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1 Definice

1.1 Determinanty
1.1.1 Definujte permutaci.

Permutace na mnoziné [n] je bijektivni zobrazeni p : [n] — [n]. [n] ={1,...,n})

1.1.2 Definujte znaménko permutace.

Znaménko permutace p je ¢islo sgn(p) = (—1)#nverz vp,

Miizeme zapsat také: (p € S,,) a sklddd se z k-cykli, potom sgn(p) = (—1)"~*.

1.1.3 Definujte determinant.

Determinant matice A € K"*" je ddn vyrazem:

det(A) = Z sgn(p) H @i,p(s)
i=1

PESn

1.1.4 Definujte adjungovanou matici.

Pro matici A € K"*" je adjungovand matice definovédna vztahem

adj(A)j; = (—1)" det(A™)

Déle pro reguldrni matici A € K"*™ plati vatah A~! = adj(A)

det(A)

1.1.5 Definujte Laplaceovu matici.
Laplaceova matice grafu G na Vg = {v;,...,v,} je Lg € R™*"™ t.2:
deg(v;) proi=j
(La)i; =14 —1 pokud i # j a (v;,v;) € Eg
0 jinak
1.2 Polynomy
1.2.1 Definujte polynom nad télesem.
Polynom stupné n v proménné x nad télesem K je vyraz
p(2) = apz™ + ap 12" 4 Fapr?® + a1z +ag

kde a, #0 a ay,...,ap € K. Pieme jako p € K(z).

1.2.2 Definujte kofen polynomu a jeho nasobnost.

Koren polynomu p € K(z) je r € K t.z. p(r) = 0.
Ndsobnost kotene r z p € K(x) je nejvétsi k € Z+, t.z. (x —r)* dali p.

1.2.3 Definujte algebraicky uzaviené téleso.

Téleso K je algebraicky uzaviené téleso, pokud kazdy polynom p € K(z) stupné alespor jedna m4 alespon jeden

koren.

1.2.4 Definujte Vandermondovu matici.

Vandermondova matice Vi,11(xo,...,2x,) je matice majici v kazdém fddku ¢leny po sobé jdouci geometrické

posloupnosti. Prvek na i-tém fadku a j-tém sloupci lze vyjadiit jako ).

2
1z x5 ... g ap Yo
1z 22 ... b a Y1
1 2 n
ITn x,n mn Qg y’n



1.3 Vlastni cisla a vlastni vektory
1.3.1 Definujte vlastni ¢islo a vlastni vektor linearniho zobrazeni.

s

Necht V je vektorovy prostor nad K a f je linedrni zobrazeni f : V — V, potom vlastni ¢islo zobrazeni f je jakékoli
A € K, pro které existuje vektor u € V'\ 0, t.z.: f(u) = Au.
Necht A je vlastnf &fslo, potom jemu odpovidajici vlastni vektor je libovolny vektor u € V, t.z.: f(u) = Au.

P

1.3.2 Definujte vlastni ¢islo a vlastni vektor matice.

Jestlize V' m4 kone¢nou dimenzi n, pak f muze byt reprezentovdno matici A = [f]xx € K®*" vzhledem k néjaké
béazi X prostoru V. Viastni éislo matice je potom A € K a wvlastni vektor matice x € K™, oba spliujici Az = Az .
1.3.3 Definujte charakteristicky polynom.

Charakteristicky polynom matice A € K™*™ je pu(t) = det(A — tI,).

1.3.4 Definujte algebraickou nasobnost vlastniho c¢isla.

Algebraickd ndsobnost vlastniho ¢isla A je ndsobnost A jako kofene charakteristického polynomu pa(A).

1.3.5 Definujte geometrickou ndsobnost vlastniho ¢isla.

Geometrickd ndsobnost vlastniho éisla A je dimenze (pod)prostoru jeho vlastnich vektoru.

1.4 Diagonalizace
1.4.1 Definujte podobné matice.
Matice A, B € K™*™ jsou si podobné, pokud existuje reguldrni matice R, t.z.:. A = R"'BR.

