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2.7 Grafy a podgrafy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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3.3.1 Přehledově sepǐste, co v́ıte o binárńıch operaćıch a jejich vlastnostech. . . . . . . . . . . . . 14
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3.5.4 Přehledově sepǐste, co v́ıte o báźıch vektorových prostor̊u. . . . . . . . . . . . . . . . . . . . 15
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1 Definice (3 otázky)

1.1 Soustavy lineárńıch rovnic

1.1.1 Definujte rozš́ı̌renou matici soustavy.

Pro soustavu Ax = b, kde A ∈ Rm×n je matice soustavy, x = (x1, ..., xn)T je vektor neznámých a b je vektor
pravých stran, je rozš́ıřená matice soustavy :

Am×n =

 a1,1 · · · a1,n b1
...

. . .
...

...
am,1 · · · am,n bm


1.1.2 Definujte elementárńı řádkové operace.

Elementárńı řádkovou úpravou vznikne z matice A matice A′ (A ∼∼ A′):

(i) vynásobeńım i-tého řádku t ∈ R \ {0}

(ii) přičteńım j-tého řádku k i-tému, když i 6= j

Z těchto úprav lze odvodit také:

(iii) přičteńı t-násobku j-tého řádku k i-tému, když j 6= i

(iv) prohozeńı dvou řádk̊u

1.1.3 Definujte odstupňovaný tvar matice. (REF)

Matice A je v REF, pokud (i) nenulové řádky jsou seřazeny podle počáteřńıch nul a (ii) nulové řádky jsou pod
nenulovými.
Označme j(i) := min({j : ai,j 6= 0}). Matice A ∈ Rm×n je v REF právě tehdy, když ∃r ∈ {1, ...,m}:

(i) j(1) < j(2) < ... < j(r)

(ii) ∀i > r,∀j : ai,j = 0

1.1.4 Napǐste pseudokód pro Gaussovu eliminaci.

Pseudokód pro Gaussovu eliminaci

1. Seřaď řádky podle počtu počátečńıch nul.

2. Pokud maj́ı dva nenulové řádky stejný počet počátečńıch nul (i-tý a i + 1-ńı), tak od i + 1-ńıho odečteme
ai+1,j(i)

ai,j(i)
-násobek i-tého.

3. Opakuj, dokud nemaj́ı každé dva nenulové řádky r̊uzné počty počátečńıch nul.

Algoritmus je konečný, protože po kroku 2. vždy vzroste celkový počet počátečńıch nul alespoň o jedna.

1.1.5 Definujte pivot a to slovně i formálně.

Prvńı nenulový prvek ai,j(i) na i-tém řádku. V REF prvky na mı́stech (i, j(i)), kde j(i) = min{j : ai,j 6= 0}.

1.1.6 Definujte volné a bázické proměnné.

Nechť máme pro matici A′ v REF soustavy A′x = b′, potom sloupcové proměnné s pivoty znač́ıme jako bázické.
Volné proměnné jsou všechny ostatńı.

1.1.7 Definujte hodnost matice.

Hodnost matice A, značená jako rank(A), je počet pivot̊u v libovolné matici A′ v REF takové, že A ∼∼ A′.
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1.2 Matice

1.2.1 Jednotkovou matici.

Pro (∀n ∈ N) je jednotková matice In ∈ Rn×n definována vztahy:

(In)i,j =

{
1 pokud i = j

0 pokud i 6= j

1.2.2 Definujte transponovanou matici.

Transponovaná matice k matici A ∈ Rm×n je taková matice AT ∈ Rn×m, pro kterou plat́ı:

AT
i,j = Aj,i

1.2.3 Definujte symetrickou matici.

Symetrická matice je taková čtvercová matice A ∈ Rn×n, pro kterou plat́ı:

Aj,i = Ai,j , neboli A = AT

1.2.4 Definujte maticový součin.

Pro součin dvou matic A ∈ Rm×n a B ∈ Rn×p plat́ı (AB) ∈ Rm×p:

(AB)i,j =

n∑
k=1

ai,k · bk,j

1.2.5 Definujte inverzńı matici.

Inverzńı matice k čtvercové matici A ∈ Rn×n je taková matice A−1 ∈ Rn×n, pro kterou plat́ı:

A ·A−1 = In

1.2.6 Definujte regulárńı matici.

Regulárńı matice je taková matice, ke které existuje inverzńı matice .

1.2.7 Definujte singulárńı matici.

Singulárńı matice je taková matice, která neńı regulárńı .

1.2.8 Definujte binárńı operaci.

Binárńı operace na množině X je zobrazeńı X ×X → X.

1.2.9 Definujte komutativńı a asociativńı binárńı operace.

Nechť máme množinu X a binárńı operaci ◦, potom je

asociativńı pokud plat́ı:
(∀a, b, c ∈ X) : (a ◦ b) ◦ c = a ◦ (b ◦ c)

komutativńı pokud plat́ı:
(∀a, b ∈ X) : a ◦ b = b ◦ a

1.2.10 Definujte neutrálńı prvek.

Nechť máme množinu X a binárńı operaci ◦, potom je e neutrálńı prvek, když:

(∃e ∈ X)(∀x ∈ X) : x ◦ e = e ◦ x = x
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1.2.11 Definujte inverzńı prvek.

