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1.4.3 Notace pro množinu všech k-prvkových podmnožin . . . . . . . . . . . . . . . . . . . . . . . 3
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1.9.5 Náhodná veličina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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2.4.3 Počet všech podmnožin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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1 Definice

1.1 Úvod

1.1.1 Operace s č́ısly

� Suma:

n∑
i=1

ai = a1 + ...+ an

� Produkt:

n∏
i=1

ai = a1 · ... · an

� Horńı celá část: dxe je nejbližš́ı vyšš́ı celé č́ıslo k x

� Dolńı celá část: bxc je nejbližš́ı nižš́ı celé č́ıslo k x

1.1.2 Množinové operace

� Rovnost: A = B ⇐⇒ (A ⊆ B) ∧ (B ⊆ A)

� Inkluze: A ⊆ B ⇐⇒ (x ∈ A) =⇒ (x ∈ B)

� Sjednoceńı: A ∪B ⇐⇒ (x ∈ A) ∨ (x ∈ B)

� Pr̊unik: A ∩B ⇐⇒ (x ∈ A) ∧ (x ∈ B)

� Rozd́ıl: A \B ⇐⇒ (x ∈ A) ∧ (x /∈ B)

� Symetrická diference: A4B = (A \B) ∪ (B \A) ⇐⇒ (x ∈ A)⊕ (x ∈ B)

� Potence (množina podmnožin): P(A) = 2A = {B | B ⊆ A} ... množina všech podmnožin

1.1.3 Mohutnost

|M | je počet prvk̊u v množině M .

1.1.4 Uspořádané k-tice a Kartézský součin

� Uspořádané k-tice: (x, y) = {{x}, {x, y}}

� Kartézský součin: A×B := {(a, b) | a ∈ A, b ∈ B}

1.2 Relace

1.2.1 Relace mezi množinami, relace na množině

� Relace mezi množinami: Relace R ⊆ X × Y je podmnožina kartézského součinu dvou množin X a Y .

� Relace na množině: Relace R na X je podmnožina kartézského součinu dvou identických množin, tj.
X = Y =⇒ R ⊆ X ×X.

1.2.2 Operace s relacemi

� Inverze: Pro relaci R definujeme inverzńı relaci R−1 předpisem R−1 = {(y, x) | (x, y) ∈ R}

� Skládáńı relace: Nechť máme relace R ⊆ X × Y a S ⊆ Y × Z, potom složená relace, kde T ⊆ X × Z, je
T = R ◦ S := {(x, z) | ∃y : xRy ∧ ySz}

1.2.3 Funkce (zobrazeńı) a jejich druhy

Funkce (zobrazeńı): Funkce f : X → Y je relace f ⊆ X × Y taková, že (∀x ∈ X)(∃!y ∈ Y ) : xfy.

� prosté (injektivni): Funkce f : X → Y je prostá ⇐⇒ pro všechna Y existuje nejvýše jedno ∀x ∈ X.

� na (surjektivńı): Funkce f : X → Y je prostá ⇐⇒ pro všechna Y existuje alespoň jedno ∀x ∈ X.

� vzájemně jednoznačné (bijektivńı): Funkce f : X → Y je bijektivńı ⇐⇒ je prostá i na. ( ∃!x )
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1.2.4 Vlastnosti relaćı

� Reflexivita: Relce R na X je reflexivńı ⇐⇒ ∀x ∈ X : xRx. (Lze zapsat jako: R ⊆ 4x)

� Symetrie: Relce R na X je symetrická ⇐⇒ ∀x, y ∈ X : xRy ⇐⇒ yRx. (Také: R = R−1)

� Antisymetrie: Relce R na X je antisymetrická ⇐⇒ ∀x, y ∈ X : xRy ∧ yRx =⇒ x = y. (R∩R−1 ⊆ 4x)

� Transitivita: Relce R na X je tranzitivńı ⇐⇒ ∀x, y, z ∈ X : xRy ∧ yRz =⇒ xRz. (Také: R ◦R ⊆ R)

1.2.5 Ekvivalence, ekvivalenčńı tř́ıda, rozklad množiny

� Ekvivalence: Relace R na X je ekvivalentńı ⇐⇒ je reflexivńı, symetrická a tranzitivńı.

� Ekvivalenčńı tř́ıda: R[x] = {y ∈ X | xRy} ... Pro relaci R ekvivalentńı na X je R[x] množina ∀x, y ∈ X
vzájemně ekvivalentńıch mezi sebou.

� Rozklad množiny: ϕ = X \R = {R[x] | x ∈ X}... Nechť máme relaci R na X a rozklad množiny ϕ = X \R.
Potom existuje právě jedna ekvivalence na R.

1.3 Uspořádáńı

1.3.1 Uspořádáńı

Uspořádáńı Relace R na X je uspořádáńı ⇐⇒ je reflexivńı, antisymetrická a tranzitivńı.

� Částečné: Prvky nemuśı být porovnatelné.

� Lineárńı: Uspořádáńı je lineárńı ⇐⇒ ∀x, y ∈ X : xRy ∨ yRx. Prvky jsou porovnatelné (=trichomické).

� Ostré: Uspořádáńı je ostré ⇐⇒ je ireflexivńı - žádný prvek neńı v relaci sám se sebou.

� Uspořádaná množina: Taková dvojice (X,R), kde X je množina a R je uspořádáńı na ńı.

1.3.2 Hasse̊uv diagram a bezprostředńıho předch̊udce

� Hasse̊uv diagram: Graf znázorňuj́ıćı uspořádáńı. V zakreslováńı se nepouž́ıvá, z d̊uvodu přehlednosti,
reflexivita a tranzitivita. Zakresluje se od spoda vzh̊uru vždy jen bezprostředńı předch̊udce.

� Bezprostředńıho předch̊udce: Nechť X je ČUM, potom prvek x ∈ X je bezprostředńım předch̊udcem
prvku y ∈ X právě tehdy, když x ≺ y ∧ @t ∈ X splňuj́ıćı x ≺ t ≺ y.

1.3.3 Prvky

Nechť (X,�) je ČUM:

� Největš́ı: potom a ∈ X je nejvěťśı prvek, pokud ∀x ∈ X plat́ı a � x.

� Nejmenš́ı: potom a ∈ X je nejmenš́ı prvek, pokud ∀x ∈ X plat́ı a � x.

� Maximálńı: potom a ∈ X je maximálńı prvek, pokud @x ∈ X, pro které x � a.

� Minimálńı: potom a ∈ X je minimálńı prvek, pokud @x ∈ X, pro které x ≺ a.

1.3.4 Řetězce

Nechť (X,�) je ČUM a A ⊆ X, potom pro

� Řetězec plat́ı, že ∀a, b ∈ A jsou porovnatelné.

� Antǐretězec plat́ı, že @a, b ∈ A, které jsou r̊uzné a porovnatelné.

1.3.5 Parametry alpha a omega

� Parametr ω: Výšku uspořádáńı v P : ω(P ) = max{P}. (maximum z délek řetězc̊u)

� Parametr α: Š́ı̌rka uspořádáńı v P : α(P ) = max{|A|;A nezávislá v P}. (maximum z délek antiřetězc̊u)
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1.4 Kominatorické poč́ıtáńı

1.4.1 Klesaj́ıćı mocnina

Nechť N je n-prvková a X je x-prvková množina. Klesaj́ıćı množina xn je rovna počtu všech prostých f : N → X:

xn = x · (x− 1) · ... · (x− n+ 1)

1.4.2 Charakteristická funkce podmnožiny

Nechť A ⊆ X, potom charakteristická funkce podmnožiny je zobrazeńı CA : X → {1, 0}.

(∀x ∈ X) : CA(X) =

{
1 pokud x ∈ A
0 pokud x /∈ A

1.4.3 Notace pro množinu všech k-prvkových podmnožin

Nechť N je množina. potom
(
N
k

)
je množina všech k-prvkových podmnožin množiny N .(

N

k

)
= {A ⊆ N : |A| = k}

Zárověň plat́ı: ∣∣∣∣(Nk
)∣∣∣∣ =

(
|N |
k

)
=

(
n

k

)
1.4.4 Kombinačńı č́ıslo a Pascal̊uv trojúhelńık

� Kombinačńı č́ıslo (binomický koeficient): Pro č́ısla n, k > 0 plat́ı:(
n

k

)
=
nk

k!
=
n · (n− 1) · ... · (n− k + 1)

1 · 2 · ... · k
=

n!

k! · (n− k)!

