

TR 1-2- ..k K- (n— k)

e Pascaluav trojuhelnik: Tabulka kombinacnich cisel:

n =0: 1

n=1: 1 1

n=2: 1 2 1
n=3: 1 3 3 1
n=4: 1 4 6 4 1

1.5 Grafy
1.5.1 Graf, vrchol, hrana

Graf je usporddand dvojice (V, E), kde V' je vrchol a E je hrana. V je kone¢nd neprdzdnd mnozina a E koneénd
neprazdna mnozina vsech dvouprvkovych podmnozin V, tedy E C (‘2/)

1.5.2 Standardni grafy

Uplny graf na n vrcholech znaéime K,,, kde V = [n] a E = (‘2/)
e Priazdny graf na n vrcholech znac¢ime F,,, kde V = [n] a F = (), t.j. nem4 zddnou hranu.
e Cestu na n vrcholech zna¢ime P,, kde V =[ng] a E = {{i — 1,i};1 <i <n}.

e Kruznici na n vrcholech zna¢ime Cy,, kde V =[n3l a E = {{i,i+1},1 <i<n-—-1}U{{1,n}}.

1.5.3 Bipartitni a Uplné bipartitni graf

e Bipartitni graf, pokud V =V, UV;, t.z. Vi NV2 = (. Hrany jsou mezi V; a Va5, neboli Ve € E : [eNV;] = 1.
Graf G je bipartitni, pokud lze V rozdélit na dvé disjunktni mnoziny Vi a V5 takové, ze kazda hrana z E
obsahuje jeden bod z V7 a druhy z V5.

o Uplny bipartitni graf na n+m vrcholech znacime K, ,,, kde V = {uy, ..., un }U{v1, ..., 0, } (=dvé partity)
a B = {{uj,v;},1 <i<n1<j<m}



1.5.4 Isomorfismus grafu

Grafy G a H jsou isomorfni, pokud existuje bijekce mezi vrcholy:

3f :V(G) - V(H), t.z. {u,v} € E(G) < {f(u), f(v)} € E(H)

1.5.5 Stupen vrcholu, Regularni graf a Skére grafu

e Stupen vrcholu v v grafu G je degg(v) := [{u € V(G) : {u,v} € E(G)}|.
Neboli pocet hran grafu G, které obsahugji hranu v.

e k-reguldrni, pokud pro k € N plati Vu € V(G) : degg(u) = k.

e Skére grafu G je posloupnost stupinu vsech vrcholu (krom uspordddni).

1.5.6 Podgraf, indukovany podgraf
e Podgraf: Graf H je podgrafem grafu G, pokud V(H) CV(G) a E(H) C E(G)N (V(QH)).

e Indukovany podgraf: Podgraf H je indukovany, pokud E(H) = E(G) N (V(2H)).

1.5.7 Cesta, kruznice, sled a tah v grafu
e Cesta v grafu G je podgraf isomorfni s néjakou cestou.
e Kruznice v grafu G je podgraf isomorfni s néjakou kruznici, kde se vrcholy ani hrany neopakuji.

e Sled z vy do v,, v grafu G je posloupnost (vg, e1,v1, €a, ..., €y, vy,), pokud plati Vi : e; = {v;_1,v;}, kde v jsou
vrcholy a e hrany. Mohou se opakovat vrcholy i hrany.

e Tah z vy do v, v grafu G je posloupnost (vg, e1,v1, €2, ..., €,, vy ), pokud plati Vi : e; = {v;_1,v;}, kde v jsou

vrcholy a e navzdjem rizné hrany. Mohou se opakovat pouze vrcholy, ne hrany.

1.5.8 Souvisly graf, relace dosazitelnosti, komponenty souvislosti

e Souvisly, pokud (Vu,v € V) existuje cesta z u do v. Graf drzi pohoromadé.

¢ Relace dosazitelnosti (ekvivalence) v grafu G je bindrni relace ~ na V(G), t.z. u ~ v, pokud existuje
cesta z u do v.

e Komponenty souvislosti jsou podgrafy indukované tiidami ekvivalence.

1.5.9 Matice sousednosti
Matice sousednosti A(G) grafu G je ¢tvercova matice n X n, pro kterou plati:

A= 1 pokud {v;,v;} € E
10 pokud {vi,v;} ¢ E

1.5.10 Vzdélenost v grafu (grafova metrika)

Vzddlenost v souvislém grafu G je definovéna jako dg : V2 — R : Vu, v : dg(u, v) je minimum z délek mezi u a v.

Pro metriku musf platit Vu,v,w € V:

o da(u,v . je minimum z délek cest, cesty jsou také nezaporné

(u,v) >

e dg(u,v) =0 <= wuw=w ... nikde jinde (krom dg(u,u)) vzdélenost nulova neni

o dg(u,v) <dg(u,w) < dg(w,v) ... vzdilenost mezi u a v je shora omezend mezi vzdélenosti u, w a w, v
(v, u) =

de(u,v)

o da(v,u



1.5.11 Grafové operace: pfidani/odebrani vrcholu/hrany, déleni hrany, kontrakce hrany
Grafové operace: pridéni/odebran{ vrcholu/hrany, déleni hrany, kontrakce hrany
e Pridani vrcholu/hrany zna¢ime G +v/ G +e.

e Odebrani vrcholu/hrany znaéime G —v/ G —e. Vpiipadé G — v vytvéaiime indukovany podgraf (maZeme
i hrany z tohoto vrcholu). G —v = G[V '\ {v}]

e Déleni hrany znac¢ime G%e. Vytvoren{ vrcholu uprostied: {u,z} a {x,v}.
V=V U{vh B = (E\{e}) U{{v,z}, {v,y}}.

e Kontrakce hrany zna¢ime G.e. Spojeni (slepeni) hran. V' = (V U {z,y}) U {2}
E'={feE|fne=0u{f\{z,y}u{z} [ feEA|fnel=1}
1.5.12 Otevieny a uzavieny eulerovsky tah

Otevreny eulerovsky tah z vy do v, je takovy tah, ktery obsahuje vSechny vrcholy a hrany grafu pravé jednou.
Uzavreny eulerovsky tah je takovy tah, kde vy = v,.

