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1.2.2 Definujte kořen polynomu a jeho násobnost. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1.7.4 Definujte analytické vyjádřeńı formy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7.5 Definujte signaturu formy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Věty 7
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2.3.2 Vyslovte a dokažte větu o lineárńı nezávislosti vlastńıch vektor̊u. . . . . . . . . . . . . . . . 10
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1 Definice

1.1 Determinanty

1.1.1 Definujte permutaci.

Permutace na množině [n] je bijektivńı zobrazeńı p : [n]→ [n]. [n] = {1, ..., n})

1.1.2 Definujte znaménko permutace.

Znaménko permutace p je č́ıslo sgn(p) = (−1)#inverźı v p.
M̊užeme zapsat také: (p ∈ Sn) a skládá se z k-cykl̊u, potom sgn(p) = (−1)n−k.

1.1.3 Definujte determinant.

Determinant matice A ∈ Kn×n je dán výrazem:

det(A) =
∑
p∈Sn

sgn(p)

n∏
i=1

ai,p(i)

1.1.4 Definujte adjungovanou matici.

Pro matici A ∈ Kn×n je adjungovaná matice definována vztahem

adj(A)j,i = (−1)i+j det(Ai,j)

Dále pro regulárńı matici A ∈ Kn×n plat́ı vztah A−1 =
1

det(A)
adj(A)

1.1.5 Definujte Laplaceovu matici.

Laplaceova matice grafu G na VG = {vi, ..., vn} je LG ∈ Rn×n, t.ž:

(LG)i,j =


deg(vi) pro i = j

−1 pokud i 6= j a (vi, vj) ∈ EG
0 jinak

1.2 Polynomy

1.2.1 Definujte polynom nad tělesem.

Polynom stupně n v proměnné x nad tělesem K je výraz

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

kde an 6= 0 a an, . . . , a0 ∈ K. Ṕı̌seme jako p ∈ K(x).

1.2.2 Definujte kořen polynomu a jeho násobnost.

Kořen polynomu p ∈ K(x) je r ∈ K t.ž. p(r) = 0.
Násobnost kořene r z p ∈ K(x) je největš́ı k ∈ Z+, t.ž. (x− r)k děĺı p.

1.2.3 Definujte algebraicky uzavřené těleso.

Těleso K je algebraicky uzavřené těleso, pokud každý polynom p ∈ K(x) stupně alespoň jedna má alespoň jeden
kořen.

1.2.4 Definujte Vandermondovu matici.

Vandermondova matice Vn+1(x0, . . . , xn) je matice maj́ıćı v každém řádku členy po sobě jdoućı geometrické
posloupnosti. Prvek na i-tém řádku a j-tém sloupci lze vyjádřit jako xji .

1 x0 x2
0 . . . xn0

1 x1 x2
1 . . . xn1

...
...

...
. . .

...
1 xn x2

n . . . xnn

 ·

a0

a1

...
an

 =


y0

y1

...
yn


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1.3 Vlastńı č́ısla a vlastńı vektory

1.3.1 Definujte vlastńı č́ıslo a vlastńı vektor lineárńıho zobrazeńı.

Nechť V je vektorový prostor nad K a f je lineárńı zobrazeńı f : V → V , potom vlastńı č́ıslo zobrazeńı f je jakékoli
λ ∈ K, pro které existuje vektor u ∈ V \ 0, t.ž.: f(u) = λu.
Nechť λ je vlastńı č́ıslo, potom jemu odpov́ıdaj́ıćı vlastńı vektor je libovolný vektor u ∈ V , t.ž.: f(u) = λu.

1.3.2 Definujte vlastńı č́ıslo a vlastńı vektor matice.

Jestliže V má konečnou dimenzi n, pak f může být reprezentováno matićı A = [f ]XX ∈ Kn×n vzhledem k nějaké
bázi X prostoru V . Vlastńı č́ıslo matice je potom λ ∈ K a vlastńı vektor matice x ∈ Kn, oba splňuj́ıćı Ax = λx .

1.3.3 Definujte charakteristický polynom.

Charakteristický polynom matice A ∈ Kn×n je pA(t) = det(A− tIn).

1.3.4 Definujte algebraickou násobnost vlastńıho č́ısla.

Algebraická násobnost vlastńıho č́ısla λ je násobnost λ jako kořene charakteristického polynomu pA(λ).

1.3.5 Definujte geometrickou násobnost vlastńıho č́ısla.

Geometrická násobnost vlastńıho č́ısla λ je dimenze (pod)prostoru jeho vlastńıch vektor̊u.

1.4 Diagonalizace

1.4.1 Definujte podobné matice.

Matice A,B ∈ Kn×n jsou si podobné, pokud existuje regulárńı matice R, t.ž.: A = R−1BR.

1.4.2 Definujte diagonalizovatelnou matici.

Matice podobná diagonálńı matici je diagonalizovatelná.
(A je podobná diagonálńı ⇐⇒ prostor Kn má bázi z vlastńıch vektor̊u A).

1.4.3 Definujte Jordan̊uv blok.

Jordan̊uv blok je čtvercová matice ve tvaru:

Jλ =


λ 1

λ
. . .

. . . 1
λ


1.4.4 Definujte Jordan̊uv normálńı tvar matice.

Jodrdan̊uv normálńı tvar je každá čtvercová komplexńı matice A podobná matici J , tedy matice ve tvaru:

J =

Jλ1

. . .

Jλk


kde každý Jordan̊uv blok Jλi

odpov́ıdá vlastńımu č́ıslu λi matice A

1.4.5 Definujte zobecněný vlastńı vektor.

Zobecněný vlastńı vektor matice A k vlastńımu č́ıslu λ je lib. vektor x splňuj́ı (A− λI)ix = 0 pro nějaké i ∈ N.

1.4.6 Definujte hermitovskou matici.

Matice A je hermitovská, pokud A = AH .
(AH ∈ Cm×n je Hermitovská transpozice matice A ∈ Cn×m, kde (AH)i,j = aj,i ).
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1.4.7 Definujte unitárńı matici.

Matice A je unitárńı, pokud A−1 = AH .