1.4.2 Definujte diagonalizovatelnou matici.

Matice podobnd diagonalni matici je diagonalizovatelnd.
(A je podobnd diagondini <= prostor K™ md bdzi z vlastnich vektord A).

1.4.3 Definujte Jordaniv blok.

Jordanuv blok je ¢tvercova matice ve tvaru:

I

1.4.4 Definujte Jordaniv normalni tvar matice.
Jodrdanuv normalni tvar je kazda ¢tvercova komplexni matice A podobna matici J, tedy matice ve tvaru:
I

J =
Ix,

kde kazdy Jordanuv blok J, odpovidéd vlastnimu ¢&islu \; matice A

1.4.5 Definujte zobecnény vlastni vektor.

Zobecnéngj vlastni vektor matice A k vlastnimu éfslu A je lib. vektor z spliiujf (A — AI)’z = 0 pro né&jaké i € N.

1.4.6 Definujte hermitovskou matici.

Matice A je hermitovskd, pokud A = AH.
(A" € C™*™ je Hermitovskd transpozice matice A € C™*™ kde (AH), ; =aj; ).




1.4.7 Definujte unitarni matici.

Matice A je unitdrni, pokud A=t = Af.

1.5 Skalarni soucin
1.5.1 Definujte skalarni soucin pro vektorové prostory nad komplexnimi é&isly.

Skaldrni soucin na vektorovém prostoru V nad C je zobrazeni, které prifadi kazdé dvojici vektoru u,v € V skaldr
(u | v) € C tak, ze jsou splnény nésledujici axiomy:

e VueV:(u|u) e Rf
eVueV:(u|luy=0 < u=0

Yu,v e Vi (v|u)=(u|v)

Vu,v,w €V i (u+v|w) = (u|w)+ (v|w)

Yu e V,Va € C: {(au|v) = alu | v)

1.5.2 Definujte normu spojenou se skalarnim soucinem.

Necht V je prosor se skaldarnim sou¢inem nad C nebo R, pak norma odvozend ze skaldrniho soucinu je zobrazeni
V — R prifazujici vektoru u jeho normu ||u|| = \/{u | u).

1.5.3 Definujte kolmé vektory.

Vektory u, v z prostoru se skaldrnim sou¢inem jsou kolmé, pokud (u | v) = 0. Kolmé vektory znacime u_Llv.

1.5.4 Definujte ortonormalni bazi.
Béze Z = {v1,...,v,} prostoru V se skaldrnim soucinem je ortonormding, pokud v; Lv; pro kazdé i # j a ||v;]| =1
pro kazdy vektor v; € Z.
1.5.5 Definujte Fourierovy koeficienty.
Necht Z = {v1,...,v,} je ortonormalni béze prostoru V. Pro kazdé uw € V plati: u = (u|vi)vs + ... + (u|vy)v,.
Koeficienty (u|v;) se potom nazyvaji Fourierovy koeficienty.
1.5.6 Definujte kolmou projekci.
Necht W je prostor se skaldrnfm souc¢inem a V je jeho podprostor s ortonormalni bdz{ Z = (vy,...,v,). Potom
n
zobrazeni py : W — V definované jako pz(u) = Z<U|U1>Uz je ortogondlni projekce W na V.
i=1
1.5.7 Definujte izometrii.

Linedrni zobrazeni f mezi prostory V a W je izometrie, pokud zachovava skaldrni soucin, neboli:
(ulw) = (f(u)|f(w))

1.5.8 Definujte ortogonalni doplnék.

Ortogondlni doplnék podmnoziny V prostoru se skaldrnfm sou¢inem W je V-+ = {u € W,Yv € V : ulv}

1.5.9 Definujte Gramovu matici.
Necht V je prostor se skaldrnim souéinem a bazi X = (v1,...,v,), potom Gramova matice A definovana vztahem
a; ; = (v;|v;) splauje:
Vu,w €V (ulw) = [w]EAT [u]x
1.6 Pozitivné definitni matice
1.6.1 Definujte pozitivné definitni matici.