1.5.13 Orientovany graf, podkladovy graf, vstupni a vystupni stupen, vyvazenost vrcholu

e Orientovany graf uspofdadand dvojice (V, E), kde E C V2 \ {(z,z) |z € V}.
Neboli relace na mnoziné vrcholu bez diagondlnich prvku.

e Podkladovy graf G = (V,E) —» Gy = (V, Ey), pro Ey = {{u,v} € (g) | (u,v) € EV (v,u) € E}
Neboli mnozina viech neusporddangjch dvojic vrcholi, kde v jednom nebo druhém poftadi je hrana.

e Vstupni a vystupni stupen: Pokud existuje Eulerovsky tah pro kazdy vrhol v, potom:

#hran z V = #hran do V'
| — | —
vystupni stupent deg— (V) vstupni stupeni degt (V)

e Vyvazenost vrcholu: Graf je vyvdZeny, pokud plati deg™ (V) = deg™ (V).

1.5.14 Silna a slaba souvislost orientovanych graft
e Silna souvislost, pokud pro Vu,v € V existuje orientovand cesta z u do v.

e Slaba souvislost, pokud podkladovy graf (=symetrie grafu) je souvisly.

1.6 Stromy
1.6.1 Stromy, les, list
e Strom je souvisly graf bez kruznic. (acyklicky graf)
e Les je acyklicky graf. Jeho komponenty souvislosti jsou stromy.

e List je vrchol stupné 1.

1.6.2 Kostra grafu
Kostra grafu G je podgraf T, tedy T C G t.z.: V(T) = V(G) AT je strom.

1.7 Rovinné kresleni grafi
1.7.1 Rovinné nakresleni grafu a jeho stény (neformalné)

Pokud existuje nakresleni do roviny bez kiizeni hran, tak je graf G rovinny.

1.7.2 Rovinny graf a topologicky graf
¢ Rovinny graf je takovy graf, pro néjz existuje néjaké nakresleni v roviné.

e Topologicky graf: usporddana dvojice (graf, nakresleni).



1.7.3 Stereografickd projekce

Ptrekresleni grafu z roviny na sféru a naopak.

1.8 Barveni grafu
1.8.1 Obarveni grafu k barvami a barevnost

e Obarveni grafu k barvami je c: V(G) — [k] tak, ze kdykoli {z,y} € E(G), pak ¢(z) # c(y).

e Barevnost x(G) je nejmensi k takové, ze existuje k-obarveni G.

1.9 Pravdépodobnost
Q) je mnozina elementarnich jevii; F C 2% je podmnozina elementdrnich jevii;
P(A) =1 jev jisty

Pravdépodobnost P je funkce P : F — [0,1] = {p(A) 0 j zny
=0 jev mozny

1.9.1 Pravdépodobnostni prostor diskrétni, kone¢ny, klasicky
e Diskrétni: trojice (2, F, P), kde € je konecn4 nebo spocetnd, F = 2% P(Q) = 1; P(A) = Z P({w}).
weEA
e Konecny: Diskrétni pravdépodobnostni prostor, kde €2 je kone¢ny.

e Klasicky: Koneény pravdépodobnostni prostor, kde P(A) %.

1.9.2 Jev elementarni, jev slozeny, pravdépodobnost jevu

¢ Elementarni jev: Vsechny vysledky néjakého pravdépodobnostniho experimentu. Znacime jako €.

e Slozeny jev: Takovy jev, ktery neni elementdrni. Slozeny jev nastane <= nastane néktery z elementarnich
jevu v ném obsazeny.

e Pravdépodobnost jevu udéava, jakou mame Sanci, ze dany jev nastane.

1.9.3 Podminéna pravdépodobnost

Podminénd pravdépodobnost je pravdépodobnost, ze nastal jev A za podminek, Ze nastal jev B.

P(AN B)

PAIB) = =55

1.9.4 Jevy nezavislé a po k nezavislé
e Nezavislé: Jevy A a B jsou nezavislé <= P(ANB) = P(A)- - P(B).
e Po k nezavislé: Jevy A, As, ..., Ay, jsou po dvou nezdvislé <= Vi,j:i#j = A;, A; jsou nezavislé.
Neboli jsou nezdvislé, pokud pro VI C [n] plati: P (m A ] = HP(AZ»).
icl il
1.9.5 Na&ahodn4a velicina

Ndhodnd veli¢ina (proménnd) je funkce X : Q — R.

1.9.6 Stiedni hodnota

Stredni hodnota ndhodné veliciny X je E(X) = Z P{w}) - X(w).
we

1.9.7 Indikdtor ndhodného jevu

Indikdtor ndhodného jevu A je ndhodnd velic¢ina I4 : Q — {0,1}.

La(w) = 1 pokud w € A (pokud jev nastal)
A0 pokud w ¢ A (pokud jev nenastal)



1.9.8 Markovova nerovnost

Necht X je nezdporna ndhodnd veli¢ina a V¢ > 1, potom plati: P[X >t -E(X)]

<

=



2 Vety a dikazy

2.1 Uvod
2.2 Relace
2.2.1 Vztah mezi ekvivalencemi a rozklady
Véta: Pro kazdou ekvivalenci R na X plati:
(i) Ve € X : Rlz] £ 0
(i) Va,y € X : R[z] = R[y|] nebo (XOR) R[z] N R[y] =0
(iii) Tridy ekvivalence jednoznaéné urcuji (popisuji) relaci R.
Proof.
(i) Mnozina R[z] vzdy obsahuje prvek z, protoze R je reflexivni. xRz —> z € Rjz] = R[z] # 0

(i) Chceme ukézat, ze R[z] N R[y] #0 = R[z] C R[y|.
Vime, ze 3t € R[x] N R[y] a chceme, aby Ya : a € R[z] Aa € Ry].
Vime tedy, ze t je prunikem, proto plati x Rt;tRx i yRt;tRy a zarovén vime, ze aRx; xRa.
Nyni za pomoci tranzitivity zjistimeé, ze aRt a opét tranzitivitou aRy = a € R[y].

(iii) Trividlné: xRy <= {x,y} C R[z]. Neboli, kdyz chci zjistit, jestli je xRy, tak staci najit R[x] obsahujici y
a podivat se, jestli je tam i x.

O

2.3 Usporadani
2.3.1 Koneéna neprazdna usporadand mnozina ma minimdlni a maximaélni prvek
Véta: Kazdé koneénd neprézdng CUM mé minimalni a maximalni prvek.
Proof. Zvolime libovolné z; € X:
e 1 je minimaln{ - hotovo
e dry < x1, s nim pokracuji dal: z; > xo > ... > x¢
Pokud ¢ > |z|, pak 3i,j,7 # j t.2. x; = ;. Plati tedy =1 > xj41 > zj41 > ... > x; = z,. Za pomoci tranzitivity

uréim x; > x; = x;, ziskal jsem tim paddem x; > x;, coz je spor.