1.5 Skalárńı součin

1.5.1 Definujte skalárńı součin pro vektorové prostory nad komplexńımi č́ısly.

Skalárńı součin na vektorovém prostoru V nad C je zobrazeńı, které přǐrad́ı každé dvojici vektor̊u u, v ∈ V skalár
〈u | v〉 ∈ C tak, že jsou splněny následuj́ıćı axiomy:

� ∀u ∈ V : 〈u | u〉 ∈ R+
0

� ∀u ∈ V : 〈u | u〉 = 0 ⇐⇒ u = 0

� ∀u, v ∈ V : 〈v | u〉 = 〈u | v〉

� ∀u, v, w ∈ V : 〈u+ v | w〉 = 〈u | w〉+ 〈v | w〉

� ∀u ∈ V,∀a ∈ C : 〈au | v〉 = a〈u | v〉

1.5.2 Definujte normu spojenou se skalárńım součinem.

Nechť V je prosor se skalárńım součinem nad C nebo R, pak norma odvozená ze skalárńıho součinu je zobrazeńı
V → R přǐrazuj́ıćı vektoru u jeho normu ||u|| =

√
〈u | u〉.

1.5.3 Definujte kolmé vektory.

Vektory u, v z prostoru se skalárńım součinem jsou kolmé, pokud 〈u | v〉 = 0. Kolmé vektory znač́ıme u⊥v.

1.5.4 Definujte ortonormálńı bázi.

Báze Z = {v1, ..., vn} prostoru V se skalárńım součinem je ortonormálńı, pokud vi⊥vj pro každé i 6= j a ||vi|| = 1
pro každý vektor vi ∈ Z.

1.5.5 Definujte Fourierovy koeficienty.

Nechť Z = {v1, ..., vn} je ortonormálńı báze prostoru V . Pro každé u ∈ V plat́ı: u = 〈u|v1〉v1 + ... + 〈u|vn〉vn.
Koeficienty 〈u|vi〉 se potom nazývaj́ı Fourierovy koeficienty.

1.5.6 Definujte kolmou projekci.

Nechť W je prostor se skalárńım součinem a V je jeho podprostor s ortonormálńı báźı Z = (v1, ..., vn). Potom

zobrazeńı pZ : W → V definované jako pZ(u) =

n∑
i=1

〈u|vi〉vi je ortogonálńı projekce W na V .

1.5.7 Definujte izometrii.

Lineárńı zobrazeńı f mezi prostory V a W je izometrie, pokud zachovává skalárńı součin, neboli:

〈u|w〉 = 〈f(u)|f(w)〉

1.5.8 Definujte ortogonálńı doplněk.

Ortogonálńı doplněk podmnožiny V prostoru se skalárńım součinem W je V ⊥ = {u ∈W, ∀v ∈ V : u⊥v}

1.5.9 Definujte Gramovu matici.

Nechť V je prostor se skalárńım součinem a baźı X = (v1, . . . , vn), potom Gramova matice A definována vztahem
ai,j = 〈vi|vj〉 splňuje:

∀u,w ∈ V : 〈u|w〉 = [w]HXA
T [u]X

1.6 Pozitivně definitńı matice

1.6.1 Definujte pozitivně definitńı matici.

Pokud hermitovská matice A řádu n vyhovuje ∀x ∈ Cn \ 0 : xHAx > 0, pak je matice pozitivně definitńı.
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1.6.2 Definujte Choleského rozklad.

Pro každou pozitivně definitńı matici A existuje unikátńı horńı trojúhelńıková matice U s kladnou diagonálou,
t.ž.: A = UHU . Matice U se nazývá Choleského rozklad.

1.7 Kvadratické a bilineárńı formy

1.7.1 Definujte bilineárńı formu.

Nechť V je vektorový prostor nad tělesem K a nechť zobrazeńı f : V × V → K splňuje:

� ∀u, v ∈ V,∀a ∈ K : f(au, v) = f(u, av) = af(u, v)

� ∀u, v, w ∈ V : f(u+ v, w) = f(u,w) = f(v, w)

� ∀u, v, w ∈ V : f(u, v + w) = f(u, v) = f(u,w)

potom f je bilineárńı forma na V .

1.7.2 Definujte kvadratickou formu.

Zobrazeńı g : V → K se nazývá kvadratická forma, pokud existuje bilineárńı forma f , t.ž.: ∀u ∈ V : g(u) = f(u, u).

1.7.3 Definujte matici bilineárńı formy vzhledem k bázi

Nechť V je vektorový prostor nad tělesem K s baźı X = (v1, . . . , vn). Matice bilineárńı formy f vzhledem k bázi
X je matice B definována vztahem bi,j = f(vi, fj).

1.7.4 Definujte analytické vyjádřeńı formy

Analytické vyjádřeńı bilineárńı formy f nad Kn s matićı B je homogenńı polynom

f((x1, . . . , xn)T , (y1, . . . , yn)T ) =

n∑
i=1

n∑
j=1

bi,jxiyj

1.7.5 Definujte signaturu formy.

Nechť reálná kvadratická forma g má diagonálńı matici B obsahuj́ıćı pouze 1,−1, 0, potom signatura formy g je
trojice (#1,#− 1,#0), poč́ıtáno na diagonále matice B.
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2 Věty

2.1 Determinanty

2.1.1 Uveďte a dokažte větu o linearitě determinantu.

Věta: Determinant matice je lineárně závislý na každém jej́ım řádku i sloupci. Tedy vzhledem ke sč́ıtáńı řádk̊u
a násobeńı řádku skalárem.

Proof. Důkaz pro násobek skalárem:∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 ... a1,n

...
...

. . .
...

t · ai,1 t · ai,2 ... t · ai,n
...

...
. . .

...
an,1 an,2 ... an,n

∣∣∣∣∣∣∣∣∣∣∣∣
=
∑
p∈Sn

sgn(p)

(
n∏
i=1

ai,p(i) · t

)

= t ·
∑
p∈Sn

sgn(p)

n∏
i=1

ai,p(i) = t ·

∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 ... a1,n

...
...

. . .
...

ai,1 ai,2 ... ai,n
...

...
. . .

...
an,1 an,2 ... an,n

∣∣∣∣∣∣∣∣∣∣∣∣
Proof. Důkaz pro součet:
Pokud matice A,B,C splňuj́ı

ak,j =

{
bi,j + ci,j pokud k = i

bk,j + ck,j pokud k 6= i

potom:

det(A) =
∑
p∈Sn

sgn(p)

n∏
k=1

ak,p(k) =
∑
p∈Sn

ai,p(i) · sgn(p)

n∏
k∈{1,...,n}\i

ak,p(k) =

=
∑
p∈Sn

(bi,j + ci,j) · sgn(p)

n∏
k∈{1,...,n}\i

ak,p(k) =

=
∑
p∈Sn

bi,p(i) · sgn(p)

n∏
k∈{1,...,n}\i

bk,p(k) +
∑
p∈Sn

ci,p(i) · sgn(p)

n∏
k∈{1,...,n}\i

ck,p(k) =

=
∑
p∈Sn

sgn(p)

n∏
k=1

bk,p(k) +
∑
p∈Sn

sgn(p)

n∏
k=1

ck,p(k) = det(B) + det(C)

2.1.2 Vyslovte a dokažte větu o determinantu součinu dvou matic.

Věta: Pro libovolné A,B ∈ Kn×n : det(AB) = det(A) · det(B).