� Pascal̊uv trojúhelńık: Tabulka kombinačńıch č́ısel:

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

1.5 Grafy

1.5.1 Graf, vrchol, hrana

Graf je uspořádaná dvojice (V,E), kde V je vrchol a E je hrana. V je konečná neprázdná množina a E konečná
neprázdná množina všech dvouprvkovych podmnožin V , tedy E ⊆

(
V
2

)
.

1.5.2 Standardńı grafy

� Úplný graf na n vrcholech znač́ıme Kn, kde V = [n] a E =
(
V
2

)
.

� Prázdný graf na n vrcholech znač́ıme En, kde V = [n] a E = ∅, t.j. nemá žádnou hranu.

� Cestu na n vrcholech znač́ıme Pn, kde V = [n0] a E = {{i− 1, i}; 1 ≤ i ≤ n}.

� Kružnici na n vrcholech znač́ıme Cn, kde V = [n3] a E = {{i, i+ 1}, 1 ≤ i ≤ n− 1} ∪ {{1, n}}.

1.5.3 Bipartitńı a Úplně bipartitńı graf

� Bipartitńı graf, pokud V = V1 ∪V2, t.ž. V1 ∩V2 = ∅. Hrany jsou mezi V1 a V2, neboli ∀e ∈ E : |e∩V1| = 1.
Graf G je bipartitńı, pokud lze V rozdělit na dvě disjunktńı množiny V1 a V2 takové, že každá hrana z E
obsahuje jeden bod z V1 a druhý z V2.

� Úplný bipartitńı graf na n+m vrcholech znač́ıme Kn,m, kde V = {u1, ..., un}∪{v1, ..., vm} (=dvě partity)
a E = {{ui, vj}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
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1.5.4 Isomorfismus graf̊u

Grafy G a H jsou isomorfńı, pokud existuje bijekce mezi vrcholy:

∃f : V (G)→ V (H), t.ž. {u, v} ∈ E(G) ⇐⇒ {f(u), f(v)} ∈ E(H)

1.5.5 Stupeň vrcholu, Regulárńı graf a Skóre grafu

� Stupeň vrcholu v v grafu G je degG(v) := |{u ∈ V (G) : {u, v} ∈ E(G)}|.
Neboli počet hran grafu G, které obsahuj́ı hranu v.

� k-regulárńı, pokud pro k ∈ N plat́ı ∀u ∈ V (G) : degG(u) = k.

� Skóre grafu G je posloupnost stupň̊u všech vrchol̊u (krom uspořádáńı).

1.5.6 Podgraf, indukovaný podgraf

� Podgraf: Graf H je podgrafem grafu G, pokud V (H) ⊆ V (G) a E(H) ⊆ E(G) ∩
(
V (H)

2

)
.

� Indukovaný podgraf: Podgraf H je indukovaný, pokud E(H) = E(G) ∩
(
V (H)

2

)
.

1.5.7 Cesta, kružnice, sled a tah v grafu

� Cesta v grafu G je podgraf isomorfńı s nějakou cestou.

� Kružnice v grafu G je podgraf isomorfńı s nějakou kružnićı, kde se vrcholy ani hrany neopakuj́ı.

� Sled z v0 do vn v grafu G je posloupnost (v0, e1, v1, e2, ..., en, vn), pokud plat́ı ∀i : ei = {vi−1, vi}, kde v jsou
vrcholy a e hrany. Mohou se opakovat vrcholy i hrany.

� Tah z v0 do vn v grafu G je posloupnost (v0, e1, v1, e2, ..., en, vn), pokud plat́ı ∀i : ei = {vi−1, vi}, kde v jsou
vrcholy a e navzájem r̊uzné hrany. Mohou se opakovat pouze vrcholy, ne hrany.

1.5.8 Souvislý graf, relace dosažitelnosti, komponenty souvislosti

� Souvislý, pokud (∀u, v ∈ V ) existuje cesta z u do v. Graf drž́ı pohoromadě.

� Relace dosažitelnosti (ekvivalence) v grafu G je binárńı relace ∼ na V (G), t.ž. u ∼ v, pokud existuje
cesta z u do v.

� Komponenty souvislosti jsou podgrafy indukované tř́ıdami ekvivalence.

1.5.9 Matice sousednosti

Matice sousednosti A(G) grafu G je čtvercová matice n× n, pro kterou plat́ı:

Ai,j =

{
1 pokud {vi, vj} ∈ E
0 pokud {vi, vj} /∈ E

1.5.10 Vzdálenost v grafu (grafová metrika)

Vzdálenost v souvislém grafu G je definována jako dG : V 2 → R : ∀u, v : dG(u, v) je minimum z délek mezi u a v.

Pro metriku muśı platit ∀u, v, w ∈ V :

� dG(u, v) ≥ 0 ... je minimum z délek cest, cesty jsou také nezáporné

� dG(u, v) = 0 ⇐⇒ u = v ... nikde jinde (krom dG(u, u)) vzdálenost nulová neńı

� dG(u, v) ≤ dG(u,w) ≤ dG(w, v) ... vzdálenost mezi u a v je shora omezená mezi vzdálenost́ı u,w a w, v

� dG(v, u) = dG(u, v)
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1.5.11 Grafové operace: přidáńı/odebráńı vrcholu/hrany, děleńı hrany, kontrakce hrany

Grafové operace: přidáńı/odebráńı vrcholu/hrany, děleńı hrany, kontrakce hrany

� Přidáńı vrcholu/hrany znač́ıme G+ v/ G+ e.

� Odebráńı vrcholu/hrany znač́ıme G− v/ G− e. Vpř́ıpadě G− v vytvář́ıme indukovaný podgraf (mažeme
i hrany z tohoto vrcholu). G− v = G[V \ {v}]

� Děleńı hrany znač́ıme G%e. Vytvořeńı vrcholu uprostřed: {u, x} a {x, v}.
V ′ = V ∪ {v};E′ = (E \ {e}) ∪ {{v, x}, {v, y}}.

� Kontrakce hrany znač́ıme G.e. Spojeńı (slepeńı) hran. V ′ = (V ∪ {x, y}) ∪ {z}
E′ = {f ∈ E | f ∩ e = ∅} ∪ {f \ {x, y} ∪ {z} | f ∈ E ∧ |f ∩ e| = 1}

1.5.12 Otevřený a uzavřený eulerovský tah

Otevřený eulerovský tah z v0 do vn je takový tah, který obsahuje všechny vrcholy a hrany grafu právě jednou.
Uzavřený eulerovský tah je takový tah, kde v0 = vn.

1.5.13 Orientovaný graf, podkladový graf, vstupńı a výstupńı stupeň, vyváženost vrcholu

� Orientovaný graf uspořádaná dvojice (V,E), kde E ⊆ V 2 \ {(x, x) | x ∈ V }.
Neboli relace na množině vrchol̊u bez diagonálńıch prvk̊u.

� Podkladový graf G = (V,E)→ G0 = (V,E0), pro E0 =
{
{u, v} ∈

(
V
2

)
| (u, v) ∈ E ∨ (v, u) ∈ E

}
.

Neboli množina všech neuspořádaných dvojic vrchol̊u, kde v jednom nebo druhém pořad́ı je hrana.

� Vstupńı a výstupńı stupeň: Pokud existuje Eulerovský tah pro každy vrhol v, potom:

#hran z V︸ ︷︷ ︸
výstupńı stupeň deg−(V )

= #hran do V︸ ︷︷ ︸
vstupńı stupeň deg+(V )

� Vyváženost vrcholu: Graf je vyváženy, pokud plat́ı deg−(V ) = deg+(V ).

1.5.14 Silná a slabá souvislost orientovaných graf̊u

� Silná souvislost, pokud pro ∀u, v ∈ V existuje orientovaná cesta z u do v.

� Slabá souvislost, pokud podkladový graf (=symetrie grafu) je souvislý.

1.6 Stromy

1.6.1 Stromy, les, list

� Strom je souvislý graf bez kružnic. (acyklicky graf)

� Les je acyklicky graf. Jeho komponenty souvislosti jsou stromy.

� List je vrchol stupně 1.

1.6.2 Kostra grafu

Kostra grafu G je podgraf T , tedy T ⊆ G t.ž.: V (T ) = V (G) ∧ T je strom.

1.7 Rovinné kresleńı graf̊u

1.7.1 Rovinné nakresleńı grafu a jeho stěny (neformálně)

Pokud existuje nakresleńı do roviny bez kř́ıžeńı hran, tak je graf G rovinný.