Nechť máme množinu X a binárńı operaci ◦, potom je b inverzńı a e neutrálńı prvek, když:

(∀a ∈ X)(∃b ∈ X) : a ◦ b = b ◦ a = e

1.3 Grupy a permutace

1.3.1 Definujte grupu.

Množina G s binárńı operaćı ◦, je dvojice (G, ◦) splňuj́ıćı:

(i) existence neutrálńıho prveku

(ii) existence inverzńıho prvku

(iii) asociativitu

1.3.2 Definujte permutaci.

Permutace na množině [n] je bijektivńı zobrazeńı p : [n]→ [n]. [n] = {1, ..., n})

1.3.3 Definujte permutačńı matici,

Permutačńı matice P je taková matice popisuj́ıćı permutaci, pro kterou plat́ı:

(P )i,j =

{
1 pokud p(i) = j

0 pokud p(i) 6= j

1.3.4 Definujte transpozici.

Transpozice je permutace na množině o velikosti n, která má jeden netriviálńı cyklus délky 2 a n− 2 pevných bod̊u.

1.3.5 Definujte inverzi v permutaci.

Inverze v permutaci je taková dvojice prvk̊u (i, j), pro které plat́ı (i, j) : i < j a p(i) > p(j).
M̊užeme zapsat také p(i) = j ⇐⇒ p−1(j) = i.

1.3.6 Definujte znaménko permutace.

Znaménko permutace p je č́ıslo sgn(p) = (−1)#inverźı v p.
M̊užeme zapsat také: (p ∈ Sn) a skládá se z k-cykl̊u, potom sgn(p) = (−1)n−k.

1.4 Tělesa

1.4.1 Definujte těleso.

Nechť K je množina a (⊕, ∗) jsou binárńı operace na K. Trojici (T,⊕, ∗) potom nazýváme tělesem, splňuje-li:

(i) (K,⊕) tvoř́ı Abelovskou grupu s neutrálńım prvkem 0

(ii) (K \ {0}, ∗), tvoř́ı Abelovskou grupu s neutrálńım prvkem 1

(iii) plat́ı distributivita, tedy (∀a, b, c ∈ K) : a ∗ (b⊕ c) = a ∗ b⊕ a ∗ c

1.4.2 Definujte charakteristiku tělesa.

Pokud (∃n ∈ N) takové, že v tělese K plat́ı 1 + 1 + ...+ 1︸ ︷︷ ︸
n-krát

= 0, potom nejmenš́ı takové n je char(K) tělesa K.

Jinak má těleso charakteristiku 0.
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1.5 Vektorové prostory

1.5.1 Definujte vektorový prostor.

Vektorový prostor (V,⊕, ∗) nad tělesem (K,⊕, ∗) je množina V spolu s binárńı operaćı ⊕ na V a binárńı operaćı
skalárńıho násobku ∗ : K× V → V , kde:

(i) (V,⊕) tvoř́ı Abelovskou grupu

(ii) (∀v ∈ V ) : 1 ∗ v = v , (kde 1 je neutrálńı prvek pro násobeńı v K)

(iii) (∀a, b ∈ K)(∀v ∈ V ) : (a ∗ b) ∗ v = a ∗ (b ∗ v) - asociatavita

(iv) (∀a, b ∈ K)(∀v ∈ V ) : (a⊕ b) ∗ v = (a ∗ v)⊕ (b ∗ v) - distributivita

(v) (∀a ∈ K)(∀u, v ∈ V ) : a ∗ (u⊕ v) = (a ∗ u)⊕ (a ∗ v) - distributivita

Prvky K se nazývaj́ı skaláry a prvky V vektory.

1.5.2 Definujte podprostor vektorového prostoru.

Nechť (V,⊕, ∗) je vektorový prostor nad K, potom podprostor U je neprázdná podmnožina V splňuj́ıćı:
(U ⊆ V ) ∧ (U 6= ∅):

1. (∀u, v ∈ U) : u⊕ v ∈ U , neboli: U je uzavřená na operaci ⊕,

2. (∀v ∈ U)(∀a ∈ K) : a ∗ v ∈ U , neboli: U je uzavřená na operaci ∗

3. obsahuje nulový vektor o.

1.5.3 Definujte lineárńı kombinaci.

Lineárńı kombinace vektor̊u v1, ..., vn ∈ V nad K je libovolný vektor u = a1 · v1 + · · ·+ an · vn, kde a1, ..., an ∈ K.

1.5.4 Definujte lineárńı obal (podprostor generovaný množinou).

Lineárńı obal L(X) množiny X ⊆ V , kde V je vektorový prostor nad K, je pr̊unik všech podprostor̊u U z V
obsahuj́ıćı X.
Neboli: span(X) = L(X) =

⋂
{U : X ⊆ U,U je podprostorV }

1.5.5 Definujte řádkový prostor matice a to slovně i formálně pomoćı maticového součinu.

Řádkový prostor matice je prostor generovaný jej́ımi řádky. Pro matici A ∈ Km×n

R(A) = S(AT ) =

m∑
j=1

xjAj,∗

R(A) = {(v ∈ Kn) : v = AT y, y ∈ Km}, všechny lineárńı kombinace řádk̊u

1.5.6 Definujte sloupcový prostor matice a to slovně i formálně pomoćı maticového součinu

Sloupcový prostor matice je prostor generovaný jej́ımi sloupci. t.j.: Pro matici A ∈ Km×n :

S(A) = L{A∗,1, ..., A∗,n} =

n∑
j=1

xjA∗,j

S(A) = {(u ∈ Km) : u = Ax, x ∈ Kn}, všechny lineárńı kombinace sloupc̊u

1.5.7 Definujte jádro matice.

Jádro matice A ∈ Km×n je podprostor Kn tvořen řešeńımi homogenńı soustavy Ax = 0.

ker(A) = {(x ∈ Kn) : Ax = 0}

4



1.5.8 Definujte lineárně nezávislé vektory.

Množina vektor̊u X ve vektorovém prostoru V je lineárně nezávislá, pokud nelze nulový vektor źıskat netriviálńı
lineárńı kombinaćı vektor̊u z X.

Formálně: vektory v,..., vn jsou lineárně nezávislé ⇐⇒
n∑

i=1

aivi = 0 má pouze triviálńı řešeńı a1 = ... = an = 0.