Neboli: Tvoiim posloupnost. Zac¢nu lib. prvkem, v kazdém kroku vezmu posledni pfidany prvek do posloupnosti
a podivam se, jestli m& minimum. Pokud ne, pfiddm ho do posloupnosti. Posloupnost musi byt kone¢nd, protoze
jinak jsem pfidal z mnoziny do posl. néjaky stejny prvek. Pokud se vyskytne stejny prvek, tak tranzitivita a
nasledné spor. O



2.3.2 O Dlouhém a Sirokém
Véta: Necht (X, <) je konecnd CUM, potom a(X, <) - w(X, <) > | X|

Proof. Konstruujeme vestvy x1,xs,...,z;, kde x1 = min X. Krok: Mame-li x4, ..., z;, nejdiive se podivame, co
zbylo:

Zi=x\ | Jx;

j<i

Z; =0 hotovo
Z; #0 X;y1 = min prvky Z;

7 toho nam plynou 3 dusledky:
1. Vi: X; je antifetézec — | X;| < a (= velikost kazdé vrstvy je nejuys «)

2. 3 tetezec {q1,...,qn} t.2. Vi: q € X; = k < w (= pocet vrstev je nejuys w)
podivam se, kvuli kterému prvku je nas prvek ve své vrstvé a ne néjaké nizsi, neboli g, € X libovolné.
Mame qr, qx—1, -+, qi> kde ¢; ¢ X; 1 = Fqi1 € Xi1:¢i1 < ;-

3. Xi,...,Xp jsourozklad X = |X|=>,|Xi|<a-w

2.3.3 Erdésovo-Szekeresovo lemma o monoténnich podposloupnostech

Véta: Nechf 21, ..., 7,241 je posloupnost navzajem riiznych éfsel, potom 3 vybrand podposloupnost délky n + 1,
kterd je ostfe monoténni (=klesajici nebo rostouct).

Proof. Nadefinujeme si relaci < na mnoziné {1,...,n>+ 1} proi < j =i < j Az; < x; a vypozorujeme, 7Ze se jednd
o Castecné usporadani. Potom retézec odpovida rostouci podposloupnosti a antiretézec klesajici podposloupnosti.
Muzeme tedy pouzit Dlouhého a Sirokého:

a-w>n?+1 = nemiZe nastat « <nAw<n — a>n+1Vw>n+1. O

2.4 Kombinatorické pocitani
2.4.1 Pocet funkci mezi mnozinami
Véta: Necht A je n-prvkové a B je m-prvkovd mnozina, potom pocet funkci mezi A a B je m™.

Proof. Uréujeme #f : A — B.
Méme mnozinu A o velikosti |[A| = n a mnozinu B o velikosti |B] = m. Mnozina A obsajuje prvky a1, ag, ..., ap,
mnozina B prvky by, bo, ..., by,. Zobrazujeme jednotlivé prvky a na prvky z mnoziny B.

f(a1) muzeme zobrazit m moznostmi, f(ag) také m moznostmi, ..., f(a,) také m moznostmi. Z ¢ehoz ndm vyplyva:
#f:[n]—=nl=m-m-..-m=m"
—_————
n-krat
O

2.4.2 Pocet prostych funkci mezi mnozinami
Véta: Necht A je n-prvkovd a B je m-prvkova mnozina, potom pocet prostych funkei mezi A a B je m&.
Proof. Urtujeme #f : [n] — [n] prostych.

f(1) zobrazime m moznostmi, f(2) uz m —1 moznostmi, ..., f(n) jen m —n + 1 moznostmi. Z ¢ehoz ndm vyplyva:

#f:[n] = [n] prostych =m-(m—1)-(m—=2)-...- (m—n+1) = m? ...klesajici mocnina

2.4.3 Pocet viech podmnozin

Véta: Pocet vSech n-prvkovych podmnozin je roven 2", tedy |2X | = 2lX1,

Proof. Snazime se ukazat |2[”}| =2".

Podmnoziné A C X pfifadime funkci C, : X — {0,1}. 0 pokud = ¢ A, 1 pokud = € A.

Sparovali jsme podmnoziny s charakteristickymi funkemi, neboli nasli jsme bijekci mezi mnozinou vsech podmnozin
X a mnozinou v8ech funkef C, : X — {0, 1}.

Mame-li bijekci mezi dvéma mnozinami, pak maji obé mnoziny stejny pocet prvka — ‘2["]‘ =2". O



2.4.4 Pocet podmnozin sudé a liché velikosti
Véta: Pocet podmnozin sudé a liché velikosti je stejny.

Proof. Necht mdme mnozinu [n], kde n > 0.

Definujme si dvé mnoziny: S = {A C [n] : |A] je sudd} a L = {A C [n] : | 4| je lichd}. Jejich sjendnocenim ziskdme
mnozinu viech prvki, neboli SU L = 2"« |S| 4 |L| = 2".

Snazime se ukazat |S| = |L| = 2"~ L. Uréuji tedy bijekci mezi S a L:

Zvolim libovolné a € [n] a definuji zobrazeni f : 2["] — 2["]. Nésledné pfiddm a do A pokud v ni neni, nebo ho
naopak odeberu, pokud v ni je.

£(A) = AU{a} pokuda¢ A
" 1A\ {a} pokudac A

O
2.4.5 Pocet permutaci na mnoziné
Veéta: Pokud A je koneénd mnozina, tak permutace mnoziny A je bijekce z A do A
Proof.
(a) Jednd se o zobrazen{ mnoziny na stejnou mnozinu, jedna se o bijekci.
Protoze se jedna o bijekei, stac¢i ndm spocitat, #f : [n] — [n].
nt*=n-(n—-1)-(n—2)-..-1=n! .. faktorial
(b) Kolik existuje zptsobu, jak ocislovaz prvky né&jaké mnoziny [n] ¢isly od 1 do n?
Pocitdame bijekci mezi 1 az n do 1 az n, takze pocitame pocet prostych funkci = n!
O
2.4.6 Pocet usporadanych k-tic bez opakovani a k-prvkovych podmnozin
Véta: Pocet usporadanych k-tic bez opakovani a k-prvkovych podmnozin je roven (Z)
Proof. Necht X je mnozina, potom |X*| < f:[k] — X.
(a) Bez opakovani: f[k] — X, neopakujeme, takze je prosta:
#f:[k] = X prosté = |X|&
(b) Podmnoziny (= neusporddané k-tice). Urcéime k-tice bez opakovani za pomoci poéitini 2 zpisoby:
(1) U(k,n) je uspofadana k-tice z bodu (a).
(2) N(k,n) je odvozeni neusporddanych k-tic.
N(k,n)k! = U(k,n) = nk
k k
= £ -1 —2) .- (n—k+1
N(k,n) = % = % = n(n )gzk _)1) - (ri +1) = (Z) ...binomické cislo
O