1.7.2 Rovinný graf a topologický graf

� Rovinný graf je takový graf, pro nějž existuje nějaké nakresleńı v rovině.

� Topologický graf: uspořádaná dvojice (graf, nakresleńı).
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1.7.3 Stereografická projekce

Překresleńı grafu z roviny na sféru a naopak.

1.8 Barveńı graf̊u

1.8.1 Obarveńı grafu k barvami a barevnost

� Obarveńı grafu k barvami je c : V (G)→ [k] tak, že kdykoli {x, y} ∈ E(G), pak c(x) 6= c(y).

� Barevnost χ(G) je nejmenš́ı k takové, že existuje k-obarveńı G.

1.9 Pravděpodobnost

Ω je množina elementárńıch jev̊u; F ⊆ 2Ω je podmnožina elementárńıch jev̊u;

Pravděpodobnost P je funkce P : F → [0, 1] =

{
P (A) = 1 jev jistý

P (A) = 0 jev možný

1.9.1 Pravděpodobnostńı prostor diskrétńı, konečný, klasický

� Diskrétńı: trojice (Ω,F , P ), kde Ω je konečná nebo spočetná, F = 2Ω;P (Ω) = 1;P (A) =
∑
w∈A

P ({w}).

� Konečný: Diskrétńı pravděpodobnostńı prostor, kde Ω je konečný.

� Klasický: Konečný pravděpodobnostńı prostor, kde P (A) = |A|
|Ω| .

1.9.2 Jev elementárńı, jev složený, pravděpodobnost jevu

� Elementárńı jev: Všechny výsledky nějakého pravděpodobnostńıho experimentu. Znač́ıme jako Ω.

� Složený jev: Takový jev, který neńı elementárńı. Složený jev nastane ⇐⇒ nastane některý z elementárńıch
jev̊u v něm obsažený.

� Pravděpodobnost jevu udává, jakou máme šanci, že daný jev nastane.

1.9.3 Podmı́něná pravděpodobnost

Podmı́něná pravděpodobnost je pravděpodobnost, že nastal jev A za podmı́nek, že nastal jev B.

P (A|B) =
P (A ∩B)

P (B)

1.9.4 Jevy nezávislé a po k nezávislé

� Nezávislé: Jevy A a B jsou nezávislé ⇐⇒ P (A ∩B) = P (A) · P (B).

� Po k nezávislé: Jevy A1, A2, ..., An jsou po dvou nezávislé ⇐⇒ ∀i, j : i 6= j =⇒ Ai, Aj jsou nezávislé.

Neboli jsou nezávislé, pokud pro ∀I ⊆ [n] plat́ı: P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai).

1.9.5 Náhodná veličina

Náhodná veličina (proměnná) je funkce X : Ω→ R.

1.9.6 Středńı hodnota

Středńı hodnota náhodné veličiny X je E(X) =
∑
w∈Ω

P ({w}) ·X(w).

1.9.7 Indikátor náhodného jevu

Indikátor náhodného jevu A je náhodná veličina IA : Ω→ {0, 1}.

IA(w) =

{
1 pokud w ∈ A (pokud jev nastal)

0 pokud w /∈ A (pokud jev nenastal)
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1.9.8 Markovova nerovnost

Nechť X je nezáporná náhodná veličina a ∀t ≥ 1, potom plat́ı: P [X ≥ t · E(X)] ≤ 1
t
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2 Věty a d̊ukazy

2.1 Úvod

2.2 Relace

2.2.1 Vztah mezi ekvivalencemi a rozklady

Věta: Pro každou ekvivalenci R na X plat́ı:

(i) ∀x ∈ X : R[x] 6= ∅

(ii) ∀x, y ∈ X : R[x] = R[y] nebo (XOR) R[x] ∩R[y] = ∅

(iii) Tř́ıdy ekvivalence jednoznačné určuj́ı (popisuj́ı) relaci R.

Proof.

(i) Množina R[x] vždy obsahuje prvek x, protože R je reflexivńı. xRx =⇒ x ∈ R[x] =⇒ R[x] 6= ∅

(ii) Chceme ukázat, že R[x] ∩R[y] 6= ∅ =⇒ R[x] ⊆ R[y].
Vı́me, že ∃t ∈ R[x] ∩R[y] a chceme, aby ∀a : a ∈ R[x] ∧ a ∈ R[y].
Vı́me tedy, že t je pr̊unikem, proto plat́ı xRt; tRx i yRt; tRy a zárověň v́ıme, že aRx;xRa.
Nyńı za pomoci tranzitivity zjist́ımě, že aRt a opět tranzitivitou aRy =⇒ a ∈ R[y].

(iii) Triviálně: xRy ⇐⇒ {x, y} ⊆ R[x]. Neboli, když chci zjistit, jestli je xRy, tak stač́ı naj́ıt R[x] obsahuj́ıćı y
a pod́ıvat se, jestli je tam i x.

2.3 Uspořádáńı

2.3.1 Konečná neprázdná uspořádaná množina má minimálńı a maximálńı prvek

Věta: Každá konečná neprázdná ČUM má minimálńı a maximálńı prvek.

Proof. Zvoĺıme libovolné x1 ∈ X:

� x1 je minimálńı - hotovo

� ∃x2 < x1, s ńım pokračuji dál: x1 > x2 > ... > xt

Pokud t > |x|, pak ∃i, j, i 6= j t.ž. xi = xj . Plat́ı tedy x1 > xi+1 > xj+1 > ... > xj = xi. Za pomoci tranzitivity
urč́ım xi > xj = xi, źıskal jsem t́ım pádem xi > xi, což je spor.

Neboli: Tvoř́ım posloupnost. Začnu lib. prvkem, v každém kroku vezmu posledńı přidaný prvek do posloupnosti
a pod́ıvám se, jestli má minimum. Pokud ne, přidám ho do posloupnosti. Posloupnost muśı být konečná, protože
jinak jsem přidal z množiny do posl. nějaký stejný prvek. Pokud se vyskytne stejný prvek, tak tranzitivita a
následně spor.
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2.3.2 O Dlouhém a Širokém

Věta: Nechť (X,�) je konečná ČUM, potom α(X,�) · ω(X,�) ≥ |X|

Proof. Konstruujeme vestvy x1, x2, ..., xi, kde x1 = minX. Krok: Máme-li x1, ..., xi, nejdř́ıve se pod́ıváme, co
zbylo:

Zi = X \

⋃
j<i

Xj

 =⇒

{
Zi = ∅ hotovo

Zi 6= ∅ Xi+1 = min prvky Zi

Z toho nám plynou 3 d̊usledky:

1. ∀i : Xi je antǐretězec =⇒ |Xi| ≤ α (= velikost každé vrstvy je nejvýš α)

2. ∃ řetězec {q1, ..., qn} t.ž. ∀i : qi ∈ Xi =⇒ k ≤ ω (= počet vrstev je nejvýš ω)
pod́ıvám se, kv̊uli kterému prvku je náš prvek ve své vrstvě a ne nějaké nižš́ı, neboli qk ∈ Xk libovolně.
Máme qk, qk−1, ..., qi, kde qi /∈ Xi−1 =⇒ ∃qi−1 ∈ Xi−1 : qi−1 < qi.

3. X1, ..., Xk jsou rozklad X =⇒ |X| =
∑
i |Xi| ≤ α · ω

2.3.3 Erdősovo-Szekeresovo lemma o monotónńıch podposloupnostech

Věta: Nechť x1, ..., xn2+1 je posloupnost navzájem r̊uzných č́ısel, potom ∃ vybraná podposloupnost délky n+ 1,
která je ostře monotónńı (=klesaj́ıćı nebo rostoućı).

Proof. Nadefinujeme si relaci ≤ na množině {1, ..., n2 + 1} pro i ≤ j ≡ i ≤ j ∧xi ≤ xj a vypozorujeme, že se jedná
o částečné uspořádáńı. Potom řetězec odpov́ıdá rostoućı podposloupnosti a antiřetězec klesaj́ıćı podposloupnosti.
Můžeme tedy použ́ıt Dlouhého a širokého:
α · ω ≥ n2 + 1 =⇒ nemůže nastat α ≤ n ∧ ω ≤ n =⇒ α ≥ n+ 1 ∨ ω ≥ n+ 1.

2.4 Kombinatorické poč́ıtáńı

2.4.1 Počet funkćı mezi množinami

Věta: Nechť A je n-prvková a B je m-prvková množina, potom počet funkćı mezi A a B je mn.