Proof. BÚNO A i B jsou regulárńı, jinak bychom dostali 0 = 0.
Součiny s elementárńımi maticemi E zachovávaj́ı determinant det(EB) = det(E) · det(B), protože:

� pro přičteńı i-tého řádku k j-tému: det(E) = 1

� pro vynásobeńı i-tého řádku t: det(E) = t.

Rozlož́ıme regulárńı A na elementárńı matice A = E1, ..., Ek.

det(AB) = det(E1, ...EkB) = det(E1) · det(E2, ..., EkB) =

= det(E1) · ... · det(Ek) · det(B) = det(E1...Ek) · det(B) =

= det(A) · det(B)
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2.1.3 Vyslovte a dokažte větu o Laplaceově rozvoji determinantu.

Věta: Nechť Ai,j je podmatice źıskaná z A odstaněńım i-tého řádku a j-tého sloupce, potom pro libovolné
A ∈ Kn×n a jakékoli i ∈ {1, ..., n} plat́ı, že:

det(A) =

n∑
j=1

ai,j(−1)i+j det(Ai,j)

Proof. Vyjádř́ıme i-tý řádek jako lineárńı kombinaci vektor̊u kanonické báze (transponované do řádk̊u) a použijeme
linearitu:

(ai,1, ai,2, ..., ai,n) = ai,1(e1)T + ai,2(e2)T + ...+ ai,n(en)T∣∣∣∣∣∣
. . . . . . . . . . . .
ai,1 ai,2 ... ai,n
. . . . . . . . . . . .

∣∣∣∣∣∣ = ai,1

∣∣∣∣∣∣
... ... ... ...
1 0 . . . 0
... ... ... ...

∣∣∣∣∣∣+ ai,2

∣∣∣∣∣∣
... ... ... ...
0 1 . . . 0
... ... ... ...

∣∣∣∣∣∣+ · · ·+ ai,n

∣∣∣∣∣∣
... ... ... ...
0 0 . . . 1
... ... ... ...

∣∣∣∣∣∣
j-tý člen: ∣∣∣∣∣∣

... ... ... ... ...
0 ... 1 ... 0
... ... ... ... ...

∣∣∣∣∣∣ =

∣∣∣∣∣∣
... ... ...
− (ej)T −
... ... ...

∣∣∣∣∣∣ = (−1)i+1

∣∣∣∣∣∣
− (ej)T −
... ... ...
... ... ...

∣∣∣∣∣∣ =

= (−1)i+1+j+1

∣∣∣∣∣∣
− (e1)T −
... ... ...
... ... ...

∣∣∣∣∣∣ = (−1)i+j
∣∣∣∣ 1 0T

0 Ai,j

∣∣∣∣ =

= (−1)i+j det(Ai,j)

2.1.4 Uveďte a dokažte Cramerovo pravidlo (řešeńı systémů s determinanty).

Věta: Nechť A ∈ Kn×n je regulárńı matice. Pro jakékoli b ∈ Kn řešeńı x soustavy Ax = B splňuje:

xi =
1

det(A)
det(Ai→b)

kde Ai→b źıskáme z A nahrazeńım i-tého sloupce vektorem b.

Proof. Uvažme matici Ii→x źıskanou z In nahrazeńım i-tého sloupce vektorem x.

Potom A · Ii→x = Ai→b, tedy: det(A) · det(Ii→x) = det(Ai→b), proto xi = det(Ii→x) =
1

det(A)
det(Ai→b).

2.1.5 Vyslovte a dokažte větu o adjungované matici.

Věta: Pro regulárńı matici A ∈ Kn×n : A−1 = 1
det(A) · adj(A).

Proof.

Laplaceovým rozvojem det(A) :

{
pro i = j (i− tý řádek z A) · (i− tý sloupec z adj(A)) = det(A)

pro i 6= j (j − tý řádek z A) · (i− tý sloupec z adj(A)) = det(A′) = 0
, kde A′

se źıská z A nahrazeńım i-tého řádku za j-tý. Dostáváme tedy:

A · adj(A) = det(A) · In =⇒ A ·
(

1

det(A)
· adj(A)

)
= In =⇒ A−1 =

1

det(A)
· adj(A)
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2.1.6 Vyslovte a dokažte větu o počtu koster grafu.

Věta: Každý multigraf G s |VG| ≥ 2 splňuje K(G) = det(L1,1
G ).

Neboli: Každý graf G na alespoň dvou vrcholech má det(L1,1
G ) koster.

Proof. BÚNO je graf G souvislý. Indukćı podle m = |EG|.
Základ indukce: pro m = 1 má G jen dva vrcholy a K(G) = 1 = deg(v2) = (LG)2,2 = det(L1,1

G ).

Indukčńı krok: Zvolme lib. e ∈ EG, BÚNO e = (v1, v2) a označme A = (LG)1,1, B = (LG−e)1,1, C = (LG◦e)1,1. C
je podmatice LG odpov́ıdaj́ıćı v3, ..., vn, tedy C = A1,1 = B1,1. Z IP v́ıme: K(G−e) = det(B) a K(G◦e) = det(C).
Matice A a B jsou shodné krom b1,1 = a1,1 − 1, protože vypuštěńım e klesne stupeň v2 o jedna. Prvńı sloupec A
vyjádř́ıme jako součet prvńıho sloupce B a vektoru e1 ze standardńı báze.

Linearitou det(A) podél tohoto rozkladu prvńıho sloupce záskáme det(A) = det(B) + det(C). Nyńı dokonč́ıme:

K(G) = K(G− e) +K(G ◦ e) = det((LG−e)1,1) + det((LG◦e)1,1) = det((LG)1,1)

2.2 Polynomy

2.2.1 Vyslovte a dokažte malou Fermatovu větu.

Věta: Nechť a ∈ {1, ..., p− 1} a p je prvoč́ıslo, potom plat́ı: ap−1 ≡ 1 mod p.