1.5.9 Definujte bázi vektorového prostoru.

Báze vektorového prostoru V je lineárně nezávislá množina X, která generuje V .

1. L(X) = V , každý vektor V je lineárńı kombinaćı vektor̊u báze X

2. X je lineárně nezávislá, proto je lin. kombinace unikátńı pro každý vektor V .

1.5.10 Definujte dimenzi vektorového prostoru.

Nechť má V konečnou bázi. Potom je dimenze V mohutnost jeho báze. Znač́ıme dim(V ).

1.5.11 Definujte vektor souřadnic.

Nechť X = (v1, ..., vn) je konečná uspořádaná báze vektorového prostoru V nad tělesem K. Vektor souřadnic

u ∈ V vzhledem k bázi X je [u]X = (a1, ..., an)T ∈ Kn, kde u =

n∑
i=1

aivi.

1.6 Lineárńı zobrazeńı

1.6.1 Definujte lineárńı zobrazeńı.

Nechť V a W jsou vektorové prostory nad stejným tělesem K. Potom zobrazeńı f : V → W se nazývá lineárńı
zobrazeńı, pokud splňuje:

1. (∀u, v ∈ V ) : f(u+ v) = f(u) + f(v)

2. (∀u ∈ V ), (∀a ∈ K) : f(a · u) = a · f(u)

1.6.2 Definujte matici lineárńıho zobrazeńı.

Nechť V a W jsou vektorové prostory nad stejným tělesem K s bázemi X = (v1, ..., vn), Y = (w1, ..., wm).
Matice lineárńıho zobrazeńı f : V → W vzhledem k báźım X a Y je [f ]X,Y ∈ Km×n, jej́ıž sloupce jsou vektory
souřadnic obraz̊u vektor̊u báze X vzhledem k bázi Y .

Formálně: [f ]X,Y =

 | |
[f(v1)]Y ... [f(vn)]Y
| |


1.6.3 Definujte jádro lineárńıho zobrazeńı.

Jádro lineárńıho zobrazeńı f : U → V je ker(f) = {(w ∈ U) : f(w) = 0}.

1.6.4 Definujte matici přechodu.

Nechť X a Y jsou dvě konečné báze vektorového prostoru V . Matice přechodu od X k Y je identické zobr. [id]X,Y .

1.6.5 Definujte izomorfismus vektorových prostor̊u.

Bijektivńı lineárńı zobrazeńı f : V →W , nazýváme izomorfismem prostor̊u V a W .
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1.6.6 Definujte afinńı prostor a jeho dimenzi.

Nechť U je podprostor vektorového prostoru W a w ∈W .
Afinńı prostor w + U je množina {w + u | u ∈ U}.
Dimenze afinńıho prostoru w + U je dim(w + U) = dim(U).

Můžeme také definovat jako:
Afinńı prostor je množina A a zobrazeńı + : A×W → A, spňuj́ıćı:

1. (∀a ∈ A) : a+ 0 = a

2. (∀a ∈ A), (∀v, w ∈W ) : a+ (v + w) = (a+ v) + w

3. Pro dvojice (a, b ∈ A)(∃!v ∈W ) : a+ v = b.

6



2 Věty

2.1 Soustavy lineárńıch rovnic

2.1.1 Uved’te a dokažte vztah mezi elementárńımi řádkovými operacemi a soustavami rovnic.

Nechť Ax = b a A′x = b′ jsou dvě soustavy splňuj́ıćı (A|b) ∼∼ (A′|b′), potom obě tyto soustavy maj́ı totožné
množniny řešeńı.

Proof. Ćılem je tedy ukázat {x ∈ Rn | Ax = b} = {x ∈ Rn | A′x = b′}, neboli ukázat Ax = b ⇐⇒ A′x = b′.

1. Vynásobeńı i-tého řádku nenulovým skalárem t.

(a) Ax = b =⇒ A′x = b′:
a′i,1x1 + ...+ a′i,nxn = tai,1x1 + ...+ tai,nxn = t(ai,1x1 + ...+ ai,nxn) = tbi = b′i

(b) Ax = b⇐= A′x = b′:
ai,1x1 + ...+ ai,nxn = 1

t (tai,1x1 + ...+ tai,nxn) = 1
t (a′i,1x1 + ...+ a′i,nxn) = 1

t b
′
i = 1

t tbi = bi

2. Přičteńı j-tého řádku k i-tému

(a) Ax = b =⇒ A′x = b′: a′i,1x1 + ...+ a′i,nxn =

= (ai,1 + aj,1)x1 + ...+ (ai,n + aj,n)xn = (ai,1x1 + ...+ ai,nxn︸ ︷︷ ︸
bi

) + (aj,1x1 + ...+ aj,nxn︸ ︷︷ ︸
bj

) = bi + bj = b′i

(b) Ax = b⇐= A′x = b′: ai,1x1 + ...+ ai,nxn =
= (ai,1x1 + ...+ ai,nxn) + bj − bj = (ai,1x1 + ...+ ai,nxn) + (aj,1x1 + ...+ aj,nxn)− bj =
= (ai,1 + aj1)x1 + ...+ (ai,n + aj,n)xn − bj = (a′i,1x1 + ...+ a′i,nxn)− bj = b′j − bj = bi + bj − bj = bi

3., 4. dokazovat nemuśıme, jsou odvozeny od prvńıch dvou.

2.1.2 Vyslovte a dokažte větu o jednoznačnosti volných a bázických proměnných.

Pro A′x = b′ s (A′ | b′) v REF a bez pivotu v b′, lze jakoukoli volbu proměnných jednoznačně rozš́ı̌rit na řešeńı.