Proof. Určujeme #f : A→ B.
Máme množinu A o velikosti |A| = n a množinu B o velikosti |B| = m. Množina A obsajuje prvky a1, a2, ..., an,
množina B prvky b1, b2, ..., bm. Zobrazujeme jednotlivě prvky a na prvky z množiny B.
f(a1) můžeme zobrazit m možnostmi, f(a2) také m možnostmi, ..., f(an) také m možnostmi. Z čehož nám vyplývá:

#f : [n]→ [n] = m ·m · ... ·m︸ ︷︷ ︸
n-krát

= mn

2.4.2 Počet prostých funkćı mezi množinami

Věta: Nechť A je n-prvková a B je m-prvková množina, potom počet prostých funkćı mezi A a B je mn.

Proof. Určujeme #f : [n]→ [n] prostých.
f(1) zobraźıme m možnostmi, f(2) už m− 1 možnostmi, ..., f(n) jen m−n+ 1 možnostmi. Z čehož nám vyplývá:

#f : [n]→ [n] prostých = m · (m− 1) · (m− 2) · ... · (m− n+ 1) = mn ...klesaj́ıćı mocnina

2.4.3 Počet všech podmnožin

Věta: Počet všech n-prvkových podmnožin je roven 2n, tedy
∣∣2X ∣∣ = 2|X|.

Proof. Snaž́ıme se ukázat
∣∣2[n]

∣∣ = 2n.
Podmnožině A ⊆ X přǐrad́ıme funkci Ca : X → {0, 1}. 0 pokud x /∈ A, 1 pokud x ∈ A.
Spárovali jsme podmnožiny s charakteristickými funkemi, neboli našli jsme bijekci mezi množinou všech podmnožin
X a množinou všech funkćı Ca : X → {0, 1}.
Máme-li bijekci mezi dvěma množinami, pak maj́ı obě množiny stejný počet prvk̊u =⇒

∣∣2[n]
∣∣ = 2n.
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2.4.4 Počet podmnožin sudé a liché velikosti

Věta: Počet podmnožin sudé a liché velikosti je stejný.

Proof. Nechť máme množinu [n], kde n > 0.
Definujme si dvě množiny: S = {A ⊆ [n] : |A| je sudá} a L = {A ⊆ [n] : |A| je lichá}. Jejich sjendnoceńım źıskáme
množinu všech prvk̊u, neboli S ∪ L = 2[n] ⇐⇒ |S|+ |L| = 2n.
Snaž́ıme se ukázat |S| = |L| = 2n−1. Určuji tedy bijekci mezi S a L:
Zvoĺım libovolné a ∈ [n] a definuji zobrazeńı f : 2[n] → 2[n]. Následně přidám a do A pokud v ńı neńı, nebo ho
naopak odeberu, pokud v ńı je.

f(A) =

{
A ∪ {a} pokud a /∈ A
A \ {a} pokud a ∈ A

2.4.5 Počet permutaćı na množině

Věta: Pokud A je konečná množina, tak permutace množiny A je bijekce z A do A

Proof.

(a) Jedná se o zobrazeńı množiny na stejnou množinu, jedná se o bijekci.
Protože se jedná o bijekci, stač́ı nám spoč́ıtat, #f : [n]→ [n].

nn = n · (n− 1) · (n− 2) · ... · 1 = n! ...faktoriál

(b) Kolik existuje zp̊usob̊u, jak oč́ıslovaz prvky nějaké množiny [n] č́ısly od 1 do n?
Poč́ıtáme bijekci mezi 1 až n do 1 až n, takže poč́ıtáme počet prostých funkćı =⇒ n!

2.4.6 Počet uspořádaných k-tic bez opakováńı a k-prvkových podmnožin

Věta: Počet uspořádaných k-tic bez opakováńı a k-prvkových podmnožin je roven
(
n
k

)
.

Proof. Nechť X je množina, potom |Xk| ⇐⇒ f : [k]→ X.

(a) Bez opakováńı: f [k]→ X, neopakujeme, takže je prostá:

#f : [k]→ X prosté =⇒ |X|k

(b) Podmnožiny (= neuspořádané k-tice). Urč́ıme k-tice bez opakováńı za pomoci poč́ıtáńı 2 zp̊usoby :

(1) U(k, n) je uspořádaná k-tice z bodu (a).

(2) N(k, n) je odvozeńı neuspořádaných k-tic.

N(k, n)k! = U(k, n) = nk

N(k, n) =
nk

k!
=
nk

kk
=
n(n− 1)(n− 2) · ... · (n− k + 1)

k(k − 1) · ... · 1
=

(
n

k

)
...binomické č́ıslo

2.4.7 Základńı vlastnosti kombinačńıch č́ısel(
n

0

)
= 1 =

(
n

n

)
(
n

1

)
= n =

(
n

n− 1

)
(
n

k

)
=

(
n

n− k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
n∑
k=0

(
n

k

)
= 2n
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2.4.8 Binomická věta

Věta: (∀x, y ∈ R)(∀n ∈ N) : (x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk

Proof. Představeme si (x+ y) · (x+ y) · ... · (x+ y)︸ ︷︷ ︸
n-krát

. Když z toho vybereme jednotlivá x a y, např.:

x · x · y · x · y... = xn−kyk ... y-n̊u mám celkem yk, takže x-ú muśım mı́t celkem zbylých xn−k.
Dále se můžeme ptát, kolik existuje člen̊u pro konkrétńı k. A protože z právě k závorek jsme si vybrali y, tak si z
právě n závorek muśıme vybrat k takových, ve kterých použijeme x. =⇒ máme

(
n
k

)
možnost́ı, jak je vybrat.

2.4.9 Princip inkluze a exkluze

Věta 1: Pro konečné A1 až An plat́ı:∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =

n∑
k=1

(−1)k+1
∑

I∈([n]
k )

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
Proof. #1. Nechť A :=

⋃
i

Ai

Levá i pravá strana jsou součty velikost́ı nějakých množin, takže se můžeme ptát, kolikrát levé a pravé straně
přispěje každý prvek a ∈ A. Vı́me, že k levé přispěje jednou, chceme dokázat, že k pravé také jednou. Zadefinujme

si kolikrát se započ́ıtá #i : a ∈ Ai = t: Pro k > t ... 0-krát; Pro k ≤ t ... (−1)k+1

(
t

k

)
-krát︸ ︷︷ ︸

t∑
k=1

(−1)k+1

(
t

k

)
= 1

I na pravé straně tedy přispěje právě jednou.

Věta 2: Pro konečné A1 až An plat́ı: ∣∣∣∣∣⋃
i=1

Ai

∣∣∣∣∣ =
∑
∅6=I⊆[n]

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
Proof. #2.

Nechť A :=
⋃
i

Ai a nechť pro X ⊆ A plat́ı CX : A→ {0, 1} ... charakt. funkce. Nechť plat́ı vztah:

n∏
i=1

(1− xi) =
∑
I⊆[n]

(−1)|I|
∏
i∈I

xi

Operace char. fce: CX · CY = CX∩Y ; CX = 1− CX ; 1− CX∪Y = (1− CX)(1− CY ) ;
∑
a∈A

CX(a) = |X|

Nyńı dosad́ıme do p̊uvodńı rovnice xi = CAi :

n∏
i=1

(1− CAi)︸ ︷︷ ︸ =
∑
I⊆[n]

(−1)|I|
∏
i∈I

CAi︸ ︷︷ ︸
1− C⋃

i Ai
=

 ∑
∅6=I⊆[n]

(−1)|I|C⋂
i∈I Ai

+ 1

C⋃
i Ai

=
∑
∅6=I⊆[n]

(−1)|I|+1C⋂
i∈I Ai∑

a⊆A

C⋃
i Ai︸ ︷︷ ︸ =

∑
∅6=I⊆[n]

(−1)|I|+1
∑
a⊆A

C⋂
i∈I Ai︸ ︷︷ ︸∣∣∣∣∣⋃

i=1

Ai

∣∣∣∣∣ =
∑
∅6=I⊆[n]

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
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2.4.10 Odhad faktoriálu

Věta: nn/2 ≤ n! ≤
(
n+1

2

)n
Nejprve uděláme několik menš́ıch úprav, umocńıme

(
nn/2 ≤ n! ≤

(
n+1

2

)n)2
a vyjádř́ıme:

(n!)2 = 1 · 1 · 2 · 2 · 3 · 3 · ... · n · n = (1 · n) · (2 · (n− 1)) · (3 · (n− 2)) · ... · (n · 1)

n! =
√

1 · n ·
√

2 · (n− 1) ·
√

3 · (n− 2) · ... ·
√
n · 1︸ ︷︷ ︸√

i(n−i+1)

Nyńı budeme dokazovat dvě nerovnosti, ve kterých n! =
√
i(n− i+ 1):

1. Proof.
√
i(n− i+ 1) ≥

√
n = n1/2, umocńıme na 2., takže chceme, aby i(n− i+ 1) ≥ n:

� Pokud se i = n ∨ i = 1, potom n ≥ n.