Pokud hermitovskd matice A fddu n vyhovuje Vo € C"*\ 0 : 2 Az > 0, pak je matice pozitivné definitni.



1.6.2 Definujte Choleského rozklad.

Pro kazdou pozitivné definitni matici A existuje unikdtni horni trojihelnikovd matice U s kladnou diagonalou,
t.z.. A =UHU. Matice U se nazyva Choleského rozklad.

1.7 Kvadratické a bilinearni formy

1.7.1 Definujte bilinearni formu.

Necht V je vektorovy prostor nad télesem K a necht zobrazeni f : V x V — K spliiuje:
o Vu,v e V,VaeK: flau,v) = f(u,av) = af(u,v)
o Vu,v,w eV : flut+v,w) = flu,w) = f(v,w)
o Vu,v,weV: flu,v+w) = flu,v) = flu,w)

potom f je bilinedrni forma na V.

1.7.2 Definujte kvadratickou formu.

Zobrazeni g : V' — K se nazyva kvadratickd forma, pokud existuje bilinedrn{ forma f, t.z.: Yu € V : g(u) = f(u,u).

1.7.3 Definujte matici bilinearni formy vzhledem k bazi

Necht V je vektorovy prostor nad télesem K s bazi X = (v1,...,v,). Matice bilinedrni formy f vzhledem k bdzi
X je matice B definovana vztahem b; ; = f(v;, f;).

1.7.4 Definujte analytické vyjadieni formy

Analytické vyjadrend bilinearni formy f nad K™ s matici B je homogenni polynom

f((xl, e axn)Ta (yla e 7yn)T) = Z Zbid'riyj

i=1 j=1

1.7.5 Definujte signaturu formy.

Necht redlnd kvadratickd forma g méd diagonalni matici B obsahujici pouze 1, —1,0, potom signatura formy g je
trojice (#1,# — 1,#0), pocitdno na diagondle matice B.



2 Vety

2.1 Determinanty
2.1.1 Uvedte a dokazte vétu o linearité determinantu.

Véta: Determinant matice je linedrné zdvisly na kazdém jejim radku i sloupci. Tedy vzhledem ke s¢itani radka
a nasobeni fadku skaldrem.

Proof. Dukaz pro ndsobek skaldrem:

ai,1 1,2 ai,n
: : : n
t-ain t-ai2 ... t-ain| = Z sgn(p) <H @i p(i) t)
: . .. : pES, i=1
an, 1 an2 - Gpn
a1 ai2 e A1n

n : : . :
=t Z sgn(p) Hai,p(i) =l-|ai1 a2 ... Gin
i=1 . . ) .

PESR
Gn,1  Qn2 Gn,n
O
Proof. Dukaz pro soucet:
Pokud matice A, B, C spliuji
s — bi,j + ¢ 5 pokud k =1
B Vb + oy pokud k # i
potom:
det(A) = > sgn() [[ arpw) = D tipiy-son®) [ arpw =
PESn k=1 PESn ke{l,...n}\i
= Z (bi,j + Ci’j) - sgn(p) H Ak p(k) =
PESn ke{l,...n}\i
= bipw s9n®) [T by + D0 copyson®) [T crpny =
PESn ke{l,...n}\i PESn ke{l,...n}\i
= Z sgn(p) H br,p(k) + Z sgn(p) H Chp(k) = det(B) + det(C)
peES, k=1 pESH k=1
O
2.1.2 Vyslovte a dokazte vétu o determinantu soué¢inu dvou matic.
Véta: Pro libovolné A, B € K**™ : det(AB) = det(A) - det(B).
Proof. BUNO A i B jsou reguldrni, jinak bychom dostali 0 = 0.
Souciny s elementdrnimi maticemi E zachovavaji determinant det(EB) = det(E) - det(B), protoze:
e pro piicteni i-tého faddku k j-tému: det(E) =1
e pro vyndsobeni i-tého fadku t: det(F) =t.
Rozlozime reguldarni A na elementdarni matice A = Fy, ..., F.
det(AB) = det(E1,...ExB) = det(E1) - det(Ea, ..., ExB) =
= det(Fy) - ... - det(Ey) - det(B) = det(F;...Ey) - det(B) =
= det(A) - det(B)
O