Proof. : Matematickou Indukćı podle i = r, r − 1, ..., 1 v i-té rovnici:

0x1 + ...+ 0xj(i)−1 + a′i,j(i)xj(i) + a′i,j(i)+1xj(i)+1 + ...+ a′i,nxn = b′i

Hodnoty následuj́ıćıch bázických proměnných xj(i+1), ..., xj(r) jsou známy z indukčńıho předpokladu, proto je xj(i)

jednoznačně: xj(i) = 1
a′
i,j(i)

(b′i − a′i,j(i)+1xj(i)+1 − ...− a′i,nxn).

Jednoznačnost řešeńı vycháźı z jednoznačnosti bázických a volných proměnných, protože ty to řešeńı tvoř́ı.

2.1.3 Vyslovte a dokažte Frobeniovu větu.

Soustava Ax = b má řešeńı právě tehdy, když se hodnost matice A rovná hodnosti rozš́ı̌rené matice.

Proof. Zvolme libovolné (A′|b′) v REF, t. ž. (A′|b′) ∼∼ (A|b).
Potom Ax = b má řešeńı ⇐⇒ (A′|b′) nemá pivot v b′ ⇐⇒ pivoty A′ se shoduj́ı s pivoty (A′|b′) ⇐⇒
rank(A) = rank((A|b))
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2.2 Matice

2.2.1 Vyslovte a dokažte větu o vztahu mezi řešeńımi Ax = b a Ax = 0.

Nechť x0 splňuje Ax0 = b. Potom zobrazeńı x→ x+ x0 je bijekce mezi množinami {x : Ax = 0} a {x : Ax = b}.

Proof. Označme U = {x : Ax = 0} a V = {x : Ax = b}.
Předpokládejme, že f : U → V , t.ž. f(x) = x+ x0 a g : V → U , t.ž. g(x) = x− x0. Potom:

g ◦ f je identita na U =⇒ je prostá
f ◦ g je identita na V =⇒ je na

}
=⇒ je bijektivńı.

2.2.2 Uved’te a dokažte větu popisuj́ıćı všechna řešeńı Ax = b.

Je-li A ∈ Rm×n matice hodnosti r, pak všechna řešeńı Ax = 0 lze popsat jako x = p1x1 + p2x2 + ... + pn−rxn−r,
kde jsou p1, ..., pn−r libovolné reálné parametry a x1, ..., xn−r vhodná řešeńı soustavy Ax = 0. Soustava má pouze
triviálńı řešeńı x = 0, právě když rank(A) = n.

Proof. Přejmenujeme volné proměnné na p1, ..., pn−r. Zpětnou substitućı můžeme vyjádřit každou složku řešeńı
jako lineárńı funkci proměnných, t.j.

x1 = α1,1p1 + ...+ α1,n−rpn−r
...

xn = αn,1p1 + ...+ αn,n−rpn−r

Zvoĺıme x1 = p1(α1,1, ..., αn,1)T , ..., xn−r = pn−r(α1,n−r, ..., αn,n−r)T

Tyto vektory řeš́ı soustavu Ax = 0, protože každý takový xi pocháźı z:

pj =

{
1, j = i

0, j 6= i

Je-li rank(A) = n, proměnné jsou jen bázické a 0 je pak jediné řešeńı.

Důsledek: Obecné řešeńı soustavy Ax = b lze vyjádřit ve tvaru x = x0 + p1x1 + ... + pn−rxn−r, kde x0 je
libovolné řešeńı soustavy Ax = b.
Důsledek plat́ı d́ıky bijekci mezi řešeńımi Ax = b a Ax = 0. (věta 2.2.1)

2.2.3 Vyslovte a dokažte větu o ekvivalentńıch definićıch regulárńıch matic.

Pro čtvercovou matici A ∈ Rn×n jsou následuj́ıćı podmı́nky ekvivalentńı:

i (∃A−1) : A ·A−1 = In, neboli A je regulárńı

ii rank(A) = n, neboli A má hodnost n

iii A ∼∼ In, neboli A lze převést na In

iv Soustavy Ax = 0 má pouze triviálńı řešeńı x = 0.

Proof.

� (ii) ⇐⇒ (iv): Z věty o řešeńı homogenńıch soustav 2.2.2.:

rank(A) = n ⇐⇒ A′ ∼ A neobsahuje volné proměnné ⇐⇒ existuje právě jedno řešeńı

� (ii) =⇒ (iii): Podle Gauss-Jordanovy eliminace (iii) =⇒ (ii) triviálně.

� (ii) =⇒ (i): Označme In = (e1|...|en), kde e jsou sloupce matice In. Pro i = 1, ..., n uvažme soustavy
Axi = ei. Z rank(A) = n dostaneme řešeńı A−1 = (x1|...|xn).

� (i) =⇒ (ii) Sporem. Pokud rank(A) < n, pak pro některé i může bát i-tý řádek matice A eliminován
ostatńımi řádky, Axi = ei tedy nemá řešeńı, protože jedinou 1 na i-tém řádku v ei nelze eliminovat nulami.
...spor s existenćı A−1.
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2.3 Grupy a permutace

2.3.1 Vyslovte a dokažte větu o znaménku složené permutace.

Věta: Pro libovolné (p, q ∈ Sn), kde Sn je množina všech permutaćı na n prvćıch, plat́ı: sgn(q◦p) = sgn(q) ·sqn(p)

Proof. Pro počet inverźı ve složené permutaci plat́ı, že: inverze v p a q se navzájem vyruš́ı a inverze v q◦p odpov́ıdá
inverzi v p nebo v q.

# inverźı (q ◦ p) = # inverźı p+ # inverźı q − 2|{(i, j) : i < j ∧ p(i) > p(j) ∧ q(p(i)) < q(p(j))}|

2.4 Tělesa

2.4.1 Uved’te a dokažte větu charakterizuj́ıćı, kdy Zp je těleso

Věta: Zp je těleso právě tehdy, když p je prvoč́ıslo.