2.4.7 Zakladni vlastnosti kombinaénich ¢isel
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2.4.8 Binomicka véta
Véta: (Vz,y e R)(VneN): (z+y)" Z ( )
=0

Proof. Predstaveme si (z +y)-(x+y) - ... (x + y). KdyZz z toho vybereme jednotlivd x a y, napi.:

n-krat
-z y-x-y.. =z FyF . y-nd madm celkem y*, takze 2-4 musim mit celkem zbylych x
Déle se muzeme ptat, kolik existuje ¢lent pro konkrétni k. A protoze z pravé k zavorek jsme si vybrali y, tak si z
pravé n zavorek musime vybrat k takovych, ve kterych pouzijeme r. = maéme (Z) moznosti, jak je vybrat. [

n—k

2.4.9 Princip inkluze a exkluze
Véta 1: Pro koneéné A, az A,, plati:

n

=Y 3

k=1 re(t)

(A

i€l

NE

Proof. #1. Necht A := UAi

i
Leva i prava strana jsou soucty velikosti néjakych mnozin, takze se muzeme ptéat, kolikrdt levé a pravé strané
prispéje kazdy prvek a € A. Vime, ze k levé prispéje jednou, chceme dokazat, ze k pravé také jednou. Zadefinujme

t
si kolikrét se zapoCitd #i:a € A; = t: Pro k >t ... 0-krat; Pro k <t .. (—1)*! <k> -krat

()

I na pravé strané tedy prispéje pravé jednou. O

Véta 2: Pro konetné A; az A, plati:

U4

=1

= Z (=1)1+1

0+£IC[n]

N4

i€l

Proof. #2.
Necht A4 := U A; a necht pro X C A plati Cx : A — {0,1} ... charakt. funkce. Necht plati vztah:

n

H(l — ;) = Z (=M H-Ti

i=1 IC[n il
Operace char. fce: Cx -Cy = Cxny ;Cx=1-Cx ;1 -Cxuy = (1 -Cx)(1 - Cy) Z Cx(a) = |X]|

acA
Nyni dosadime do ptuvodni rovnice z; = Ca,:

[T1-ca)= 3 0" o

i=1 ICn iel
—_———— ~——
L=Cua=| > (DMCha | +1
0#IC[n]
Cua= >, (=DM a,
0£IC [n]
Z CUi Ai = Z (_1)II‘+1 Z Cﬂzel A
aCA 0#I1C[n] aCA
— N———
U= 3 comna,
i=1 0#IC[n] iel
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2.4.10 Odhad faktoridlu
Véta: n™2 <nl < (2H)"
Nejprve udélame nékolik mensich tprav, umocnime ( n/2 <pl< ( ) )2 a vyjadiime:
(n !)2:1-1-2-2~3-3-...~ =(1n)-2-n-1)-B-n—=2)..-(n-1)
=V1-n-\2 (n-1) \/3 (n—2)-..-vVn-1
Nyni budeme dokazovat dvé nerovnosti, ve kterych n! = \/i(n —i + 1):
L. Proof. \/i(n —i+ 1) > y/n = n'/2, umocnime na 2., takze chceme, aby i(n —i+1) > n

e Pokudsei=nVi=1, potomn > n.

e Pokud se i # 1,n, tak pocitdm soucin dvou éisel, jedno je vétsi (max) a druhé mensi (min).
— max > n/2 ... nejmensi muze byt, kdyz se potkaji uprostied
— min > 2 ... nemuze byt 1 (podminka)

Takze sou¢in dvou ¢fsel: max-min >n/2-2=n

O
. ) T4y
2. Proof. Za pomoci AG nerovnosti: Vx,y > 0: VToy <
geometricky primeér aritmeticky prumeér
Tvrdime, ze podle AG nerovnosti plati: \/i(n —i+1) < A2 +1 — ”T“‘l:
0< (a—0)?*=a®—2ab+b*
2ab < a® + b?
a® + b?
b<
W=
P#i dosazeni a = /7 a b= \/y, ziskdme /7 -y < 23 = plati nl = /i(n —i+ 1) < =EL. O
2.4.11 Odhad kombinaéniho ¢isla
Véta: (%)k < CO(n,k) <nF
Nejprve binomické ¢islo rozdélim na (Z) = %]f = % a opét budeme dokazovat dvé nerovnosti:
1. Proof. Muzeme si vSimnout, ze kazdé ¢islo v ¢itateli je nejvySe n a kazdé ¢islo ve jmenovateli je alespon 1.
_ n(n—1).o(n—k+1) k_
Proto(Z)f”"(k 1)” <(%)" =n O
2. Proof. Rozdélime vyraz na jednotlivé zlomky: 7 - % Ce "%’“H a u kazdého dokdzeme, ze je > 7.
Dokazujeme tedy, ze z leva do prava zlomky rostou (7 je nejmensi).
n _n-—1
E— k-1
n-(k—=1)<k-(n—-1)
nk—n<nk-—=k
n>k
Vyraz je skute¢né rostouci. O

2.4.12 Odhad prostifedniho kombinaéniho ¢isla
Véta: ﬁﬁ < (2:) < 4", Cisla rostou, v prostied je maximum, nésledné zase klesajf (Pascaliv trojihelnik).

1. Proof. (*") <4".
Uvédomme si, ze kdyz mame n-ty fddek Pascalova trojijelniku, tak je jeho soucet 2". V naSem pftipadeé je
to 2n-ty Fadek, takze jeho soucet je 227 = 4", O

2. Proof. 2+1<( ).

Kdyz mdme posloupnost ¢isel, tak plati max > aritmeticky primér > min. Nasge ¢islo je nejveétsi a lezi presné
v prostied, takze musi byt > AP radku.

Soucet naseho 2n-tého fadku je 4™, soucet ¢isel na fadku je 2n + 1. Celkem tedy plati O

4"
2n+1

12



2.5 Grafy

2.5.1 Vztah mezi souc¢tem stupnt a poc¢tem hran, princip sudosti
Véta: V grafu G = (V, E) plati:
Y dega(V) = 2|E|

veV

Proof. Secteme-li stupé, kazdou hranu zapocitdme dvakrét (jednou za kazdy jeji konec). Konec hran: pocitdme
dvojice (v,e), kdev eV ae€ E, t.2z.: v Ee.
O

Diisledek: pocet vrcholu lichého stupné je sudy

2.5.2 Véta o skére

Véta: Posloupnost D = (dy < dy < ... < d,) pro n > 2 je skére grafu < 0 < d, < n —1 A posloupnost
d; proi<n—d,
d

D' = dy,dy, e, je skre grafu, kde d] = - |
i_l pI‘O’LZn_dn
Proof. ... -

2.5.3 Dosazitelnost sledem je totéz jako dosazitelnost cestou

Véta: Mezi vrcholy u, v vede sled <= mezi nimi vede cesta.