� Pokud se i 6= 1, n, tak poč́ıtám součin dvou č́ısel, jedno je větš́ı (max) a druhé menš́ı (min).

– max ≥ n/2 ... nejmenš́ı může být, když se potkaj́ı uprostřed

– min ≥ 2 ... nemůže být 1 (podmı́nka)

Takže součin dvou č́ısel: max ·min ≥ n/2 · 2 = n

2. Proof. Za pomoci AG nerovnosti : ∀x, y ≥ 0 :
√
x · y︸ ︷︷ ︸

geometrický pr̊uměr

≤ x+ y

2︸ ︷︷ ︸
aritmetický pr̊uměr

.

Tvrd́ıme, že podle AG nerovnosti plat́ı:
√
i(n− i+ 1) ≤ �i+n−�i+1

2 = n+1
2 :

0 ≤ (a− b)2 = a2 − 2ab+ b2

2ab ≤ a2 + b2

ab ≤ a2 + b2

2

Při dosazeńı a =
√
x a b =

√
y, źıskáme

√
x · y ≤ x+y

2 =⇒ plat́ı n! =
√
i(n− i+ 1) ≤ n+1

2 .

2.4.11 Odhad kombinačńıho č́ısla

Věta:
(
n
k

)k ≤ C(n, k) ≤ nk

Nejprve binomické č́ıslo rozděĺım na
(
n
k

)
= nk

k! = n(n−1)·...·(n−k+1)
k(k−1)·...·1 a opět budeme dokazovat dvě nerovnosti:

1. Proof. Můžeme si všimnout, že každé č́ıslo v čitateli je nejvýše n a každé č́ıslo ve jmenovateli je alespoň 1.

Proto
(
n
k

)
= n(n−1)·...·(n−k+1)

k(k−1)·...·1 ≤
(
n
1

)k
= nk

2. Proof. Rozděĺıme výraz na jednotlivé zlomky: n
k ·

n−1
k−1 · ... ·

n−k+1
1 a u každého dokážeme, že je ≥ n

k .
Dokazujeme tedy, že z leva do prava zlomky rostou (nk je nejmenš́ı).

n

k
≤ n− 1

k − 1

n · (k − 1) ≤ k · (n− 1)

nk − n ≤ nk − k
n ≥ k

Výraz je skutečně rostoućı.

2.4.12 Odhad prostředńıho kombinačńıho č́ısla

Věta: 4n

2n+1 ≤
(

2n
n

)
≤ 4n. Č́ısla rostou, v prostřed je maximum, následně zase klesaj́ı (Pascal̊uv trojúhelńık).

1. Proof.
(

2n
n

)
≤ 4n.

Uvědomme si, že když máme n-tý řádek Pascalova trojújelńıku, tak je jeho součet 2n. V našem př́ıpadě je
to 2n-tý řádek, takže jeho součet je 22n = 4n.

2. Proof. 4n

2n+1 ≤
(

2n
n

)
.

Když máme posloupnost č́ısel, tak plat́ı max ≥ aritmetický pr̊uměr ≥ min. Naše č́ıslo je největš́ı a lež́ı přesně
v prostřed, takže muśı být ≥ AP řádku.

Součet našeho 2n-tého řádku je 4n, součet č́ısel na řádku je 2n+ 1. Celkem tedy plat́ı 4n

2n+1
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2.5 Grafy

2.5.1 Vztah mezi součtem stupň̊u a počtem hran, princip sudosti

Věta: V grafu G = (V,E) plat́ı: ∑
v∈V

degG(V ) = 2|E|

Proof. Sečteme-li stupě, každou hranu započ́ıtáme dvakrát (jednou za každý jej́ı konec). Konec hran: poč́ıtáme
dvojice (v, e), kde v ∈ V a e ∈ E, t.ž.: v ∈ e.

D̊usledek: počet vrchol̊u lichého stupně je sudý

2.5.2 Věta o skóre

Věta: Posloupnost D = (d1 ≤ d2 ≤ ... ≤ dn) pro n ≥ 2 je skóre grafu ⇐⇒ 0 ≤ dn ≤ n − 1 ∧ posloupnost

D′ = d′1, d
′
2, ..., d

′
n−1 je skóre grafu, kde d′i =

{
di pro i < n− dn
di − 1 pro i ≥ n− dn

.

Proof. ...

2.5.3 Dosažitelnost sledem je totéž jako dosažitelnost cestou

Věta: Mezi vrcholy u, v vede sled ⇐⇒ mezi nimi vede cesta.

1. Proof. ⇐=:
Triviálně, každá cesta je sledem.

2. Proof. =⇒ :
Postupně budu ze sledu vypouštět smyčky. Opakujeme, dokud se nezbav́ıme všech opakuj́ıćıch se vrchol̊u.
Formálně: Nechť ∃ sled z u do v... Nyńı :
Sled: v0, e1, v1, ..., ei, vi, ei+1, ..., ej , vj︸ ︷︷ ︸

smyčka

, ej+1..., en, vn, kde vi = vj pro nějaké i < j. Odstrańıme smyčku:

Sled: v0, e1, v1, ..., ei, vi, ej+1, ..., en, vn, je kratš́ı, je bez smyček, je cestou
Opakujeme, dokud existuj́ı duplicitńı vrcholy.

2.5.4 Počet sled̊u délky k lze źıskat z k-té mocniny matice sousednosti

Věta: Pro A = A(G) grafu G na vrcholech v1, ..., vn plat́ı:

∀i, j : (Ak)i,j = # sled̊u délky k z vi do vj .

Proof. Matematickou indukćı podle k.

(i) pro k = 0 a k = 1: Triviálně, sled délky 0 je stejný vrchol; sled délky 1 je jedna hrana.

(ii) pro k − 1→ k: Zaṕı̌seme Ak = Ak−1 ·A.

Aki,j =

n∑
t=1

Ak−1
i,t︸ ︷︷ ︸

# sled̊u délky k − 1 z vi do vt

· At,j︸︷︷︸
[{vt,vj}∈E(G)]

=

=
∑
t

{vt,vj}∈E(G)

# sled̊u délky k − 1 z vi do vt =

= # sled̊u délky k z vi do vj

2.5.5 Trojúhelńıková nerovnost pro vzdálenost

Věta: dG(u, v) ≤ dG(u,w) + dG(w, v)

Proof. Z věty 2.5.3. Sled nemůže být kratš́ı než nejkratš́ı cesta.
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2.5.6 Věta o existenci uzavřeného eulerovského tahu

Věta: Graf je Eulerovský ⇐⇒ má uzavřený eulerovský tah, je souvislý a má všechny vrcholy sudé (∀v ∈ V (G) :
degG(V ) je sudý)

1. Proof. =⇒ :
Je souvislý : z každého vrcholu do každého se dá dostat za pomoci eulerovského tahu. Tah je př́ıpadem sledu
a když je někde sled, je tam i cesta =⇒ ∀u, v existuje cesta mezi u a v.
Je sudý : Hrany soused́ıćı s V rozděĺıme do disjunktńıch dvojic =⇒ degG(V ) je sudý.

2. Proof. ⇐=:
Nechť T je jeden z nejdeľśıch tah̊u v G.

(a) T je uzavřený : Kdyby nebyl, vezmeme v (krajńı vrchol tahu)... v je navš́ıven lichým počtem hran tahu
=⇒ ∃f ∈ E incidentńı s v t.ž. f /∈ T =⇒ f.T je ale deľśı tah.  

(b) ∀u, v vrcholy na T : pokud {u, v} ∈ E(G), pak {u, v} ∈ T ... Vı́me, že tah je uzavřený. Kdyby existovala
nějaká hrana (mezi u, v), která nelež́ı na tahu, tak ji povedu ke sporu. Vı́m, že nejdeľśı tah je uzavřený
a že procháźı alespoň jednou u. Při jednom pr̊uchodu u tah rozpoj́ım a přidám hranu {u, v}. T́ım jsem
však vytvořil tah, který je deľśı než p̊uvodńı nejdeľśı T .  