Proof.

� =⇒ : Pokud by p bylo složené p = a · b, pak a · b ≡ 0 mod p, což je spor s pozorováńım.

� ⇐= Je potřeba ukázat platnost axiomů pro tělesa. Všechny axiomy plynou z vlastnost́ı + a · na Z, kromě
existence inverzńıch prvk̊u, protože Z neńı uzavřená na děleńı.:

Ukažme existenci inverzńıho prvku v násobeńı (∀a ∈ [p− 1])(∃a−1 ∈ [p− 1]) : a · a−1 ≡ 1 mod p

Definujeme pro každé a zobrazeńı fa : [p− 1]→ [p− 1] předpisem fa(x) = ax mod p

Ukážeme, že fa je prosté: Kdyby nebylo, (∃b, c, b 6= c) : fa(b) = fa(c) =⇒ 0 ≡ ab − ac =⇒ a(b − c) ≡ 0.
Ale v́ıme, že a 6= 0 a b 6= c, takže jde o spor.

fa je prosté =⇒ je na =⇒ ∃a−1 splňuj́ıćı fa(a−1) = 1.

2.4.2 Vyslovte a dokažte malou Fermatovu větu.

Věta: Nechť a ∈ {1, ..., p− 1} a p je prvoč́ıslo, potom plat́ı: ap−1 ≡ 1 mod p.

Proof. Pro každé a definujeme zobrazeńı fa : [p− 1]→ [p− 1] předpisem fa(x) = ax mod p.
Ukážeme, že fa je prosté: Kdyby nebylo, (∃b, c, b 6= c) : fa(b) = fa(c) =⇒ 0 ≡ ab − ac =⇒ a(b − c) ≡ 0. Ale
v́ıme, že a 6= 0 a b 6= c, takže jde o spor.
fa je prosté =⇒ je na =⇒ je bijekćı na [p− 1], proto plat́ı:

p−1∏
x=1

x =

p−1∏
x=1

fa(x) =

p−1∏
x=1

ax = ap−1

p−1∏
x=1

x =⇒ ap−1 = 1

2.5 Vektorové prostory

2.5.1 Vyslovte a dokažte větu o pr̊uniku vektorových prostor̊u.

Nechť (Ui, i ∈ I) je libovolný systém podprostor̊u prostoru V . Potom pr̊unik
⋂
i∈I

Ui je také podprostorem V.

Proof. Označme W =
⋂
i∈I

Ui a ukažme uzavřenost na ⊕ a ∗:

1. Uzavřenost na ⊕:

(u, v ∈W ) =⇒ (∀i ∈ I) : u, v ∈ Ui =⇒ (∀i ∈ I) : u⊕ v ∈ Ui =⇒ u⊕ v ∈W

2. Uzavřenost na ∗:

(∀a ∈ K), (u ∈W ) =⇒ (∀i ∈ I) : u ∈ Ui =⇒ (∀i ∈ I) : a ∗ u ∈ Ui =⇒ a ∗ u ∈W
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2.5.2 Vyslovte a dokažte větu o ekvivalentńıch definićıch lineárńıho obalu.

1 Lineárńı obal množiny X ⊆ V je pr̊unik všech podprostor̊u U z V nad K , které obsahuj́ı X.

2 Lineárńı obal množiny X je množina všech lineárńıch kombinaćı vektor̊u z X.

Proof. Označme:

W1 =
⋂

X⊆Ui⊆V

Ui

W2 =

{
n∑

i=1

ai · vi : ai ∈ K, vi ∈ X,n ∈ N

}
Dokažme W1 = W2 = span(X):

1. W1 ⊆W2

Protože X ⊆W2, máme W2 mezi prot́ınaj́ıćımi se podprostory Ui. Z toho plyne W1 ⊆W2.

2. W2 ⊆W1

uavřenost na · : u ∈W2 =⇒ u =

k∑
i=1

aivi =⇒ αu = α

k∑
i=1

aivi =

k∑
i=1

(αai)vi =⇒ αu ∈W2

uzavřenost na + : u, u′ ∈W2 =⇒ ... =⇒ u+ u′ ∈W2

Každý Ui obsahuje X a je uzavřen na + a ·. Každý Ui tedy obsahuje všechny lineárńı komb. vektor̊u X.
Proto ∀Ui : W2 ⊆ Ui =⇒ W2 ⊆W1.

2.5.3 Vyslovte a dokažte tvrzeńı o mohutnostech lineárně nezávislé množiny a generuj́ıćı množiny.

Jestliže Y je konečná generuj́ıćı množina prostoru V a X je lineárně nezávislá ve V , potom |X| ≤ |Y |.

Proof. Předpokládejme, že Y = {v1, ..., vn} a že z X lze vybrat r̊uzná u1, ..., un+1. Každé ui vyjádř́ıme jako

ui =

n∑
j=1

ai,jvj . Odpov́ıdaj́ıćı matice A má n + 1 řádk̊u a n sloupc̊u, proto je některy řádek lineárńı kombinaćı

ostatńıch. Tato kombinace také potvrzuje lineárńı závislost u1, ..., un+1.

2.5.4 Uved’te a dokažte Steinitzovu větu o výměně (včetně lemmatu, pokud jej potřebujete).

Lemma o výměně Nechť X generuje vektorový prostor V nad K. Jestliže pro vektor (u ∈ V ) existuj́ı

(v1, ..., vn ∈ X) a (a1, ..., an ∈ K) taková, že u =

n∑
i=0

aivi, kde a 6= 0 pro nějaké i, potom span((X \ vi) ∪ u) = V .