1. Proof. <—=:
Trividlné, kazda cesta je sledem. O

2. Proof. = :
Postupné budu ze sledu vypoustét smycky. Opakujeme, dokud se nezbavime vSech opakujicich se vrcholu.
Formdlné: Necht 3 sled z u do v... Nyni :
Sled: vg,€1,V1, ... €4, Vis €ig1, o €5, Ujy €j41-++s €, Un, Kde v; = v; pro néjaké ¢ < j. Odstranime smycku:
—_————

smycka
Sled: v, €1,V1, ..., €5, Vi, €541, -.vy €, Up, j€ kratsi, je bez smycek, je cestou
Opakujeme, dokud existuji duplicitni vrcholy. O

2.5.4 Pocet sleda délky k lze ziskat z k-té mocniny matice sousednosti

Véta: Pro A= A(G) grafu G na vrcholech vy, ..., v, plati:
Vi, j : (AF); ; = # sledi délky k z v; do v;.
Proof. Matematickou indukci podle k.
(i) pro k=0 a k = 1: Trividlng, sled délky 0 je stejny vrchol; sled délky 1 je jedna hrana.

(i) pro k — 1 — k: Zapiseme AF = AF—1. A

n
k k—1 _
Ajy = Z Ai ' At =
~—~

t=1
~— {ve,v;}€B(G)]
# sledu délky k — 1 z v; do vy

= Z # sledi délky k — 1 zv; do vy =
{vt,vj;/EE(G)

= # sledu délky k z v; do v;

O
2.5.5 Trojiuhelnikova nerovnost pro vzdalenost
Véta: dg(u,v) <dg(u,w) + dg(w,v)
Proof. Z véty 2.5.3. Sled nemuze byt kratsi nez nejkratsi cesta. O
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2.5.6 Véta o existenci uzavireného eulerovského tahu
Véta: Graf je Eulerovsky <= md uzavieny eulerovsky tah, je souvisly a mé vsechny vrcholy sudé (Vv € V(G) :
dega (V) je sudy)

1. Proof. = :
Je souvisly: z kazdého vrcholu do kazdého se da dostat za pomoci eulerovského tahu. Tah je pfipadem sledu
a kdyz je nékde sled, je tam i cesta = Vu,v existuje cesta mezi u a v.
Je sudy: Hrany sousedici s V' rozdélime do disjunktnich dvojic = degg (V) je sudy. O

2. Proof. <—:
Necht T je jeden z nejdelsich tahii v G.

(a) T je uzavreny: Kdyby nebyl, vezmeme v (krajni vrchol tahu)... v je navsiven lichym poc¢tem hran tahu
— Jf € E incidentni{ s v t.z. f ¢ T = f.T je ale dels{ tah. 4

(b) Yu,v vrcholy na T': pokud {u,v} € E(G), pak {u,v} € T... Vime, Ze tah je uzavieny. Kdyby existovala
néjaka hrana (mezi u,v), kterd nelezi na tahu, tak ji povedu ke sporu. Vim, ze nejdelsi tah je uzavieny
a ze prochézi alespon jednou u. Pfi jednom prichodu u tah rozpojim a pfidém hranu {u,v}. Tim jsem
vsak vytvoril tah, ktery je delsi nez puvodni nejdelsi T'. 4

(c) Kazdy vrchol v € V(G) lezi na tahu T... Necht vrchol v nelezi na tahu 7. Vezmu libovolny vrchol u a
ze souvislosti plyne, ze 3 cesta mezi v a v. Aby ale existoval, musela by existovat hrana, kterd spojuje
v a tah T, ta ale existovat nemuze, protoze bychom pftidali hranu a zvétsili bychom 7. 4

O

2.5.7 Uzaviené eulerovské tahy v orientovanych grafech
(1) je vyvézeny a slabé souvisly
Véta: Pro orientovany graf G je ekvivalentni: < (i7) je eulerovsky
(#i1) je vyvézeny a silné souvisly
Proof. Postupné dokazujeme (i) = (i1) = (i) = (4):
(1) = (ii): Z dukazu o existenci uzavieného eulerovského tahu

(i) = (4i11): Mdme-li uzavieny eulerovsky tah, tak je ve dvojicich vzdy stejné hran dovnitf a hran ven.
Je eulerovsky, takze z néj mohu vybrat podtah z w do v iz v do u. (véta 2.5.3)

(731) = (7): Silnd souvislost implikuje slabou

2.6 Stromy
2.6.1 Lemma o koncovém vrcholu
Veéta: Kazdy strom s alespon dvéma vrcholy mé alespon jeden list.

Proof. Necht C je nejdelsi cesta a vrcholy a a z jsou listy.
Pro spor predpokladejme, ze

1. 3z ¢ C, ale kdyz ho propojime s a, vznikne ndm delsi cesta. 4

2. Hrana vede do vrcholu x’, kteryj uz na cesté lezi. V takovém pripadé by nastala kruznice. 4

2.6.2 Je-lil list grafu G, pak G je strom, pravé kdyz G-1 je strom.
Véta: Pro graf G s listem [: G je strom <= G —1 je strom.
1. Proof. = je-li G souvisly acyklicky, pak je i G — [ souvisly acyklicky.

Je souvisly: Yu,v € V(G —1)3 cesta C v G mezi u,v, takze C C G — [
Je acyklicky: Kdyby 3 kruznice CCG—-1CG = CCG O
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2. Proof. <= je-li G — Il souvisly acyklicky, pak je i G souvisly acyklicky.
Je souvisly: Dokazujeme, Ze mezi kazdymi vrcholy G existuje cesta. Pokud to jsou vrcholy # [, pak jsou
to vrcholy, které uz byly v G — [, tim padem mezi nimi byla cesta, kterd zustala az do G. Priddanim listu
nerozbiju cestu. Dokazujeme, ze 3 cesty mezi | a ostatnimi vrcholy v G — [. Napiiklad chceme z [ do ¢:
vyuzijeme G — [ souvislosti a bodu s, ktery propojime s bodem ¢ = 3 cesta.
Je acyklicky: Kdybychom méli kruznici v G, kde neni [, tak takovd byla i v G —[. Tam byt ale nemuze,
protoze [ méa stupen 1 a v kruznici musi mit kazdy vrchol stupen < 2. O

~ r ¥
:"! '.-f":f}.'.] {-. N “\-‘-f\ \.-!.u
=

r< -t
L -

'J}| IE'A‘UC ‘J'(_G

& !