Proof. Pro každé a definujeme zobrazeńı fa : [p− 1]→ [p− 1] předpisem fa(x) = ax mod p.
Ukážeme, že fa je prosté: Kdyby nebylo, (∃b, c, b 6= c) : fa(b) = fa(c) =⇒ 0 ≡ ab − ac =⇒ a(b − c) ≡ 0. Ale
v́ıme, že a 6= 0 a b 6= c, takže jde o spor.
fa je prosté =⇒ je na =⇒ je bijekćı na [p− 1], proto plat́ı:

p−1∏
x=1

x =

p−1∏
x=1

fa(x) =

p−1∏
x=1

ax = ap−1

p−1∏
x=1

x =⇒ ap−1 = 1

2.2.2 Vyslovte a dokažte větu o Vandermondově matici.

Věta: Vandermondova matice Vn+1(x0, . . . , xn) je regulárńı ⇐⇒ x0, . . . , xn jsou r̊uzná.

Proof. Odečteme prvńı řádek z matice Vn+1 od ostatńıch, vytkneme xi − x0 z i-tého řádku pro každé i = 1, ..., n.
V prvńım sloupci je n nul, takže můžeme rozvést:

detVn+1 =

n∏
i=1

(xi − x0) ·

∣∣∣∣∣∣∣∣∣
1 x1 + x0 x2

1 + x1x0 + x2
0 . . . xn−1

1 + xn−2
1 x0 + · · ·+ xn−1

0

1 x2 + x0 x2
2 + x2x0 + x2

0 . . . xn−1
2 + xn−2

2 x0 + · · ·+ xn−1
0

...
... ...

. . .
...

1 xn + x0 x2
n + xnx0 + x2

0 . . . xn−1
n + xn−2

n x0 + · · ·+ xn−1
0

∣∣∣∣∣∣∣∣∣
Nyńı odzadu od každého sloupce odečteme x0-násobek předchoźıho, č́ımž eliminujeme všechny sč́ıtance obsahuj́ıćı
x0 a źıskáme rekurentńı vztah, který lze snadno rozvést:

det(Vn+1(x0, ..., xn)) =

(
n∏
i=1

(xi − x0)

)
· det(Vn(x1, ..., xn)) =

∏
i<j

(xj − xi)

2.2.3 Uveďte a dokažte správnost Lagrangeovy interpolace.

Popis: Zp̊usob interpolace polynomu p ∈ K(x) stupně n skrz n+ 1 bod̊u (xi, yi) pro i = 1, . . . , n+ 1.

Proof. 1. Nejprve urč́ıme n+ 1 pomocných polynomů stupně n:

pi(x) =

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

=
(x− x1) . . . (x− xi−1) · (x− xi+1 . . . (x− xn+1))

(xi − x1) . . . (xi − xi−1) · (xi − xi+1 . . . (xi − xn+1))

M̊užeme si všimnout, že pro i 6= j je pi(xi) = 1 a pi(xj) = 0.

2. Nyńı sestav́ıme p(x) jako lineárńı kombinaci p(x) =

n+1∑
i=1

yipi(x). Potom plat́ı p(xi) = yipi(xi) = yi, protože ve

všech ostatńıch sč́ıtanćıch je pj(xi) = 0.
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2.3 Vlastńı č́ısla a vlastńı vektory

2.3.1 Vyslovte a dokažte větu o podprostoru vlastńıch vektor̊u.

Věta: Vlastńı vektory odpov́ıdaj́ıćı stejnému vlastńımu č́ıslu tvoř́ı podprostor.

Proof. Uvažme vlastńı č́ıslo λ lineárńıho zobrazeńı f : V → V a množinu U = {u ∈ V : f(u) = λu}.
Pro jakékoli u, v ∈ U a a ∈ K dostaneme:

� f(au) = af(u) = aλu = λ(au)

� f(u+ v) = f(u) + f(v) = λu+ λv = λ(u+ v).

Proto je U uzavřená na sč́ıtáńı a na skalárńı násobky, t.j. U je podprostor V .

2.3.2 Vyslovte a dokažte větu o lineárńı nezávislosti vlastńıch vektor̊u.

Věta: Nechť f : V → V je lineárńı zobrazeńı a λ1, . . . , λk jsou r̊uzná vlastńı č́ısla f a u1, . . . , uk odpov́ıdaj́ıćı
netriviálńı vlastńı vektory. Potom u1, . . . , uk jsou lineárně nezávislé.

Proof. Předpokládejme pro spor, že k je nejmenš́ı č́ıslo, pro které ∃λ1, . . . , λk a u1, . . . , uk odporuj́ıćı větě, t.j.

existuj́ı a1, . . . , ak ∈ K \ 0, t.ž.:

k∑
i=1

aiui = 0.

0 lze vyjádřit dvěma zp̊usoby:

0 =


λk0 = λk

k∑
i=1

aiui =

k∑
i=1

λkaiui

f(0) = f

(
k∑
i=1

aiui

)
=

k∑
i=1

aif(ui) =

k∑
i=1

λiaiui

Z toho dostáváme vztah: 0 = 0− 0 =

k∑
i=1

λiaiui −
k∑
i=1

λkaiui =

k−1∑
i=1

(λi − λk) aiui

A protože λi 6= λk, dostaneme (λi − λk)ai 6= 0. Jenže u1, . . . , uk−1 jsou LZ, což je spor s minimalitou k.

2.3.3 Vyslovte a dokažte větu o kořenech charakteristického polynomu.

Věta: Č́ıslo λ ∈ K je vlastńım č́ıslem matice A ∈ Kn×n ⇐⇒ λ je kořenem charakteristického polynomu pA(t).

Proof.

λ je vlastńı č́ıslo A ⇐⇒ ∃x ∈ Kn \ 0 : Ax = λx ⇐⇒
⇐⇒ ∃x ∈ Kn \ 0 : 0 = Ax = λx = Ax− λInx = (A− λIn)x ⇐⇒
⇐⇒ matice A− λIn je singulárńı ⇐⇒
⇐⇒ 0 = det(A− λIn) = pA(λ)

2.3.4 Uveďte a dokažte Cayley-Hamiltonovu větu.

Věta: Pro matici A ∈ Kn×n a jej́ı charakteristický polynom pA(t) = (−1)ntn + an−1t
n−1 + · · ·+ a2t

2 + a1t+ a0

plat́ı, že: pA(A) = (−1)nAn + an−1A
n−1 + · · ·+ a2A

2 + a1A+ a0In = 0n, kde 0n znač́ı nulovou čtvercovou matici
řádu n.