Proof.

u = a1v1 + ...+ aivi + ...+ anvn =⇒ vi =
1

a i
(u−

∑
j 6=i

aivi)

Jakékoli w ∈ V můžeme zapsat jako lineárńı kombinaci prvk̊u z X. Vyskytuje-li se vi v této kombinaci, dosad́ıme
za vi výraz výše. T́ım źıskáme w jako lineárńı kombinaci prvk̊u z (X \ vi) ∪ u.

V konečném př́ıpadě, je-li X = {v1, ..., vn} a w =

n∑
j=1

bjvj , dostaneme jmenovitě w = bi
vi
u+

∑
j 6=i

(
bj −

ajbj
a i

)
vj .

Steinitzova věta o výměně Nechť X je konečná lineárně nezávislá množina vektorového prostoru V nad K a
Y je systém generátor̊u V .
Potom plat́ı |X| ≤ |Y | a existuje Z, taková že:

1. L(Z) = V

2. X ⊆ Z

3. |Z| = |Y |

4. Z \X ⊆ Y
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Proof. Indukćı dle |X \ Y |

� Základńı krok X \ Y = ∅, potom Z = Y .

� Indukčńı krok X \ Y 6= ∅
Zvoĺıme libovolné u ∈ X \ Y a polož́ıme X ′ = X \ u.

Protože množina X ′ je lineárně nezávislá a |X ′ \ Y | < |X \ Y |, podle indukčńıho předpokladu pro X ′ a Y
existuje Z ′ splňuj́ıćı L(Z ′) = V ; X ′ ⊆ Z ′; |Z ′| = |Y | a Z ′ \X ′ ⊆ Y .

Použijeme lemma o výměně pro Z ′ = {v1, ..., vn} a u vyměńıme za vi, takové že vi ∈ Z ′ \X.

Takové vi existuje, protože jinak by byla X lineárně závislá. Potom Z = Z ′ ∪ u \ vi splňuje 1-4.

neboli: množina Y umı́ vygenerovat u, ale množina X ′ to nem̊uže umět, jinak by X ′∪u nebylo lin. nezavislé.

2.5.5 Vyslovte a dokažte větu o dimenzi pr̊uniku vektorových prostor̊u.

Jsou-li U, V podprostory konečně generovaného prostoru W , pak dim(U)+dim(V ) = dim(U∩V )+dim(L(U∪V )).

Proof. Rozš́ı̌ŕıme bázi X pr̊uniku U ∩ V na bázi Y prostoru U a také na bázi Z prostoru V .
Potom |Y |+ |Z| = |X|+ |Y ∪ Z|

2.5.6 Vyslovte a dokažte větu o vektorových prostorech souvisej́ıćıch s matićı A.

Jakákoli A ∈ Km×n splňuje: dim(R(A)) = dim(S(A)).

Proof. Nechť A ∼∼ A′ v REF, neboli existuje regulárńı R taková, že A′ = RA.
Podle lemmatu urč́ıme dim(S(A′)) ≤ dim(S(A)) a z A = R−1A′ dostaneme dim(S(A′)) ≥ dim(S(A)), tud́ıž
dostáváme jejich rovnost.
Dále pro matice A′ v REF plat́ı věta př́ımo: dim(R(A′)) = počet pivot̊u = rank(A′) = dim(S(A′)).
Protože R(A) = R(A′), dostaneme dim(R(A)) = dim(R(A′)) = dim(S(A′)) = dim(S(A)).

Jinými slovy, počet pivot̊u v řádćıch je roven počtu pivot̊u ve sloupćıch.
(Lemma ř́ıká: vynásob́ıme-li A z leva matićı B, pak celková dimenze A′ nevzroste).

2.5.7 Vyslovte a dokažte větu o dimenzi jádra matice.

Pro libovolné A ∈ Km×n : dim(ker(A)) + rank(A) = n.

Proof. Nechť d = n− rank(A) je počet volných proměnných a x1, ..., xd jsou řešeńı soustavy Ax = 0 daná zpětnou
substitućı.
Tato řešeńı jsou lineárně nezávislá, protože pro každé i plat́ı, že xi je mezi x1, ..., xd jediné, které má složku
odpov́ıdaj́ıćı i-té volné proměnné nenulovou.
Vektory x1, ..., xd tud́ıž tvoř́ı bázi ker(A) a proto dim(ker(A)) = d = n− rank(A).

2.6 Lineárńı zobrazeńı

2.6.1 Vyslovte a dokažte větu o jedinečnosti lineárńıho zobrazeńı.

Nechť U a V jsou prostory nad K a X je báze U .
Pak pro jakékoli zobrazeńı f0 : X → V existuje jediné lineárńı zobrazeńı f : U → V rozšǐruj́ıćı f0,
t.j. (∀u ∈ X) : f(u) = f0(u).

Proof.
Pro jakékoli w ∈ U existuj́ı jednoznačná n ∈ N0, a1, ..., an ∈ K \ 0 a u1, ..., un ∈ X taková, že w =

∑n
i=1 aiui

Potom f(w) = f

(
n∑

i=1

aiui

)
=

n∑
i=1

aif(ui) =

n∑
i=1

aif0(ui).

2.6.2 Vyslovte a dokažte větu o řešeńı rovnice s lineárńım zobrazeńım.

Proof.

2.6.3 Vyslovte a dokažte pozorováńı o matici složeného lineárnıho zobrazeńı.

Proof.
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2.6.4 Vyslovte a dokažte větu o charakterizaci izomorfismu mezi vektorovými prostory.

Lineárńı zobrazeńı f : U → V je isomorfismus prostor̊u U a V s konečnými bázemi X a Y právě tehdy, když
[f ]X,Y je regulárńı.

Proof.