(c) Každý vrchol v ∈ V (G) lež́ı na tahu T ... Nechť vrchol v nelež́ı na tahu T . Vezmu libovolný vrchol u a
ze souvislosti plyne, že ∃ cesta mezi u a v. Aby ale existoval, musela by existovat hrana, která spojuje
v a tah T , ta ale existovat nemůže, protože bychom přidali hranu a zvětšili bychom T .  

2.5.7 Uzavřené eulerovské tahy v orientovaných grafech

Věta: Pro orientovaný graf G je ekvivalentńı:


(i) je vyvážený a slabě souvislý

(ii) je eulerovský

(iii) je vyvážený a silně souvislý

.

Proof. Postupně dokazujeme (i) =⇒ (ii) =⇒ (iii) =⇒ (i):

(i) =⇒ (ii): Z d̊ukazu o existenci uzavřeného eulerovského tahu

(ii) =⇒ (iii): Máme-li uzavřený eulerovský tah, tak je ve dvojićıch vždy stejně hran dovńıtř a hran ven.
Je eulerovský, takže z něj mohu vybrat podtah z u do v i z v do u. (věta 2.5.3)

(iii) =⇒ (i): Silná souvislost implikuje slabou

2.6 Stromy

2.6.1 Lemma o koncovém vrcholu

Věta: Každý strom s alespoň dvěma vrcholy má alespoň jeden list.

Proof. Nechť C je nejdeľśı cesta a vrcholy a a z jsou listy.
Pro spor předpokládejme, že

1. ∃x /∈ C, ale když ho propoj́ıme s a, vznikne nám deľśı cesta.  

2. Hrana vede do vrcholu x′, který už na cestě lež́ı. V takovém př́ıpadě by nastala kružnice.  

2.6.2 Je-li l list grafu G, pak G je strom, právě když G-l je strom.

Věta: Pro graf G s listem l: G je strom ⇐⇒ G− l je strom.

1. Proof. =⇒ je-li G souvislý acyklický, pak je i G− l souvislý acyklický.
Je souvislý : ∀u, v ∈ V (G− l)∃ cesta C v G mezi u, v, takže C ⊆ G− l
Je acyklický : Kdyby ∃ kružnice C ⊆ G− l ⊆ G =⇒ C ⊆ G
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2. Proof. ⇐= je-li G− l souvislý acyklický, pak je i G souvislý acyklický.
Je souvislý : Dokazujeme, že mezi každými vrcholy G existuje cesta. Pokud to jsou vrcholy 6= l, pak jsou
to vrcholy, které už byly v G − l, t́ım pádem mezi nimi byla cesta, která z̊ustala až do G. Přidáńım listu
nerozbiju cestu. Dokazujeme, že ∃ cesty mezi l a ostatńımi vrcholy v G − l. Např́ıklad chceme z l do t:
využijeme G− l souvislosti a bodu s, který propoj́ıme s bodem t =⇒ ∃ cesta.
Je acyklický : Kdybychom měli kružnici v G, kde neńı l, tak taková byla i v G − l. Tam být ale nemůže,
protože l má stupeň 1 a v kružnici muśı mı́t každý vrchol stupeň ≤ 2.

2.6.3 Pět ekvivalentńıch charakteristik stromu

Věta: Pro graf G jsou následuj́ıćı tvrzeńı ekvivalentńı:

(i) G je souvislý a acyklický (=strom)

(ii) ∀u, v ∈ V (G) ∃! cesta v G mezi u a v (=jednoznačná souvislost)

(iii) G je souvislý a ∀e ∈ E(G) : G− e neńı souvislý (=minimálńı souvislost)

(iv) G je acyklický a ∀e ∈
(
V (G)

2

)
\ E : G+ e má cyklus (=maximálně acyklický)

(v) G je souvislý a |E(G)| = |V (G)| − 1 (=Eulerova formule)

Proof. Matematickou indukćı podle k.

(i) =⇒ (ii): indukćı odtrháváńım list̊u

(i) =⇒ (iii): Máme-li uzavřený eulerovský tah, tak je ve dvojićıch vždy stejně hran dovńıtř a hran ven.
Graf je vyvážený a silně souvislý, na tahu lež́ı každé dva vrcholy u, v. Je eulerovský, takže z něj mohu vybrat
podtah z u do v i z v do u.

(i) =⇒ (iv): Z d̊ukazu o existenci uzavřeného eulerovského tahu

(i) =⇒ (v): Z d̊ukazu o existenci uzavřeného eulerovského tahu

2.6.4 Graf má kostru, právě když je souvislý.

Věta: Graf G má kostru ⇐⇒ G je souvislý.

1. Proof. =⇒
Má-li graf kostru, je kostra strom, ve stromu jsou každé dva vrcholy spojené cestou. Cesta je podgrafem G,
takže G je souvislý.

2. Proof. ⇐=
Pokud je G souvislé, tak je buď acyklické, nebo v něm jsou nějaké cykly. Mužeme si vybrat libobolnou hranu
na cyklu a tu smazat (opakujeme konečně krát, dokud jsou v grafu cykly). Dostaneme tedy graf, který je
stále souvislý a který neobsajuje cykly, takže je strom. (Odeb́ıráńım hrany vždy dostaneme podgraf p̊uvodńıho
grafu, takže je strom).
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2.7 Rovinné kresleńı graf̊u

2.7.1 Hranice stěny je nakresleńım uzavřeného sledu (bez d̊ukazu).

2.7.2 Graf jde nakreslit do roviny, právě když jde nakreslit na sféru.

Proof. Stereografickou projekćı. Viz 3.7.2.

2.7.3 Kuratowského věta (bez d̊ukazu)

Věta: Graf G je nerovinný ⇐⇒ G obsahuje podgraf isomorfńı s děleńım K5 nebo K3,3.

2.7.4 Eulerova formule pro souvislé rovinné grafy (v+f=e+2)

Věta: Nechť G je souvislý graf nakreslený do roviny, v := |V (G)|, e := |E(G)|, f := #stěn nakresleńı. Potom
plat́ı v + f = e+ 2.

Proof. Zvoĺıme v pevně a pak indukćı podle e.

(i) e = v − 1 (G je strom), f = 1:
v + 1 = v − 1 + 2

(ii) e− 1→ e: mějme graf G s e hranami. Nechť λ je hrana na kružnici v G.
Potom G′ = G− λ, v′ = v, e′ = e− 1, f ′ = f − 1. Nyńı použijeme indukčńı předpoklad:

v′ + f ′ = e′ + 2

v + f − �1 = e− �1 + 2

v + f = e+ 2

2.7.5 Maximálńı rovinný graf je triangulace.

Věta: Je-li G maximálńı rovinný s alespoň 3 vrcholy, pak jsou ve všech nakresleńıch všechny stěny trojúhelńıky.

Proof.
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2.7.6 Maximálńı počet hran rovinného grafu

Věta: V každém rovinném grafu s alespoň 3 vrcholy je |E| ≤ 3|V | − 6.

Proof. Doplńım do G hrany, až źıskám maximálńı rovinný graf G′. Takže v′ = v, e′ ≥ e. Nyńı jen dosad́ıme:

e′ = 3v′ − 6 =⇒ e ≤ 3v − 6

2.7.7 V rovinném grafu existuje vrchol stupně nejvýše 5.

V rovinném grafu existuje vrchol stupně nejvýše 5. Vycháźı z věty: Pr̊uměrný stupeň vrcholu v rovinném
grafu je < 6. Což dokážeme:

Proof.
∑
λ

deg(λ) = 2e ≤ 6v − 12. Urč́ım pr̊uměr:
∑
λ deg(λ)

v = 2e
v ≤

6v−12
v =⇒ e < 6.

Z toho plyne d̊ukaz pro naši větu: Kdyby všechny vrcholy měly stupeň alespoň 6, tak je pr̊uměr talé alespoň 6...
Což neńı, je ostře menš́ı.

2.7.8 Počet hran a vrchol ńızkého stupně v rovinných grafech bez trojúhelńık̊u

Proof. Poč́ıtáme dvěma zp̊usoby: 4f ≤ 2e =⇒ f ≤ 1
2e:

v +
1

2
e ≥ e+ 2

v − 2 ≥ 1

2
e

e ≤ 2v − 4

Pr̊uměrný stupeň je tedy < 4 =⇒ existuje vrchol stupně maximálně 3.

2.8 Barveńı graf̊u

2.8.1 Graf má barevnost nejvýše 2, graf je bipartitńı, graf neobsahuje lichou kružnici.

Tvrzeńı: χ(G) ≤ 2 ⇐⇒ G je bipartitńı.