2.6.3 Peét ekvivalentnich charakteristik stromu

Véta: Pro graf G jsou nésledujici tvrzeni ekvivalentni:

(i) G je souvisly a acyklicky (=strom)

Vu,v € V(G) 3! cesta v G mezi u a v (=jednoznacnd souvislost)

(ii

(iv) G je acyklicky a Ve € (V(ZG)) \ E: G+ e md cyklus (=mazimdiné acyklicky)

)
)
(iii) G je souvisly a Ve € E(G) : G — e neni souvisly (=minimdini souvislost)
)
(v) G je souvisly a |E(G)| = |V(G)| — 1 (=Eulerova formule)
Proof. Matematickou indukei podle k.

(1) = (4#i): indukei odtrhdvanim listu

(i) = (#i1): Médme-li uzavieny eulerovsky tah, tak je ve dvojicich vzdy stejné hran dovniti a hran ven.
Graf je vyvazeny a silné souvisly, na tahu lezi kazdé dva vrcholy u,v. Je eulerovsky, takze z néj mohu vybrat
podtah z v do v iz v do u.

(i) = (iv): Z dikazu o existenci uzavieného eulerovského tahu

(i) = (v): Z dukazu o existenci uzavieného eulerovského tahu

2.6.4 Graf ma kostru, pravé kdyz je souvisly.

Véta: Graf G ma kostru <= G je souvisly.

1. Proof. —
Ma4-li graf kostru, je kostra strom, ve stromu jsou kazdé dva vrcholy spojené cestou. Cesta je podgrafem G,
takze G je souvisly. 0

2. Proof. <=
Pokud je G souvislé, tak je bud acyklické, nebo v ném jsou né&jaké cykly. Muzeme si vybrat libobolnou hranu
na cyklu a tu smazat (opakujeme konec¢né krat, dokud jsou v grafu cykly). Dostaneme tedy graf, ktery je
stale souvisly a ktery neobsajuje cykly, takze je strom. (Odebirdnim hrany vidy dostaneme podgraf ptivodniho
grafu, takze je strom). O
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2.7 Rovinné kresleni grafti

2.7.1 Hranice stény je nakreslenim uzavieného sledu (bez dikazu).

2.7.2 Graf jde nakreslit do roviny, pravé kdyz jde nakreslit na sféru.

Proof. Stereografickou projekci. Viz 3.7.2. OJ

2.7.3 Kuratowského véta (bez dukazu)

Véta: Graf G je nerovinny <= G obsahuje podgraf isomorfni s délenim K5 nebo K3 3.

2.7.4 Eulerova formule pro souvislé rovinné grafy (v+f=e+2)

Véta: Necht G je souvisly graf nakresleny do roviny, v := |V(G)|, e := |E(G)|, f := #stén nakresleni. Potom
plativ+ f =e+ 2.

Proof. Zvolime v pevné a pak indukci podle e.

(i) e=v—1 (G je strom), f=1:
v+l=v—-1+2

(ii) e — 1 — e: m&jme graf G s e hranami. Nechf A je hrana na kruznici v G.
Potom G' =G -\, v/ =v,e =e—1, f' = f — 1. Nyn{ pouzijeme indukéni predpoklad:

’U’—I—f’=€/+2
vt f-A=e-1+2
v+ f=e+2

2.7.5 Maximalni rovinny graf je triangulace.

Véta: Je-li G maximalni rovinny s alesponi 3 vrcholy, pak jsou ve vSech nakreslenich vSechny stény trojuhelniky.

(Ste. nen r:;a'-rﬂ_-; T Soeadoll
ol @ e (B\E©
Wil & HER {

e naerellenidn el Sain.

3 T S0 _-n- 'lN."-:.I'"; ¥ ik : e T : \ - :ﬁ h“”" 11:-" "r‘f'k}'ﬂi-{m ’5% "‘:h‘.

-..‘,' =4 -r-f:g_ = 2F 3

v-2=4
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2.7.6 Maximalni pocet hran rovinného grafu
Véta: V kazdém rovinném grafu s alespon 3 vrcholy je |E| < 3|V| — 6.
Proof. Doplnim do G hrany, az ziskdm maximdln{ rovinny graf G’. Takze v’ = v, ¢/ > e. Nynf jen dosadime:

e€=30—-6 = e<3v—-6

2.7.7 'V rovinném grafu existuje vrchol stupné nejvyse 5.

V rovinném grafu existuje vrchol stupné nejvyse 5. Vychézi z véty: Pramérny stupen vrcholu v rovinném
grafu je < 6. Coz dokézeme:

Proof. Zdeg()\) = 2e¢ < 6v — 12. Uréim prumér: M =2 <2 ¢ <6

A
7 toho plyne dikaz pro nasi vétu: Kdyby vSechny vrcholy mély stupen alespon 6, tak je prumeér talé alespon 6...
Coz neni, je ostie mensi.

O

2.7.8 Pocet hran a vrchol nizkého stupné v rovinnych grafech bez trojihelnikt

Proof. Pocitame dvéma zpusoby: 4f <2e = f < %e:

1
U+§€26+2
1
v—22§e
e<2v—4

Prameérny stupen je tedy < 4 = existuje vrchol stupné maximalné 3. O

2.8 Barveni grafi
2.8.1 Graf ma barevnost nejvyse 2, graf je bipartitni, graf neobsahuje lichou kruznici.

Tvrzeni: x(G) <2 <= G je bipartitni.

1. Proof. <= Trivialné, je-li bipartitni, jeho obarveni je nejvyse 2. 7 O
2. Proof. = :
Kdyz mame graf obarvitelny 2 barvami, tak ty 2 barvy jsou partity. Kdyz do jedné partity ulozime vrcholy
s jednou barvou a druhou, tak zase musi jit hrany napfi¢ partitami. O
Véta: x(G) <2 <= G nema lichou kruznici.

1. Proof. = Trivialneé. O

2. Proof. <—:
Kdyby byl nesouvisly, obarvime po komponentach.
T := kostra grafu G, dc: V(G) — {1,2} obarveni T. Kdyby 3{z,y} € E(G) \ E(T) a c(z) = ¢(y):
P := cesta mezi z,y v T, P méd sudou délku = P + {z,y} je lichd kruznice v G. 4 O

2.8.2 Barevnost je vétsi nebo rovna nez klikovost

Klikovost je rovna velikosti nejuétsi kliky (iplného podgrafu) v G.