Proof. Použijeme větu, že M · adjM = (detM) · In pro M = A − tIn. Složky adj(A − tIn) jsou determinanty
podmatic, tj. polynomy v t stupně nejvýše n− 1. Můžeme je rozepsat:

adj(A− tIn) = tn−1Bn−1 + · · ·+ tB1 +B0 pro Bn−1, . . . , B0 ∈ Kn×n

Nyńı máme:

(A− tIn)(tn−1Bn−1 + · · ·+ tB1 +B0) = pA(t)In = (−1)ntnIn + an−1t
n−1In + · · ·+ a2t

2In + a1tIn + a0In

� koeficient u tn : −Bn−1 = (−1)nIn ·An zleva
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� koeficienty u ti : ABi −Bi−1 = aiIn ·Ai zleva

� koeficient u t0 : AB0 = a0In ponecháme a vše sečteme

Levá strana: −AnBn−1 +An−1(ABn−1 −Bn−2) + · · ·+A(AB1 −B0) +AB0 = 0n.
Pravá strana: (−1)nAn + an−1A

n−1 + · · ·+ a2A
2 + a1A+ a0In = pA(A).

2.4 Diagonalizace

2.4.1 Uveďte a dokažte nezbytnou a postačuj́ıćı podmı́nku, kdy je matice diagonalizovatelná.

Věta: Matice A ∈ Kn×n je podobná diagonálńı matici ⇐⇒ prostor Kn má bázi z vlastńıch vektor̊u A.

Proof. AR = RD s diagonálńı matićı D, pokud pro každé i plat́ı, že existuje vektor x (i-tý sloupec R), t.ž.:
Ax = λx = di,ix.

A = RDR−1 ⇐⇒ AR = RD ⇐⇒ R−1AR = D

2.4.2 Vyslovte a dokažte větu o diagonalizaci speciálńıch komplexńıch matic.

Věta: Každá hermitovská matice A má všechna vlastńı č́ısla reálná. Nav́ıc existuje unitárńı matice R, t.ž.:
R−1AR je diagonálńı.

Proof. Indukćı podle n. Věta plat́ı pro n = 1. Označme An = A.
V tělese C má matice An vlastńı č́ıslo λ s vlastńım vektorem x. Zvýš́ıme x faktorem 1√

xHx
, abychom dostali x

splňuj́ıćı xHx = 1.
Doplńıme x na unitárńı matici Pn.
PHn AnPn je hermitovská (PHn AnPn)H = PHn A

H
n (PHn )H = PHn AnPn.

Protože Anx = λx, matice AnPn má λx jako prvńı sloupec. Protože Pn je unitárńı, prvńı sloupec PHn AnPn je:

PHn Anx = PHn (Anx) = PHn (λx) = λPHn x = λ(1, 0, . . . , 0)T = (λ, 0, . . . , 0)T

PHn AnPn je hermitovská =⇒ λ ∈ R a zbytek prvńıho řádku je 0T . Proto PHn AnPn =
λ 0T

0 An−1
, kde An−1

je hermitovská. Podle indukčńıho předpokladu R−1
n−1An−1Rn−1 = Dn−1 pro nějakou unitárńı matici Rn−1 a

diagonálńı matici Dn−1.

Polož́ıme Rn = Pn ·
1 0T

0 Rn−1
, součiny unitárńıch matic jsou unitárńı. Nyńı:

R−1
n AnRn = RHn AnRn =

1 0T

0 RHn−1
· PHn AnPn ·

1 0T

0 Rn−1
=

=
1 0T

0 RHn−1
· λ 0T

0 An−1
· 1 0T

0 Rn−1
=

λ 0T

0 Dn−1
=

= Dn
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2.5 Skalárńı součin

2.5.1 Uveďte a dokažte Cauchy-Schwarzovu nerovnost.

Věta: Pro skalárńı součin libovolných dvou vektor̊u u a v ve vektorovém prostoru nad C plat́ı:

|〈u | v〉| ≤
√
〈u | u〉 · 〈v | v〉 = ||u|| · ||v||

Proof. Pro u = 0 nebo v = 0 dostaneme 0 ≤ 0. Plat́ı.
Pro jakékoli a ∈ C plat́ı, že ||u+ av||2 ≥ 0, ale také:

||u+ av||2 = 〈u+ av | u+ av〉 = 〈u | u〉+ a〈v | u〉+ a〈u | v〉+ aa〈v | v〉

Pro vzájemné odečteńı posledńıch dvou člen̊u zvoĺıme a = − 〈u|v〉〈v|v〉 . Dostaneme:

0 ≤ 〈u | u〉 − 〈u | v〉
〈v | v〉

· 〈v | u〉

〈u | v〉 · 〈v | u〉 ≤ 〈u | u〉 · 〈v | v〉

|〈u | v〉|2 ≤ ||u||2 · ||v||2

|〈u | v〉| ≤ ||u|| · ||v||

2.5.2 Uveďte a dokažte trojúhelńıkovou nerovnost.

Věta: Každá norma odvozená ze skalárńıho součinu splňuje trojúhelńıkovou nerovnost : ||u+ v|| ≤ ||u||+ ||v||.

Proof.

||u+ v|| =
√
〈u+ v | u+ v〉 =

√
〈u | u〉+ 〈v | u〉+ 〈u | v〉+ 〈v | v〉 ≤

√
||u||2 + 2|〈u | v〉|+ ||v||2

||u+ v|| ≤
√
||u||2 + 2 · ||u|| · ||v||+ ||v||2 = ||u||+ ||v||

||u+ v|| ≤ ||u||+ ||v||

2.5.3 Vyslovte a dokažte větu o Fourierových koeficientech.

Věta: Nechť Z = {v1, ..., vn} je ortonormálńı báze prostoru V . Pro každé u ∈ V plat́ı: u = 〈u|v1〉v1+...+〈u|vn〉vn.
Potom 〈u|vn〉 jsou Fourierovy koeficienty.

Proof.

u =

n∑
i=1

aivi =⇒ 〈u|vj〉 =

〈
n∑
i=1

aivi | vj

〉
=

n∑
i=1

ai〈vi|vj〉 = aj

2.5.4 Uveďte a dokažte správnost Gram-Schmidtovy ortonormalizace (včetně lemmatu, pokud jej
potřebujete).

Algoritmus: převede lib. bázi (u1, . . . , un) prostoru V se skalárńım součinem na ortonormálńı bázi (v1, . . . , vn):

for i = 1, . . . , n do:

1. wi = ui −
i−1∑
j=1

〈ui|vj〉vj

2. vi = 1
||wi||wi

end
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Správnost:

� Dı́ky 1. a předchoźımu lemmatu: ∀i, j; j < i : wi⊥vj , odtud vi⊥vj pro j 6= i.