2.1.3 Vyslovte a dokazte vétu o Laplaceové rozvoji determinantu.
Véta: Necht A" je podmatice ziskand z A odstanénim i-tého fadku a j-tého sloupce, potom pro libovolné
A € K"*" a jakékoli ¢ € {1,...,n} plati, zZe:
n
det(A) = Z ai ;(—1)"*7 det(A™7)
j=1

Proof. Vyjadiime i-ty tddek jako linedrni kombinaci vektoru kanonické baze (transponované do radki) a pouzijeme
linearitu:

(ai,l» ai’g, ceny aiyn) = ai_rl(el)T =+ am(ez)T =+ ... + ai,n(e")T

a;1 a2 Qi n| = G41 1 0 0 —|—ai72 0 1 0 —|—-~-—|—ai7n 0 0 1
j-ty clen:
- (Nt -
0 1 0|=|- ()7 —|=(-1)* . —
(YT -

) . M1 T0oT

_ (_1\it+14+4+1 — (—_1)ttJ —

= (-1) e = () s ’

= (—1)"* det(A™)

O
2.1.4 Uvedte a dokazte Cramerovo pravidlo (feSeni systému s determinanty).
Véta: Necht 4 € K"*" je reguldrni matice. Pro jakékoli b € K™ fedeni = soustavy Az = B spliiuje:
1 det(A;—p)
Ty = € i
det(A) -
kde A;_,p ziskdme z A nahrazenim i-tého sloupce vektorem b.
Proof. Uvazme matici I;_,, ziskanou z I, nahrazenim i-tého sloupce vektorem zx.
1
Potom A - I;_,, = A;p, tedy: det(A) - det(l;—,,) = det(A;_p), proto z; = det(l;_) = m det(Ai—p).
e
J i
li—>x 1
AN
0| %
A 1
a; aj b|
Ai‘)h
O
2.1.5 Vyslovte a dokazte vétu o adjungované matici.
Véta: Pro regularnf matici A € K" : A~! = ﬁ(A) -adj(A).
Proof.
i =4 (i —tyfadek z A) - (i — ty sl dj(A)) = det(A
Laplaceovym rozvojem det(A) : pro% J (Z, y/ra/ ok z A) (Z, y’s SRREE S J.( ) et(4) , kde A’
proi#j (j—ty fddek z A) - (i — ty sloupec z adj(A)) = det(A’) =0
se ziskd z A nahrazenim i-tého fadku za j-ty. Dostdvame tedy:
1
A-adj(A) =det(A)- I, — A- cadi(A) ) =1, — A1 = cadi(A
adj(4) = det(4) (o i) =1, o i)
O



2.1.6 Vyslovte a dokazte vétu o poctu koster grafu.
Véta: Kazdy multigraf G s |Vg| > 2 spliuje K(G) = det(Lg").
Neboli: Kazdy graf G na alespori dvou vrcholech md det(L};’l) koster.

Proof. BUNO je graf G souvisly. Indukei podle m = |Eg|.

Zaklad indukce: pro m =1 mé G jen dva vrcholy a K(G) = 1 = deg(vz) = (Lg)2,2 = det(L};’l).

Indukéni krok: Zvolme lib. e € Eg, BUNO e = (v1,v2) a oznatme A = (Lg)11,B = (Lg—¢)1,1,C = (Lgoe)11- C
je podmatice Lg odpovidajici vs, ..., vp, tedy C = ALl = B Z IP vime: K(G —e) = det(B) a K(Goe) = det(C).
Matice A a B jsou shodné krom b ; = a;,; — 1, protoze vypusténim e klesne stupeil v2 o jedna. Prvni sloupec A
vyjadiime jako soucet prvniho sloupce B a vektoru e; ze standardni baze.