1. Proof. ⇐= Triviálně, je-li bipartitńı, jeho obarveńı je nejvýše 2.

2. Proof. =⇒ :
Když máme graf obarvitelný 2 barvami, tak ty 2 barvy jsou partity. Když do jedné partity ulož́ıme vrcholy
s jednou barvou a druhou, tak zase muśı j́ıt hrany např́ıč partitami.

Věta: χ(G) ≤ 2 ⇐⇒ G nemá lichou kružnici.

1. Proof. =⇒ Triviálně.

2. Proof. ⇐=:
Kdyby byl nesouvislý, obarv́ıme po komponentách.
T := kostra grafu G, ∃c : V (G)→ {1, 2} obarveńı T . Kdyby ∃{x, y} ∈ E(G) \ E(T ) a c(x) = c(y):
P := cesta mezi x, y v T , P má sudou délku =⇒ P + {x, y} je lichá kružnice v G.  

2.8.2 Barevnost je větš́ı nebo rovna než klikovost

Klikovost je rovna velikosti nejvěťśı kliky (úplného podgrafu) v G.

Tvrzeńı: Pokud H ⊆ G, pak χ(H) ≤ χ(G).

Proof. Najde-li se v grafu úplný podgraf na k vrcholech, tak ten graf nejde obarvit méně než k barvami, takže χ
je alespoň k.

2.8.3 Barevnost je menš́ı nebo rovna než maximálńı stupeň + 1

Věta: Pokud G je k-generovaný, pak χ(G) ≤ k + 1.
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k-degenerovaný graf: ≡ ∃ � lineárńı uspořádáńı na V (G) t.ž. ∀v ∈ V (G) : |{u ≺ v | {u, v} ∈ E(G)}| ≤ k.
Neboli: počet všech vrchol̊u před v, které jsou s v spojené hranou je nejvýš k.

Proof. Barv́ıme v pořad́ı podle uspořádáńı �, z leva do prava. Prvńı obarv́ıme libovolně a pro každý daľśı se
pod́ıvám, kolik barev je zakázáno jeho obarvenými sousedy. Obarveńı sousedé jsou ale jen nalevo, takže jich je
nejvýš k. Mám k dispozici k + 1 barev, vždy z̊ustane alespoň 1 volná.

2.8.4 Věta o 5 barvách

Věta: Pro graf G rovinný je χ(G) ≤ 5.

Proof. Kempeho řetězce - Indukćı podle |V |.

(i) |V | ≤ 5 ... Triviálně.

(ii) n− 1→ n : Nechť v je vrchol s min stupněm (deg(v) ≤ 5). Vezmeme G′ := G− v IP−−→ ∃c′ 5-ti obarveńı G′.
”Snaž́ıme se odebrat v, obarvit indukćı zbytek a přilepit v zpátky.”

� Pokud na sousedech v je v c′ maximálně 4 barvy, tak dobarv́ıme v.

� Pokud ne, snaž́ıme se přebarvit něco tak, abychom si alespoň 1 barvu pro v uvolnili.
Budujeme podgraf z a: podgraf A indukovaný vrcholy, do kterých ∃ cesta z a přes a-barvu a c-barvu.

– Pokud c /∈ A : stač́ı prohodit v A barvy, takže je a-barva volná pro v.

– Pokud c ∈ A : uděláme totéž z b přes b-barvy a d-barvy, vytvoř́ıme t́ım podgraf B.
Nyńı už d /∈ B : prohozeńı barev v B, takže se uvolńı b-barva pro v.

Buď jsme prohodili barvy v A nebo jsme došli až do c a vytvořila se kružnice. Takže když jsme totéž udělali s B,
tak jsme nemohli doj́ıt až do d, protože bychom museli protnout námi vytvořenou kružnici.

D̊ukaz #2 ṕısńı: https://mj.ucw.cz/tmp/5barev

2.8.5 Věta o 4 barvách (bez d̊ukazu)

Věta: Pro graf G rovinný je χ(G) ≤ 4.
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2.9 Pravděpodobnost

2.9.1 Věta o úplné pravděpodobnosti

Věta: Nechť A je jev a B1, ..., Bk je rozklad Ω na jevy t.ž. ∀i : P (Bi) 6= 0. Potom:

P (A) =
∑
i

P [A|Bi] · P (Bi)

Proof.

P (A) =
∑
i

P [A|Bi] · P (Bi)︸ ︷︷ ︸
P (A∩Bi)

A to plat́ı, protože P (A) = +

{
P (A ∩B) = P [A|B] · P (B)

P (A ∩B) = P [A|B] · P (B)

2.9.2 Bayesova věta

Věta: Nechť A je jev, kde P (A) 6= 0 a B1, ..., Bk je rozklad Ω na jevy t.ž. ∀i : P (Bi) 6= 0. Potom:

P [Bi|A] =
P [A|Bi] · P (Bi)∑
j

P [A|Bj ] · P (Bj)

2.9.3 Věta o linearitě středńı hodnoty

Věta: Nechť X,Y jsou nezávislé veličiny a α ∈ R, potom E[X + Y ] = E[X] + E[Y ] a E[αX] = αE[X].

Proof. #1.

E[X + Y ] =
∑
ω∈Ω

(X + Y )(ω)︸ ︷︷ ︸
X(ω)+Y (ω)

·P (ω) =

=
∑
ω∈Ω

(X(ω) + Y (ω)) · P (ω) =

=
∑
ω∈Ω

(X(ω) · P (ω)) + (Y (ω) · P (ω)) =

=

(∑
ω∈Ω

X(ω) · P (ω)

)
︸ ︷︷ ︸

E[X]

+

(∑
ω∈Ω

Y (ω) · P (ω)

)
︸ ︷︷ ︸

E[Y ]

=

= E[X] = E[Y ]

Proof. #2.

E[αX] =
∑
ω∈Ω

(αX)(ω) · P (ω) =

=
∑
ω∈Ω

α(X(ω) · P (ω)) =

= α
∑
ω∈Ω

(X(ω) · P (ω))︸ ︷︷ ︸
E[X]

=

= αE[X]
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3 Př́ıklady

3.1 Úvod

3.1.1 Technika d̊ukazu indukćı a sporem

� Důkaz sporem: Použit́ım chybného předpokladu dostaneme spor - předpoklad je nepravdivý, proto plat́ı
jeho negace.

� Důkaz indukćı Tvrzeńı se rozděĺı do několika podtř́ıd, podtř́ıdy uspořádáme do posloupnosti. Dokazujeme
pro všechny objekty prvńı (n = 1) podř́ıdy a všechny objekty následuj́ıćı (n+ 1) podtř́ıdy.

3.2 Relace

3.2.1 Př́ıklady relaćı

� Prázdná: Prázdná relace R ⊆ ∅ je podmnožin kartézského součinu prázdné množiny.

� Univerzálńı: Nechť máme relaci R ⊆ X × Y , potom pro univerzálńı relace S ⊆ X × Y plat́ı R = S.
Všechny prvky se propoj́ı.

� Diagonálńı: Relace R na X je diagonálńı ⇐⇒ 4R = {(x, x) | x ∈ X}. Pokud má v maticovém zápisu
jedničky v diagonále.

3.3 Uspořádáńı

3.3.1 Př́ıklady uspořádáńı

� Dělitelnost (N, \): reflexivita a
a ; antisymetrie b

a ∧
a
b =⇒ a = b; tranzitivita b

a ∧
c
b =⇒ c

a ; Částečné
uspořádáńı

� Inkluze podmnožin (2x,⊆): reflexivita A ⊆ A; antisymetrie A ⊆ B ∧ B ⊆ A =⇒ A = B; tranzitivita
A ⊆ B ∧B ⊆ C =⇒ A ⊆ C; Částečné uspořádáńı

� Lexikografické: Máme abecedu (X,�).
Pro lexikografické uspořádáńı (X2,�LEX) plat́ı (a1, a2) �LEX (b1, b2) ≡ a1 < b1 ∨ (a1 = b1 ∧ a2 � b2)

3.4 Kominatorické poč́ıtáńı

3.4.1 Problém šatnářky: počet permutaćı bez pevného bodu

Zněńı: Do divadla přǐslo n pán̊u s n klobouky, každý pán si odložil klobouk v šatně a po představeńı si jej zase
vyzvedl. Šatnářka však pán̊um vybrala klobouky náhodně. Jaká je pravděpodobnost, že žádný pán nedostal sv̊uj
klobouk?
Sn := {π | π je permutace na [n]} ... množina všech pán̊u - každému pánovi je přǐrazen právě 1 klobouk - bijekce
π(i) = i ... tzv. pevný bod - pán dostal sv̊uj klobouk
Zn := |{π ∈ Sn | ∀i : π(i) 6= i}| ... kolik ∃ permutaćı bez pevného bodu
Pπ∈Sn(π nemá pevný bod ) = Zn

n! ... výsledná hledaná pravděpodobnost

A := {π ∈ Sn | π má pevný bod} ... Zn = n!− |A|
Ai := {π ∈ Sn | π(i) = i} ... maj́ı i jako jeden z pevných bod̊u
A =

⋃
iAi

|Ai| = (n− 1)!
|Ai ∩Aj | = (n− 2)! ... pro i 6= j
| pr̊uniku k-tice | = (n− k)!