� Dı́ky 2.: ||vi|| =
∣∣∣∣∣∣ 1
||wi||wi

∣∣∣∣∣∣ = ||wi||
||wi|| = 1 .

� Dı́ky lemmatu o výměně: L(v1, . . . , vi−1, ui) = L(v1, . . . , vi−1, wi) = L(v1, . . . , vi).

Lemma: Nechť pZ je ortogonálńı projekce W na V , potom ∀vi ∈ Z : u− pZ(u)⊥vi.

Proof. #1

〈u− pZ(u) | vi〉 =

〈
u−

n∑
j=1

〈u | vj〉vj | vi

〉
= 〈u|vi〉 −

n∑
j=1

〈u|vj〉〈vj |vi〉 = 〈u|vi〉 − 〈u|vi〉 = 0

Lemma: Nechť Y generuje vektorový prostor V nad K. Jestliže pro vektor u ∈ V exisutj́ı v1, . . . , vn ∈ Y a

a1, . . . , an ∈ K, t.ž.: u =

n∑
i=1

aivi, kde ai 6= 0 pro nějaké i, potom L((Y \ vi) ∪ u) = V .

Proof. #2

u = a1v1 + · · · + aivi + . . . anvn =⇒ vi = 1
ai

u−∑
j 6=i

ajvj

. Jakékoli w ∈ V můžeme zapsat jako lineárńı

kombinaci prvk̊u z Y . Vyskytuje-li se vi v této kombinaci, dosad́ıme za vi výraz výše. T́ım źıskáme w jako lineárńı
kombinaci prvk̊u z (Y \ vi) ∪ u.

V konečném př́ıpadě, je-li Y = {v1, . . . , vn} a w =

n∑
j=1

bjvj , dostaneme jmenovitě w = bi
ai
u+
∑
j 6=i

(
bj −

ajbi
ai

)
vj .

2.5.5 Vyslovte a dokažte větu o izometrii a normě.

Věta: Lineárńı zobrazeńı mezi prostory V a W je izometrie, právě když zachovává souvisej́ıćı normu, tj.:

||u|| = ||f(u)||

Proof. Protože norma záviśı na skalárńım součinu, máme =⇒ .
Pro ⇐= porovnejme:

||u+ aw||2 = ||u||2 + a〈w|u〉+ a〈u|w〉+ aa||w||2

||f(u+ aw)||2 = ||f(u)||2 + a〈f(w)|f(u)〉+ a〈f(u)|f(w)〉+ aa||f(w)||2

� pro a = 1 máme: 〈w|u〉+ 〈u|w〉 = 〈f(w)|f(u)〉+ 〈f(u)|f(w)〉

� pro a = i mámě: 〈w|u〉 − 〈u|w〉 = 〈f(w)|f(u)〉 − 〈f(u)|f(w)〉

=⇒ 〈u|w〉 = 〈f(u)|f(w)〉

2.5.6 Vyslovte a dokažte větu o izometrii a vlastnostech jej́ı matice.

Věta: Nechť V a W jsou prostory se skalárńım součinem konečné dimenze a X,Y jsou jejich ortonormálńı báze.
Lineárńı zobrazeńı f : V →W je bijektivńı izometrie ⇐⇒ [f ]XY je unitárńı.

Proof. Lineárńı bijekce implikuje stejné dimenze a naopak.
Protože X je ortonormálńı: 〈u|w〉 = [w]HX [u]X
Protože Y je ortonormálńı: 〈f(u)|f(w)〉 = [f(w)]HY [f(u)]Y = [w]HX [f ]HXY [f ]XY [u]X
Maticová rovnost xT y = xTAy plat́ı pro všechny vhodné vektory x a y pouze v př́ıpadě, je-li A jednotková
matice. V našem př́ıpadě je f izometrie, pokud ∀u,w : [w]HX [u]X = [w]HX [f ]HXY [f ]XY [u]X , což plat́ı právě když
[f ]HXY [f ]XY = I, neboli je-li [f ]XY unitárńı.
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2.5.7 Vyslovte a dokažte větu o ortogonálńım doplňku.

Věta: Pro konečně generovaný prostor W se skalárńım součinem a podprostor V plat́ı:

(V ⊥)⊥ = V a dimV + dimV ⊥ = dimW

Proof. Zvoĺıme nějakou ortonormálńı bázi X prostoru V a doplńıme ji na ortonormálńı bázi Z prostoru W .
Označme Y = Z \X, X = (x1, . . . , xk), Y = (y1, . . . , yl).
Každé u ∈ L(X) = V je kolmé ke každému v ∈ L(Y ):

〈u|v〉 =

〈
k∑
i=1

aixi

∣∣∣∣∣
l∑

j=1

bjyj

〉
=

k∑
i=1

l∑
j=1

aibj〈xi|yj〉 = 0

protože Z je ortonormálńı báze. Proto L(Y ) ⊆ V ⊥.
Nyńı vezměme w ∈ V ⊥ a uvažme [w]Z . Protože Z je ortonormálńı, koeficienty w vzhledem k Z jsou Fourierovy
koeficienty dané skalárńım součinem w s prvky báze Z.
Protože w ∈ V ⊥, máme ∀xi ∈ X : 〈w|xi〉 = 0, tedy: w ∈ L(Y ), t.j. V ⊥ ⊆ L(Y ) a tedy V ⊥ = L(Y ).
Nyńı: dimV + dimV ⊥ = |X|+ |Y | = |Z| = dimW a také (V ⊥)⊥ = L(Z \ Y ) = L(X) = V .

2.5.8 Vyslovte a dokažte větu o skalárńım součinu dvou vektor̊u a Gramově matici.

Věta: Nechť V je prostor se skalárńım součinem a baźı X = (v1, . . . , vn). Potom Gramova matice A definována
ai,j = 〈vi|vj〉 splňuje ∀u,w ∈ V : 〈u|w〉 = [w]HXA

T [u]X .
(Pokud X je ortonormálńı báze, pak A = In).