Linearitou det(A) podél tohoto rozkladu prvniho sloupce zéskdme det(A) = det(B) + det(C). Nyni dokonéime:
K(G) = K(G =€) + K(G o €) = det((Lg-e)1,1) + det((Laoe)1,1) = det((La)1,1)

2.2 Polynomy
2.2.1 Vyslovte a dokazte malou Fermatovu vétu.
Véta: Necht a € {1,...,p — 1} a p je prvoéislo, potom plati: a?~! =1 mod p.

Proof. Pro kazdé a definujeme zobrazeni f, : [p — 1] — [p — 1] pfedpisem f,(z) = az mod p.

Ukézeme, ze f, je prosté: Kdyby nebylo, (3b,¢,b # ¢) : fo(b) = fu(c) = 0=ab—ac = a(b—c) =0. Ale
vime, ze a # 0 a b # ¢, takze jde o spor.

fa je prosté = je na = je bijekci na [p — 1], proto plati:

p—1 p—1 p—1 p—1
Hx:Hfa(m):Ham:ap_lnx — a1 =1
z=1 x=1 r=1 x=1

2.2.2 Vyslovte a dokazte vétu o Vandermondové matici.
Véta: Vandermondova matice V,,11(xo,...,z,) je regularni <= x,...,z, jsou raznd.

Proof. Odecteme prvni fadek z matice V), 11 od ostatnich, vytkneme z; — ¢ z i-tého fadku pro kazdé ¢ =1, ..., n.
V prvnim sloupci je n nul, takze muzeme rozvést:

-1 -2 —1
1 zi+x 1‘%+1‘1$0+$3 U A 1 z0_|_..._|_$6l
-1 -2 -1
n 1 2o4+x0 234+a0m0+23 ... 2 4+abh Pwo+-o+af
det Vy 1 = H(xi — 20) - ‘
i=1 : : . : 1
1 xp+x0 224zpm0+23 ... 20 42 2pg+ -4 a)

Nyni odzadu od kazdého sloupce odec¢teme xg-nasobek piredchoziho, ¢imz eliminujeme vSechny séitance obsahujici
xo a ziskdme rekurentni vztah, ktery lze snadno rozvést:

n

det(Vyy1 (20, .oy ) = (H(:z:i - x0)> cdet(Va (@1, oo ) = [ [ (25 — 24)

i=1 i<j

2.2.3 Uvedte a dokazte spravnost Lagrangeovy interpolace.
Popis: Zpusob interpolace polynomu p € K(z) stupné n skrz n + 1 bodu (x;,y;) proi=1,...,n+ 1.
Proof. 1. Nejprve uréime n + 1 pomocnych polynomu stupné n:

1) (x — ;) _ (x—x1) ... (x—mi—1) (@ —xiy1... (® —Tpy1))
[z —z)  (zi—21).. (2 —2im1) - (@0 — @1 - (T — Tnga)

pi(z) =

Muzeme si vsimnout, Ze pro i # j je p;(x;) =1 a p;i(z;) = 0.
n+1

2. Nynf sestavime p(z) jako linedrni kombinaci p(z) = Z y;pi(z). Potom plati p(a;) = yip;(x;) = y;, protoze ve
i=1

viech ostatnich séitancich je p;(z;) = 0. O



2.3 Vlastni cisla a vlastni vektory
2.3.1 Vyslovte a dokazte vétu o podprostoru vlastnich vektort.

Véta: Vlastni vektory odpovidajici stejnému vlastnimu ¢islu tvotfi podprostor.

Proof. Uvazme vlastni ¢islo A linedrniho zobrazeni f : V — V a mnozinu U = {u € V : f(u) = Au}.
Pro jakékoli u,v € U a a € K dostaneme:

e flau) = af(u) = adu = Aau)
o flut+v)=f(u)+ f(v) = u+ v =Au+v).