� ⇐=: Uvažme g : V → U takové, že [g]Y,X = [f ]−1
X,Y . Pak:

[g ◦ f ]X,X = [f ]−1
X,Y [f ]X,Y = I|X| = [id]X,X =⇒ f je prosté

[f ◦ g]Y,Y = [f ]−1
X,Y [f ]X,Y = I|Y | = [id]Y,Y =⇒ f je na.

� =⇒ :

[f−1]Y,X [f ]X,Y = [id]X,X = I|X| =⇒ |Y | ≥ |X|
[f]X,Y [f−1]Y,X = [id]Y,Y = I|Y | =⇒ |X| ≥ |Y |

}
=⇒ |X| = |Y |.

2.7 Grafy a podgrafy

2.7.1 Zformulujte problém o počtu sudých podgraf̊u a vyřešte jej.

Kolik sudých podgraf̊u obsahuje G?

Proof. Symetricky rozd́ıl 4 zachovává sudé stupně, protože symetricky rozd́ıl dvou množin sudé mohutnosti,
konkrétně hran incidentńıch s vrcholem, má také sudou mohutnost.

|A4B| = |A|+ |B| − 2|A ∩B|

Proto (U,4, ·) tvoř́ı vektorový prostor Z2. Pro prostory konečné mohutnosti plat́ı |U | = |K|dim(U)

2.7.2 Zformulujte problém o množinových systémech s omezeńımi na mohutnosti a vyřešte jej.

Kolik množin může mı́t n-prvková množina, pokud každá podmnožina má mı́t lichou velikost, ale pr̊unik každé
dvojice r̊uznych podmnožin má mı́t sudou velikost?

Proof.

2.7.3 Zformulujte problém o děleńı obdélńıku na čtverce a vyřešte jej.

Lze obdélńık s iracionálńım poměrem délek jeho stran rozdělit na konečně mnoho čtverc̊u?
Pro iracionálńı poměr žádné takové rozděleńı neexistuje.

Proof.
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3 Přehled

(U přehledových otázek uved’te definice, tvrzeńı, věty, př́ıklady a souvislosti. Důkazy u přehledových otázek nejsou
vyžadovány.)

3.1 Soustavy lineárńıch rovnic

3.1.1 Přehledově sepǐste, co v́ıte o elementárńıch řádkových operaćıch a Gaussově eliminaci.

◦ Definice: Elementárńı řádkové úpravy, Gaussova eliminace, Řádkově odstupňovaný tvar

◦ Věta: (2.1.1) Nechť Ax = b a A′x = b′ jsou dvě soustavy splňuj́ıćı (A|x) ∼∼ (A′|b′), potom obě soustavy
maj́ı totožné množiny řešeńı.

◦ Zmı́nit Gauss-Jordanovu eliminaci

3.1.2 Přehledově sepǐste, co v́ıte o řešeńı homogenńıch a nehomogenńıch soustav lineárńıch rovnic.

◦ Definice: Gaussova eliminace, REF, pivot, volné a bázické proměnné, hodnost matice

◦ Zpětnou substitućı lze źıskat každé řešeńı.

◦ Věta: (2.1.3) Frobeniova věta: Soustava Ax = b má řešeńı ⇐⇒ rank(A) = rank(A|b)

◦ Věta: (2.1.2) Pro A′x = b′ s (A′|b′) v REF a bez pivotu v b′, lze jakoukoli volbu proměn. rozš́ı̌rit na řešeńı.

◦ Věta: (2.2.1) Nechť x0 splňuje Ax0 = b, ppotomzobr.→ x̄+ x0 je bijekce mezi {x̄ : Ax = 0} a {x : Ax = b}.

◦ Věta: (2.2.2) Je-li A ∈ Rm×n matice hodnosti r, pak všechna řešeńı Ax = 0 lze popsat jako x = p1x1 +
p2x2 + ...+ pn−rxn−r, kde jsou p1, ..., pn−r libovolné reálné parametry a x1, ..., xn−r vhodná řešeńı soustavy
Ax = 0. Soustava má pouze triviálńı řešeńı x = 0, právě když rank(A) = n.

3.2 Matice

3.2.1 Přehledově sepǐste, co v́ıte o maticových operaćıch.

◦ Definice nulová matice, jednotkové matice, transponovaná matice, symetrická matice

◦ Definice maticový součin, komutativita, asociativita, distributivita, neutrálńı prvek, inverzńı prvek

◦ Násobeńı skalárem - komutativńı, asociativńı, ditributivńı na sč́ıtáńı, neutrálńı prvek je 1

◦ Sč́ıtáńı - komutativńı, asociativńı, neutrálńı prvek je nulová matice.

◦ Maticový součin - asociativńı, distributivńı na sč́ıtáńı, neutrálńı prvek je In, NENÍ komutativńı

3.2.2 Přehledově sepǐste, co v́ıte o regulárńıch a singulárńıch matićıch.

◦ Definice: regulárńı matice, singulárńı matice, inverzńı matice

◦ Věta (2.2.3) Pro čtvercovou matici A ∈ Rn×n jsou následuj́ıćı podmı́nky ekvivalentńı:

– (∃B) : A ·B = In � A je regulárńı

– rank(A) = n

– A ∼∼ In
– Ax = 0 =⇒ x = 0

◦ (A−1)−1 = A

Proof. (A−1)−1 = In(A−1)−1 = AA−1(A−1)−1 = AIn = A

◦ (AT )−1 = (A−1)T

Proof. Využijeme, že XTY T = (Y X)T : ; (A−1)T = (A−1)TAT (AT )−1 = (AA−1)T (AT )−1 = In(AT )−1 =
(AT )−1
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3.3 Grupy a permutace

3.3.1 Přehledově sepǐste, co v́ıte o binárńıch operaćıch a jejich vlastnostech.

◦ Definice: Binárńı operace, relace, kartézsky součin, zobrazeńı na, prosté, bijektivńı

◦ Definice: Asociativita, komutativita, distributivita, inverzńı prvek, neutrálńı prvek

◦ Př́ıklady - Grupa, Abelova grupa, Tělesa, ...