Proof. Označme [u]X = (b1, . . . , bn)T , [w]X = (c1, . . . , cn)T , t.j. u =

n∑
i=1

bivi a w =

n∑
j=1

cjvj . Dostáváme:

〈u|w〉 =

〈
n∑
i=1

bivi

∣∣∣∣∣
n∑
j=1

cjvj

〉
=

n∑
i=1

n∑
j=1

bicj〈vi|vj〉 = [w]HXA
T [u]X

2.6 Pozitivně definitńı matice

2.6.1 Vyslovte a dokažte větu o třech ekvivalentńıch podmı́nkách pro pozitivně definitńı matice.

Věta: Pro hermitovskou matici A jsou následuj́ıćı podmı́nky ekvivalentńı:

1. A je pozitivně definitivńı

2. A má všechna vlastńı čásla kladná

3. Existuje regulárńı matice U , t.ž.: A = UHU .

Proof.
1 =⇒ 2 : Protože A je hermitovská, má vlastńı č́ısla reálná. Nechť x je netriviálńı vlastńı vektor odpov́ıdaj́ıćı
vlastńımu č́ıslu λ, potom 0 < xHAx = λxHx = λ〈x|x〉. Z 〈x|x〉 > 0 máme λ > 0.
2 =⇒ 3 : Protože A je hermitovská, existuj́ı unitárńı R a diagonálńı D, t.ž.: A = RHDR. Vezměme diagonálńı
D̃ : d̃ii =

√
dii a U = D̃R. Nyńı UHU = (D̃R)HD̃R = RHD̃HD̃R = RHDR = A. U je regulárńı, protože unitárńı

i diagonálńı matice jsou regulárńı.
3 =⇒ 1 : Pokud x ∈ Cn \ 0, pak Ux 6= 0, protože U je regulárńı. Nyńı: xHAx = xHUHUx = (Ux)HUx =
〈Ux|Ux〉 > 0.
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2.6.2 Vyslovte a dokažte větu o rekurentńı podmı́nce pro pozitivně definitńı matice.

Věta: Bloková matice A =
α aH

a Ã
je pozitivně definitńı ⇐⇒ α > 0 a matice Ã− 1

αaa
H je pozitivně definitńı.

Proof.
Gaussova eliminace prvńıho sloupce A odpov́ıdá součinu

1 0H

− 1
αa I

· α aH

a Ã
=

α aH

0 Ã− 1
αaa

H

Následně dostáváme:
1 0H

− 1
αa I

· α aH

a Ã
· 1 − 1

αa
H

0 I
=

α 0H

0 Ã− 1
αaa

H

Matice elementárńıch úprav je regulárńı, a tak A je pozitivně definitńı ⇐⇒ výsledná bloková matice je pozitivně
definitńı, což nastává ⇐⇒ má oba nenulové bloky pozitivně definitńı.

2.6.3 Vyslovte a dokažte větu o pozitivně definitńıch matićıch a determinantech.

Věta: Hermitovská matice A řádu n je pozitivně definitńı ⇐⇒ matice A1, . . . , An maj́ı kladné determinanty,
kde Ai se sestává z prvńıch i řádk̊u a sloupc̊u A

Proof. Použijeme Gaussovu eliminace A ∼∼ A′ pro test, zda je A pozitivně definitńı. Nechť α1, . . . , αn jsou
prvky na diagonále výsledné trojúhelńıkové matice A′. Protože jsme eliminovali řádky shora dol̊u, máme detA =

detA′ =
∏
j≤i

αj = detAi−1αi. A je pozitivně definitńı ⇐⇒ α1, . . . , αn > 0 ⇐⇒ detA1, . . . ,detAn > 0

2.6.4 Uveďte a dokažte správnost algoritmu pro výpočet Choleského rozkladu.

Algoritmus: Pro každou pozitivně definitńı matici A existuje unikátńı trojúhelńıková matice U s kladnou
diagonálou, t.ž.: A = UHU . Matice U se nazývá Choleského rozklad.

Input: Hermitovská matice A

Output: Choleského rozklad U , pokud je A pozitivně definitńı

for i = 1, . . . , n do:

uii =

√√√√aii −
i−1∑
k=1

ukiuki

if uii /∈ R+ then STOP (A neńı pozitivně definitńı)

for j = i+ 1, . . . , n do:

uij =
1

uii

(
aij −

i−1∑
k=1

ukiukj

)
end

end

Správnost: Předpokládejme, že algoritmus selže ∗ během i-té iterace, tj. α ≤ uHu.
Máme Ã = ŨH Ũ a a = ŨHu.

15



Nechť xT = x̃T 1 0 . . . 0 , kde x̃ = −Ũ−1u.

Nyńı xHAx =

= x̃HÃx̃+ x̃Ha+ aH x̃+ α =

= (−Ũ−1u)H(ŨH Ũ)(−Ũ−1u) + (−Ũ−1u)H(ŨHu) + (ŨHu)H(−Ũ−1u) + α =

= uHu− uHu− uHu+ α = α− uHu ≤ 0

Proto A neńı pozitivně definitńı

2.7 Kvadratické a bilineárńı formy

2.7.1 Vyslovte a dokažte větu o diagonalizovatelnosti matic forem.

Věta: Pokud je g kvadratická forma vektorového prostoru V konečné dimenze n nad tělesem K jiné Charakteristiky
než 2, pak má forma g diagonálńı matici B vzhledem k vhodné bázi X.

Věta: Pro jakoukoli symetrickou matici A ∈ Kn×n s char(K) 6= 2 existuje regulárńı matice R, t.ž.: RTAR je
diagonálńı.

Proof. Indukćı podle n.

Označme A = An =
α aT

a Ã
.

(a) Když α 6= 0, voĺıme Pn =
1 − 1

αa
T

0 In−1
, pak:

PTn AnPn =
1 0T

− 1
αa In−1

· α aT

a Ã
· 1 − 1

αa
T

0 In−1
=

α aT

0 − 1
αaa

T + Ã
=

α 0T

0 An−1

kde An−1 = Ã− 1
αaa

T je symetrická.

Dle indukčńıho předpokladu existuje Rn−1 pro An−1. Zvoĺıme Rn = Pn ·
1 0T

0 Rn−1
, pak:

RTnAnRn =
1 0T

0 RTn−1
· PTn AnPn ·

1 0T

0 Rn−1
=

α 0T

0 RTn−1An−1Rn−1

RTnAnRn je tedy diagonálńı.

(b) Pokud α = 0, ale a 6= 0, pak ai,1 6= 0 pro nějaké i. Použijeme elementárńı matici E pro přičteńı i-tého

sloupce k prvńımu. Vezmeme Ã = ETAE namı́sto A. Protože α′ = 2ai,1 6= 0, můžeme postupovat jako (a).