Proto je U uzaviend na sc¢itani a na skaldrni nasobky, t.j. U je podprostor V. O

2.3.2 Vyslovte a dokazte vétu o linedrni nezavislosti vlastnich vektoru.

Véta: Necht f : V — V je linedrni zobrazeni a Ai,..., Ay jsou riznd vlastni &isla f a ui,...,u; odpovidajici

netrividlni vlastni vektory. Potom wq, ..., ux jsou linedrné nezavislé.

Proof. Predpokladejme pro spor, Ze k je nejmensi ¢islo, pro které IA1,..., Ay a uq,...,ur odporujici véteé, t.j.
k

existuji a1,...,ar € K\ 0, t.z.: Zaiui =0.
i=1
0 1ze vyjadiit dvéma zpusoby:

k k
)\kO = )\k Z a;U; = Z )\kaiui
i=1 i=1

k ok k
f0)=f (Z ai“i) = Z a; fu;) = Z AiGiu;
i=1 i=1 i=1

0=

k k k—1
Z toho dostdvame vztah: 0=0— 0= Naju; — »_ Meaiui = Y (A — M) azu;
i=1 i=1 i=1
A protoze \; # A, dostaneme (\; — Ag)a; # 0. JenZe uy, ..., ux—1 jsou LZ, coz je spor s minimalitou k.

2.3.3 Vyslovte a dokazte vétu o koienech charakteristického polynomu.
Véta: Cislo A € K je vlastnim ¢islem matice A € K"*" <= X je kofenem charakteristického polynomu p A(t).
Proof.
Aje vlastni ¢islo A <= Jzx € K"\ 0: Az = Az —
— JxeK"\0:0=Az =Xz = Az — ALz = (A - \,)z <

<= matice A — A\, je singularni <=
<= 0=det(A— A,) =pa(N)

2.3.4 Uvedte a dokazte Cayley-Hamiltonovu vétu.

Véta: Pro matici A € K" a jeji charakteristicky polynom p4(t) = (=1)"t" + a,_1t" "1 + -+ + ast® + a1t + agp
plati, ze: pa(A) = (=1)"A" +a, 1 A" 1+ + A% + a1 A+ apl,, = 0,,, kde 0,, znaé¢f nulovou étvercovou matici
radu n.

Proof. Pouzijeme vétu, ze M - adjM = (det M) - I, pro M = A — tI,. Slozky adj(A — tI,,) jsou determinanty
podmatic, tj. polynomy v ¢ stupné nejvyse n — 1. MuZeme je rozepsat:

adj(A —tI,) =t""'B, 1 +---+tBy + By pro B,_1,..., By € K"*"
Nyni mame:
(A - tIn)(tnian—l +--+tB1 + BO) = pA(t)In = (_1)ntnln =+ an—ltnilln + o+ a2t2In + aitl, + aoly

e koeficient u " : —B,,_1 = (—=1)"I,, - A™ zleva
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o koeficienty u t* : AB; — B;_1 = a;I,, - A* zleva

o koeficient u t° : ABy = agl,, ponechime a vie seéteme
Leva strana: —A"B,, 1 + A" Y(AB,,_1 — Bp_2) + -+ + A(AB; — By) + ABy = 0,,.
Prava strana: (—1)"A" + 1 A" 4t ag A%+ A+ aol, = pa(A). O
2.4 Diagonalizace
2.4.1 Uvedte a dokazte nezbytnou a postacujici podminku, kdy je matice diagonalizovatelna.
Véta: Matice A € K"*" je podobnd diagonalni matici <= prostor K™ m4 bézi z vlastnich vektoru A.

Proof. AR = RD s diagondlni matici D, pokud pro kazdé i plati, ze existuje vektor z (i-ty sloupec R), t.Z.:
Az =z =d; ;.

R D\ 0

AX b'e Ax

A=RDR™' < AR=RD <= R 'AR=1D

2.4.2 Vyslovte a dokazte vétu o diagonalizaci specidlnich komplexnich matic.

Véta: Kazda hermitovska matice A ma vSechna vlastni ¢isla redlnd. Navic existuje unitarni matice R, t.7.:
R71AR je diagonalni.