3.3.2 Přehledově sepǐste, co v́ıte o (obecných) grupách.

◦ Definice: Grupa, Abelovaká grupa

◦ Neutrálńı a inverzńı prvky jsou určeny jednoznačně (Důkaz přičteńım nuly/ násobeńım jedničkou)

◦ Plat́ı ekvivalentńı úpravy a = b ⇐⇒ c ◦ a = c ◦ b ⇐⇒ a ◦ c = b ◦ c

◦ (a−1)−1 = a

◦ (ab)−1 = (b−1a−1)

◦ Př́ıklady: aditivńı grupy, multiplikativńı, ostatńı (symetrická - množina permutaćı na 1 až n)

3.3.3 Přehledově sepǐste, co v́ıte o permutačńıch grupách.

◦ Definice: Permutace, permutačńı matice, transpozice, inverze, znaménko

◦ Věta: (2.3.1) Pro libovolné (p, q ∈ Sn) : sgn(q ◦ p) = sgn(q) · sqn(p).

3.4 Tělesa

3.4.1 Přehledově sepǐste, co v́ıte o tělesech.

◦ Definice: Tělesa, charakteristika tělesa

◦ Věta (2.4.1) Zp je těleso právě tehdy, když p je prvoč́ıslo

◦ Věta (2.4.2) Nechť a ∈ [p− 1] a p je prvoč́ıslo, potom plat́ı ap−1 ≡ 1 mod p

◦ Věta Charakteristika tělesa je vždy 0 nebo prvoč́ıslo (d̊ukaz sporem)

◦ Vlastnosti:

– ∀a, a× 0 = 0

– ab = 0 =⇒ a = 0 ∨ b = 0

Proof. Sporem: ∃a−1, b−1 : 1 = a−1abb−1 = aba−1b−1 = 0a−1b−1 = 0

– a(−1) = −a

Proof. 0 = 0a = (1− 1)a = 1a+ (−1)a =⇒ −a = (−1)a

◦ Př́ıklady: R,Q,Zp, racionálńı lomené funkce

◦ Tělesa nejsou Zp kde p neńı prvoč́ıslo

3.5 Vektorové prostory

3.5.1 Přehledově sepǐste, co v́ıte o vektorových prostorech a jejich podprostorech.

◦ Definice: Vektorový prostor, podprostor, lineárńı kombinace, lineárńı obal,

◦ Věta (2.5.1) Pr̊unik podprostor̊u je podprostor (ověř́ı se uzavřenost na +,.)

◦ Pojem skalár, vektor

◦ Př́ıklady: Kn, posloupnosti, funkce, polynomy

◦ a0 = 0u = 0

◦ au = 0 =⇒ a = 0 ∨ u = 0
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3.5.2 Přehledově sepǐste, co v́ıte o vektorových prostorech určených s matićı A.

◦ Definice Řádkový prostor, sloupcový prostor, jádro

◦ Věta o shodnosti dimenźı: dim(R) = dim(S)

◦ Elementárńı řádkové úpravy zachovávaj́ı řádkový prostor, sloupcový zachovávat nemuśı. (+ Jádro)

◦ dim(R) = rank(A), dim(KerR) + rank(A) = n

3.5.3 Přehledově sepǐste, co v́ıte o lineárńı závislosti.

◦ Definice: Lineárně nezávislost

◦ Př́ıklady:

– |X| = 1

{
X = {0} závislá

jinak nezávislá

– 0 ∈ X =⇒ X je lineárně závislá.

– Řádky/sloupce diagonálńı matice jsou lineárně nezávislé.

– Nenulové řádky v matici v REF jsou lineárně nezávislé

◦ Y je lineárně nezávislá a X ⊆ Y =⇒ X je lineárně nezávislá

◦ X je lineárně závislá a X ⊆ Y =⇒ X je lineárně závislá

◦ X je lineárně nezávislá ⇐⇒ ∀u ∈ X : u /∈ L(X \ u)

◦ Asi je možné zmı́nit báze

3.5.4 Přehledově sepǐste, co v́ıte o báźıch vektorových prostor̊u.

◦ Definice: Báze, vektor souřadnic

◦ Pro libovolnou bázi plat́ı: (předpoklady neuvád́ım) [x]B + [y]B = [x+ y]B , [ax]B = a[x]B

◦ Věta: L(X) = V,∀Y ⊂ X : L(Y ) 6= V =⇒ X je báze.

◦ Důsledek: Každý prostor má bázi.

◦ Z každého systému generátor̊u lze vytvořit bázi

◦ Steinitzova věta o výměně (+ lemma)

◦ Pokud má prostor konečnou bázi, potom maj́ı všechny báze stejnou mohutnost

3.6 Lineárńı zobrazeńı

3.6.1 Přehledově sepǐste, co v́ıte o lineárńıch zobrazeńıch a jejich matićıch.

◦ Definice Lineárńı zobrazeńı, matice lineárńıho zobrazeńı, matice přechodu,

◦ Př́ıklady: nulové, identické

◦ Složeńı lineárńıch zobrazeńı je lineárńı

◦ [f(u)]Y = [f ]XY · [u]X

◦ Skládáńı zobrazeńı vyjádř́ıme součinem matic

◦ Zobrazeńı je isomorfismus, iff jeho matice je regulárńı,

◦ pak plat́ı inverzńı matice je matićı inverzńıho zobrazeńı

◦ Vektorový prostor dimenze n je isomorfńı prostoru nad Kn
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