(c) Když α = 0 a a = 0, pak vezmeme An−1 = Ã a Rn =
1 0T

0 Rn−1
.

2.7.2 Uveďte a dokažte Sylvester̊uv zákon setrvačnosti — o diagonalizaci kvadratických forem.

Věta: Každá kvadratická forma na konečně generovaném reálném vektorovém prostoru má vzhledem k vhodné
bázi diagonálńı matici pouze s 1,−1, 0. Všechny takové diagonálńı matice odpov́ıdaj́ıćı téže formě maj́ı stejný
počet 1 a stejný počet −1.

Proof.

1. Existence: Nechť B je matićı formy vzhledem k nějaké bázi Y . Reálné symetrické matice lze diagonalizovat,

neboli B = RTDR pro regulárńı R. Rozlož́ıme D = STD′S, kde di,i


= 0 d′ii = 0.sii = 1

> 0 d′ii = 1.sii =
√
dii

< 0 d′ii = −1.sii =
√
−dii

Nyńı je SR regulárńı a B = (SR)TD′SR. Zvoĺıme bázi X tak, že souřadnice vektor̊u X vzheldem k Y jsou
sloupce SR, tzn. [id]XY = SR a také [id]Y X = (SR)−1.
Nyńı [id]TY XB[id]Y X = ((SR)−1)T (SR)TD′SR(SR)−1 = D′ je hledaná diagonálńı matice formy.
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2. Jednoznačnost počtu 1,−1, 0: Nechť X = (u1, . . . , un), Y = (v1, . . . , vn) jsou dvě báze, t.ž.: odporuj́ıćı
matice B a B′ formy g jsou diagonálńı s 1,−1, 0 uspořádanými tak, že nejdř́ıve jsou 1, potom −1 a 0 jsou
posledńı. Protože součiny s regulárńımi maticemi [id]XY neměńı hodnost:

#0 v B = n− rank B = n− rank B′ = #0 v B′

Nechť r = #1 v B, s = #1 v B′. Pokud r > s, pak uvažme podprostory L(u1, . . . , ur) a L(vs+1, . . . , vn).
Součet jejich dimenźı r + n− s přesahuje n, maj́ı tedy netriviálńı pr̊unik.
(Použ́ıváme pozorováńı dimU + dimV = dim(U ∩ V ) + dim(L(U ∪ V )) )
— Levá strana je ostře větš́ı než n, dim(L(U ∪ V )) ≤ dimRn = n =⇒ dim(U ∩ V ) ≥ 1.

Zvolme w ∈ (L(u1, . . . , ur) ∩ L(vs+1, . . . , vn)) \ 0, tedy [w]X = (x1, . . . , xr, 0, . . . , 0)T ,
[w]Y = (0, . . . , 0, ys+1, . . . , yn)T . Nyńı g(w) = [w]TXB[w]X = x2

1 + · · ·+ x2
r > 0,

ale g(w) = [w]TYB
′[w]Y = −y2

s+1 − · · · − y2
rank B′ ≤ 0, což je spor.

Dostáváme r�>s, symetricky též s�>r a proto r = s.

2.8 Aplikace

2.8.1 Vyslovte a dokažte větu o počtu př́ımek sv́ıraj́ıćıch stejný úhel.

Věta: V Rd může být nejvýše
(
d+1

2

)
př́ımek sv́ırat stejný úhel.

Proof. Předpokládejme, že existuje n takových př́ımek. Zvoĺıme vektory jednotkové délky v1, . . . , vn z každé př́ımky
po jednom.

Dostaneme 〈vi | vj〉 =

{
1 pro i = j

cosϕ jinak

Ukážeme, že matice v1v
T
1 , v2v

T
2 , . . . , vnv

T
n ∈ Rd×d jsou lineárně nezávislé. Pak n ≤

(
d+1

2

)
, protože dimenze prostoru

symetrických matic z Rd×d je
(
d+1

2

)
.

Předpokládejme, že

n∑
i=1

aiviv
T
i = 0 (matice d× d plná nul). Pro každé j ∈ {1, . . . , n} :

0 = vTj 0vj = vTj

(
n∑
i=1

aiviv
T
i

)
vj =

n∑
i=1

aiv
T
j viv

T
i vj =

n∑
i=1

ai〈vi | vj〉2 = aj + cos2 ϕ
∑
i 6=j

ai

Tyto podmı́nky na a1, . . . , an zapsané jako soustava rovnic:
1 cos2 ϕ . . . cos2 ϕ

cos2 ϕ 1
. . .

...
...

. . .
. . . cos2 ϕ

cos2 ϕ . . . cos2 ϕ 1

 ·

a1

a2

...
an

 =


0
0
...
0


Matice této soustavy je regulárńı, proto a1 = · · · = an = 0. Tud́ıž v1v

T
1 , v2v

T
2 , . . . , vnv

T
n jsou lineárně nezávislé.
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3 Přehled

(U přehledových otázek Uveďte definice, tvrzeńı, věty, př́ıklady a souvislosti. Důkazy u přehledových otázek nejsou
vyžadovány.)

3.1 Skalárńı součin

3.1.1 Přehledově sepǐste, co v́ıte o skalárńım součinu a souvisej́ıćı normě.

◦ Definice: Standardńı skalárńı součin na Rn : 〈u | v〉 =

n∑
i=1

uivi = vTu.

◦ Definice: Standardńı skalárńı součin na Cn : 〈u | v〉 =

n∑
i=1

uivi = vHu. Kde index H je

Herminovská transpozice daná vztahem AHi,j = aj,i.

◦ Definice: Skalárńı součin (1.5.1)

◦ Definice: Norma (1.5.2)

◦ Věta: Cauchy-Schwarzovu nerovnost (2.5.1)

◦ Věta: Trojúhelńıková nerovnost (2.5.2)

◦ Věta: Nerovnost mezi aritmetickým a kvadratickým pr̊uměrem: Pro libovolný vektor u ∈ Rn plat́ı:

1

n

n∑
i=1

ui ≤

√√√√ 1

n

n∑
i=1

u2
i

Proof. Zvoĺıme v = (1, 1, ..., 1)T a použijeme Cauchy-Schwarzovu nerovnost pro standardńı skalárńı součin:

n∑
i=1

ui = 〈u | v〉 ≤ |〈u | v〉| ≤ ||u|| · ||v|| =

√√√√ n∑
i=1

u2
i ·
√
n

◦ Vlastnosti:

– Úhel ϕ mezi vektory u a v je dán výrazem cosϕ = 〈u|v〉
||u||·||v|| ,
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