Tvrzeni: Pokud H C G, pak x(H) < x(G).

Proof. Najde-li se v grafu uplny podgraf na k& vrcholech, tak ten graf nejde obarvit méné nez k barvami, takze y
je alespon k. O

2.8.3 Barevnost je mensi nebo rovna nez maximalni stupen + 1

Véta: Pokud G je k-generovany, pak x(G) < k + 1.
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k-degenerovany graf: = 3 < linedrn{ uspordddni na V(G) t.z. Yo € V(G) : [{u < v | {u,v} € E(G)}| < k.
Neboli: pocet vsech vrcholu pred v, které jsou s v spojené hranou je nejvys k.

Proof. Barvime v poradi podle usporadani =, z leva do prava. Prvni obarvime libovolné a pro kazdy dalsi se
podivam, kolik barev je zakadzano jeho obarvenymi sousedy. Obarveni sousedé jsou ale jen nalevo, takze jich je
nejvys k. Mam k dispozici k + 1 barev, vzdy zustane alesponi 1 voln4. O

2.8.4 Veéta o 5 barvach

Véta: Pro graf G rovinny je x(G) < 5.

Proof. Kempeho etézce - Indukef podle |V].
(i) |V] <5 ... Trividlné.

(i) n —1 — n: Nechf v je vrchol s min stupném (deg(v) < 5). Vezmeme G’ := G — v 22, 3¢/ 5-ti obarveni G.
”Snazime se odebrat v, obarvit indukct zbytek a prilepit v zpdtky.”

e Pokud na sousedech v je v ¢/ maximélné 4 barvy, tak dobarvime v.

e Pokud ne, snazime se piebarvit néco tak, abychom si alesponn 1 barvu pro v uvolnili.
Budujeme podgraf z a: podgraf A indukovany vrcholy, do kterych 3 cesta z a pfes a-barvu a c-barvu.
— Pokud ¢ ¢ A : staéi prohodit v A barvy, takze je a-barva volna pro v.

— Pokud ¢ € A : udélame totéz z b pies b-barvy a d-barvy, vytvoiime tim podgraf B.
Nyni uz d ¢ B : prohozeni barev v B, takze se uvoln{ b-barva pro v.

d C

Bud jsme prohodili barvy v A nebo jsme dosli az do ¢ a vytvorila se kruznice. Takze kdyz jsme totéz udélali s B,
tak jsme nemohli dojit aZ do d, protoze bychom museli protnout ndmi vytvorenou kruznici.

O
Dukaz #2 pisni: hitps://mj.ucw.cz/tmp/5barev
2.8.5 Véta o 4 barvich (bez diakazu)
Véta: Pro graf G rovinny je x(G) < 4.
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2.9 Pravdépodobnost
2.9.1 Véta o uplné pravdépodobnosti
Véta: Necht A je jev a By, ..., By je rozklad Q na jevy t.z. Vi : P(B;) # 0. Potom:

P(A) = ZP[A|Bi] - P(B;)

Proof.
P(A) =} PIAIB - P(B))

P(ANB) = P[A|B] - P(

A to plati, protoze P(A) =
o plati, protoze P(A) Jr{P(AQB):P[A|B]-P(

B

B

2.9.2 Bayesova véta

Véta: Necht A je jev, kde P(A) # 0 a By, ..., By, je rozklad Q na jevy t.z. Vi : P(B;) # 0. Potom:
P[A|B;] - P(B;)

B ST IS

2.9.3 Véta o linearité stfredni hodnoty
Véta: Necht X,Y jsou nezavislé veliciny a o € R, potom E[X + Y] = E[X] + E[Y] a E[aX] = oE[X].
Proof. #1.
EX +Y] =) (X+Y)w) -Pw) =
wGQ%/_/

X(w)+Y (w)

= Y (X (W) + Y()) - Pw)

weN

Proof. #2.

weN
= Y a(X(w)- Pw) =
we
= a Y (X Pw) =
wel
E[X]
= aE[X]
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3 Piiklady

3.1 Uvod
3.1.1 Technika diakazu indukci a sporem

e Dukaz sporem: Pouzitim chybného predpokladu dostaneme spor - predpoklad je nepravdivy, proto plati
jeho negace.

e Dikaz indukei Tvrzeni se rozdéli do nékolika podtiid, podtiidy usporadame do posloupnosti. Dokazujeme
pro vSechny objekty proni (n = 1) podiidy a vechny objekty ndsledujici (n 4+ 1) podtiidy.

3.2 Relace
3.2.1 Priklady relaci

e Prazdna: Prazdnd relace R C ) je podmnozin kartézského soucinu prézdné mnoziny.

e Univerzilni: Necht mdme relaci R C X x Y, potom pro univerzdini relace S C X x Y plati R = S.
Vsechny prvky se propoji.

e Diagondlni: Relace R na X je diagondini <= AR = {(x,z) | z € X}. Pokud mé v maticovém zdpisu
jednicky v diagondle.

3.3 Usporadani
3.3.1 Priiklady usporadani

e Délitelnost (N,\): reflexivita &; antisymetrie g/\% = a = b; tranzitivita g N = o Céstecné
uspordadani

e Inkluze podmnozin (2%, C): reflexivita A C A; antisymetrie A C BAB C A = A = B; tranzitivita
ACBABCC = A C (C; Céstecné usporadani

e Lexikografické: Mame abecedu (X, <).
Pro lexikografické uspordddni (X2, <ppx) plati (a1,a2) rex (b1,b2) = a1 < by V (a1 = by Aag =< by)

3.4 Kominatorické pocitani
3.4.1 Problém satnarky: pocet permutaci bez pevného bodu

Znéni: Do divadla pfislo n panu s n klobouky, kazdy péan si odlozil klobouk v Satné a po predstaveni si jej zase
vyzvedl. Satnéaika vsak pantim vybrala klobouky nahodné. Jaké je pravdépodobnost, Ze zadny pan nedostal svij
klobouk?

Sp := {m | 7 je permutace na [n]} ... mnozina vSech panu - kazdému pdnovi je pfitazen pravé 1 klobouk - bijekce
m(1) =1 ... tzv. pevny bod - pén dostal svij klobouk

Zn = |{m € Sy | Vi:7w(i) #i}| ... kolik 3 permutaci bez pevného bodu

Pres, (m nemé pevny bod ) = % ... vysledna hledand pravdépodobnost

A:={m €S, |  ma pevny bod} ... Z, =n!— |4|

A;:={m €S, |n(i) =i} ... maji i jako jeden z pevnych bodu
A=J; 4

Al = (n = 1)!