Dosad́ıme do vzoreču pro Inkluzi a exkluzi:
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∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣︸ ︷︷ ︸
|A|

=

n∑
k=1

(−1)k+1
∑

I∈([n]
k )︸ ︷︷ ︸

(nk)

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣︸ ︷︷ ︸
(n−k)!

|A| =
n∑
k=1

(−1)k+1 ·
(
n

k

)
· (n− k)!︸ ︷︷ ︸

n!���(n−k)!
k!���(n−k)!

|A| = n!

n∑
k=1

(−1)k+1

k!
=
n!

1!
− n!

2!
+
n!

3!
− ...+ n!

k!

T́ım jsme však spoč́ıtali počet permutaćı s alespoň jedńım pevným bodem, muśıme tedy použ́ıt Zn = n!− |A|:

Zn = n!− n!

1!
+
n!

2!
− n!

3!
+ ...− n!

k!

Zn = n! ·
n∑
k=0

(−1)k

k!︸ ︷︷ ︸
e−1

Pravděpodobnost, že žádný pán nedostal sv̊uj klobouk je n!
e .

3.5 Grafy

3.6 Stromy

3.7 Rovinné kresleńı graf̊u

3.7.1 K5 a K3,3 nejsou rovinné.

K5 a K3,3 nejsou rovinné podle Jordanovy věty, která ř́ıká: Každá uzavřená křivka děĺı rovinu na dvě části.

Pokud je 5 uvnitř, nelze ji propojit s 3. Naopak, pokud je 5 venku, nelze ji propojit s 4.

3.7.2 Vněǰśı stěnu lze zvolit.

Princip: Když mám nekreslený graf v rovině, promı́tnu ho stereograficky na sféru. T́ım zase dostanu nakresleńı
na sféře a vněǰśı stěna se promı́tne taky na stěnu - pozná se podle toho, že obsahuje S pól.
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Při otočeńı: Vytvoř́ı se rovinné zakresleńı téhož grafu, stěny vypadaj́ı stejně =⇒ mohu si zvolit, která bude
vněǰśı.

3.7.3 Klasifikace platónských těles pomoćı rovinných graf̊u

Platónské těleso konvexńı mnohostěn, má shodné mnhoúhelńıky, v každém vrcholu má stejný počet hran
Z bodu uvnitř mnohostěnu promı́táme vrcholy na sféru, máme tedy nakreslený graf na sféře. Vı́me ale, že graf na
sféře můžeme překreslit do roviny.
Hledáme tedy rovinný graf, kde každá stěna má právě k-hran a je d-regulárńı pro nějaké d.
Nakresĺıme-li do každé stěny vrchol a spoj́ıme hranami, vznikne nový rovinný graf, který má prohozené k a d.
Takže 3 ≤ k, d ≤ 5.
Zárověň v́ıme, že k · f = 2e, protože každá stěna má k-hran =⇒ f = 2e

k .
Zárověň v́ıme, že d · v = 2e, protože součet stupň̊u v je 2e =⇒ v = 2e

d .
Dosad́ıme do eulerovy formule:

v + f = e+ 2

2e

d
+

2e

k
= e+ 2/(: 2e)

1

d
+

1

k
=

1

2
+

1

e

Pravá část výsledného výrazu nám ř́ıká, že 1
2 + 1

e ∈
(

1
2 ; 1
]

=⇒ min(d, k) = 3.
Vytvoř́ıme tabulku a dopoč́ıtáme zbytek:

d k e v f

3 3 6 4 4
3 4 12 8 6
3 5 30 20 12
4 3 12 6 8
5 3 30 12 20
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3.8 Barveńı graf̊u

3.8.1 Převod barveńı mapy na barveńı grafu pomoćı duality

3.8.2 Barevnost úplných graf̊u, cest a kružnic

� Úplný graf : χ(Kn) = n

� Cesta: χ(Pn) = 2

� Kružnice: χ(Cn) =

{
2 sudé

3 liché

3.8.3 Princip barveńı indukćı: stromy jsou 2-obarvitelné, rovinné grafy 6-obarvitelné

Tvrzeńı: Každý strom je 2-obarvitelný.

Proof. Indukćı podle |V |.

(i) |V | = 1 ... Triviálně.

(ii) n− 1→ n : Nechť l je list a s jeho soused. Uvažme G′ := G− l IP−−→ ∃c′ obarveńı G′.
Nyńı stač́ı rozš́ı̌rit c′ na nějaké c, které listu l dává opačnou barvu, než má s. Takže: c(l) = 3 − c′(s) a
c(V ) = c′(V ), pro ∀V 6= l.

3.9 Pravděpodobnost

3.9.1 Jev se také dá popsat logickou formuĺı.

{x ∈ X | ϕ(x)}, kde ϕ(x) je formulka, která nám řekne, jestli je výsledek pokusu elementárńı jev

3.9.2 Bertrand̊uv paradox s kartičkami

Máme 3 kartičky, s barvami stran: CC, MM , CM .
Vybereme náhodnou kartičku náhodnou stranou polož́ıme nahoru.
Pozorovali jsme, že horńı strana je červená. Jaká je prevděpodobnost, že je i spodńı červená?
Ω = {CC,CC,MM,MM,CM,CM}, kde je kartička otočená nahoru. Vı́me, že horńı strana byla červená =⇒
Ω = {CC,CC,���MM,���MM,CM,�

��CM}, hledáme ale dolńı stranu C, takže nám zbývá pouze:
Ω = {CC,CC,���MM,�

��MM,�
��CM,�

��CM}, všechny jevy maj́ı stejnou pravděpodobnost 1
3 , takže celková P [C] = 2

3 .
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Když řeš́ıme přes podmı́něnou pravděpodobnost: A = C, B = C. P [A|B] = 2/6
1/2 = 2

3

3.9.3 Jevy, které jsou po 2 nezávislé, ale po 3 už ne

Hod minćı: Ω = {00, 01, 10, 11}, A = {10, 11}...prvńı 1, B = {01, 11} ...druhá 1, C = {00, 11}...sudý #1. Takže
P (A) = 1

2 , P (B) = 1
2 , P (C) = 1

2
P (A ∩B) = P (A ∩ C) = P (B ∩ C) = 1

4 = 1
2 ·

1
2

P (A ∩B ∩ C) = 1
4 = 1

2 ·
1
2 ·

1
2

3.9.4 Součin pravděpodobnostńıch prostor̊u, projekce

Součin pravděpodobnostńıch prostor̊u (Ω1, 2
Ω1 , P1) a (Ω2, 2

Ω2 , P2) je trojice (Ω1 × Ω2, 2
Ω1 × 2Ω2 , P ),

kde P (A)
A⊆Ω1×Ω2

=
∑

(a1,a2)∈A

P1(a1) · P2(a2)

3.9.5 Logické formule s náhodnými veličinami dávaj́ı jevy.

n-krát hod́ım minćı a defijuji si náhodnou veličinu X := #1. Potom mi P [X < 3] dává jev.

3.9.6 Použit́ı indikátor̊u k výpočtu středńı hodnoty

n-krát hod́ım minćı a ptám se, kolik mi padlo jedniček - zaj́ımá mě středńı hodnota E[X] jedniček.

X = #1, Xi = #1 na i-té pozici, takže X =
∑
i

Xi.

E[X] =
∑
i

E[Xi] =

{
0 s pravděpodobnost́ı 1

2

1 s pravděpodobnost́ı 1
2

=⇒ 1

2
· 0 +

1

2
· 1 =

1

2

Sč́ıtáme n-krát 1
2 , takže máme n

2 .

3.9.7 Velikost řezu v grafu: středńı hodnota, existuje velký řez, pravděpodobnostńı algoritmus
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