[AiNAj|=(n—2)! ... proi#j

| pruniku k-tice | = (n — k)!

Dosadime do vzorecu pro Inkluzi a exkluzi:
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U =20 Y N
i=1 k=1 re(t) lier
Al = (k)

“(=D)F ol nl o pl n!

=n! X7 = _ _

| Al —n.kz TR + e ot i
-1

Tim jsme vsak spocitali pocet permutaci s alespoil jednim pevnym bodem, musime tedy pouzit Z,, = n! — |Al:

n! nl nl n!
) — _ "
S TR T k!
— (-1
—nl.
Zy =n! E I
k=0
—_———

Pravdépodobnost, ze zddny pan nedostal svij klobouk je %‘

3.5 Grafy
3.6 Stromy

3.7 Rovinné kresleni graft
3.7.1 K5 a K3,3 nejsou rovinné.

Ks a K3 3 nejsou rovinné podle Jordanovy véty, kterd iikd: KaZdd uzaviend krivka déli rovinu na dvé cdsti.

- Kss

Pokud je 5 uvnitt, nelze ji propojit s 3. Naopak, pokud je 5 venku, nelze ji propojit s 4.

3.7.2 Vngéjsi sténu lze zvolit.

Princip: Kdyz mam nekresleny graf v roviné, promitnu ho stereograficky na sféru. Tim zase dostanu nakresleni
na sféfe a vnéjsi sténa se promitne taky na sténu - pozna se podle toho, ze obsahuje S pol.
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Pri otoceni: Vytvori se rovinné zakresleni téhoz grafu, stény vypadaji stejné = mohu si zvolit, kterd bude
vnéjsi.

3.7.3 Klasifikace platéonskych téles pomoci rovinnych graft

Platénské téleso konvexni mnohostén, md shodné mnhoihelniky, v kazZdém vrcholu md stejni pocet hran

Z bodu uvniti mnohosténu promitame vrcholy na sféru, mame tedy nakresleny graf na sféfe. Vime ale, ze graf na
sféfe muzeme prekreslit do roviny.

Hleddme tedy rovinny graf, kde kazdd sténa ma pravé k-hran a je d-reguldrni pro néjaké d.

Nakreslime-li do kazdé stény vrchol a spojime hranami, vznikne novy rovinny graf, ktery ma prohozené k a d.
Takze 3 < k,d < 5.

Zarovén vime, ze k - f = 2e, protoze kazda sténa ma k-hran — f = 2—;

Zéarovén vime, ze d - v = 2e, protoze soucet stupinu v je 2e = v = %e.
Dosadime do eulerovy formule:

v+ f=e+2
2e  2e
— +— = 2/(: 2
7 + 3 +2/(: 2¢)
L1
d k 2 e
Pravé ¢ést vysledného vyrazu ndm ikd, ze 5 + € (3;1] = min(d, k) =3
Vytvotime tabulku a dopocitame zbytek:
(4 [k e [ v [/
3 3 6 4 4
3 4 12 8 6
3 5 30 20 12
4 3 12 6 8
5 3 30 12 20
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3.8 Barveni grafa

3.8.1 Prievod barveni mapy na barveni grafu pomoci duality

3.8.2 Barevnost uplnych grafi, cest a kruznic
o Uplny graf: x(K,) =n
o Cesta: x(P,) =2

2 sudé

o Kruznice: x(Cp) = {3 liehd
iché

3.8.3 Princip barveni indukci: stromy jsou 2-obarvitelné, rovinné grafy 6-obarvitelné
Tvrzeni: Kazdy strom je 2-obarvitelny.
Proof. Indukci podle |V].

(i) [V|=1 ... Trividlné.

(i) n —1 — n: Nechf [ je list a s jeho soused. Uvazme G’ := G — 22, 3¢ obarvenf G'.
Nyni staéi rozsifit ¢’ na néjaké c, které listu I ddvd opaénou barvu, nez mé s. Takze: ¢(l) = 3 —(s) a
e(V)=d(V), proVV £ 1.

*e—C

3.9 Pravdépodobnost
3.9.1 Jev se také da popsat logickou formuli.

{z € X | p(x)}, kde p(z) je formulka, kterd ndm Fekne, jestli je vysledek pokusu elementdrn{ jev

3.9.2 Bertrandav paradox s kartickami

Maéame 3 karticky, s barvami stran: CC, MM, CM.

Vybereme ndhodnou karticku ndhodnou stranou polozime nahoru.

Pozorovali jsme, Ze horni strana je ¢ervena. Jaka je prevdépodobnost, Ze je i spodni ¢ervena?

0 ={CC,CC,MM,MM,CM,CM}, kde _ je karticka otoCend nahoru. Vime, ze horni strana byla ¢ervend —
Q={CC,CC, MA, MM ,CM,CH?}, hleddme ale dolnf stranu C, takze ndm zbyva pouze:

Q={CC,CC, MA, MM, CM, CM}, viechny jevy majf stejnou pravdépodobnost %, takze celkova P[C] = %
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Kdyz tesime pres podminénou pravdépodobnost: A= C, B=C. P[A|B] = % = %

3.9.3 Jevy, které jsou po 2 nezavislé, ale po 3 uz ne

Hod minci: Q = {00,01,10,11}, A = {10,11}...prvni 1, B = {01,11} ...druhd 1, C = {00, 11}...sudy #1. Takze
P(A) =3, P(B) = 3, P(C) = 3
P(ANB)=P(ANC)=PBNC)=1=1%-1

PANBNC)=1=3-3-3

3.9.4 Soucin pravdépodobnostnich prostora, projekce

Soucin pravdépodobnostnich prostori (21,29, Py) a (9,292, Py) je trojice (21 x Qy, 2% x 292 P),
kde P(A) = > Pi(a1)- Paaz)

ACO X (a1,a2)€EA
3.9.5 Logické formule s nahodnymi velicinami davaji jevy.

n-krat hodim minci a defijuji si ndhodnou veli¢inu X := #1. Potom mi P[X < 3] d4v4 jev.

3.9.6 Pouziti indikatort k vypoctu stiedni hodnoty

n-krat hodim minc{ a ptdm se, kolik mi padlo jedni¢ek - zajimé meé stfedni hodnota E[X] jednicek.
X = #1, X; = #1 na i-té pozici, takze X = _ X;.

0 s pravdépodobnosti
E[X] =) E[X,]= ] ) »
; 1 s pravdépodobnosti

NN
N
()
+
N
N

Scitame n-krat %, takze mame 5.

3.9.7 Velikost fezu v grafu: stfredni hodnota, existuje velky ez, pravdépodobnostni algoritmus
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