Proof. Indukei podle n. Véta plati pro n = 1. Oznacéme A,, = A.
V télese C ma matice A, vlastni ¢islo A s vlastnim vektorem z. Zvysime z faktorem \/ﬁ, abychom dostali x

spliwjici 2z = 1.

Doplnime z na unitarni matici P,.
PH A, P, je hermitovskd (PH A, P,)H = PEAH(PEYH = Pl A, P,.
Protoze A,x = Az, matice A, P, ma Az jako prvni sloupec. Protoze P, je unitdrni, prvni sloupec PH A, P, je:

PA A2 = PH(A,2) = PP (\x) = APPz = 7(1,0,...,0)T = (\,0,...,0)T

T
P A, P, je hermitovskdi == )\ € R a zbytek prvniho fadku je 0T. Proto PZA,P, = 3 ?4 , kde A, _1
n—1
je hermitovska. Podle indukéniho piedpokladu R;&lAn,an,l = D, _1 pro néjakou unitarni matici R, 1 a
diagonalni matici D,, 1.
., 1]oT . s, . s ,
Polozime R, = P, - 0T’ , sou¢iny unitarnich matic jsou unitarni. Nyni:
n—1
1]oT 1]oT
-1 H H
A = A = .PEA P . —
Rn an Rn an 0 R{«L{fl n ntn 0 Rnfl
C[1ToT Al oT tfor | [Ax]ol |
|0 Rf_l 0| A1 0| Rp_1| |0 ]| Dp_q |
= D'I’L
O
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2.5 Skalarni soucin

2.5.1 Uvedte a dokazte Cauchy-Schwarzovu nerovnost.

Véta: Pro skaldrni soucin libovolnych dvou vektort uw a v ve vektorovém prostoru nad C plati:
[(u o) < V| u) - (v]v)=I[ul] -]l

Proof. Pro u =0 nebo v = 0 dostaneme 0 < 0. Plati.
Pro jakékoli a € C plati, Ze ||u + av||? > 0, ale také:

llu+av|]? = (u+av | v+ av) = (u | u) + alv | u) +alu | v) + aa(v | v)

Pro vzajemné odecteni poslednich dvou ¢lenu zvolime a = —%. Dostaneme:

(ufw)-(vlu) <(ufu)-(v]v)

2
[ | o))" < Jlul - [[o]?

{w [ o) < {lull - [[v]]

O
2.5.2 Uvedte a dokazte trojihelnikovou nerovnost.
Véta: Kazdd norma odvozend ze skaldrniho soucinu splituje trojihelnikovou nerovnost: ||u+ v|| < ||ul| + ||v]|.
Proof.
llu+oll = V{u+vuto)=v{ulu)+ (0 u) + (@] o) + (v v) < Vull? +2[{u] )] +[o]]
b+ oll < /Tl + 2 T~ + T = ] + o]
w4+ ol| < [ul] + []v]]
O

2.5.3 Vyslovte a dokazte vétu o Fourierovych koeficientech.

Véta: Necht Z = {vy,...,v,} je ortonormdlni béze prostoru V. Pro kazdé u € V plati: u = (u|vy)vy+...+(u|v, )v,.
Potom (u|v,) jsou Fourierovy koeficienty.

Proof.
u= Zaivi = (ulv;) = <Z a;v; | vj> = Zai<vi|vj> =aj
i=1 i=1 i=1
O

2.5.4 Uvedte a dokazte spravnost Gram-Schmidtovy ortonormalizace (vEetné lemmatu, pokud jej

potiebujete).
Algoritmus: pievede lib. bézi (uq,...,u,) prostoru V se skaldrnim sou¢inem na ortonormdlnf{ bdzi (vy,...,v,):
for 1=1,...,n do:
i—1
Low; =u; — E (uilvj)v;
J=1
2. v = oW
C Jlw
end
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Spravnost:
e Diky 1. a pfedchozimu lemmatu: Vi,j;j <7 : w;Llv;, odtud v; Lv; pro j # i.

llwil] _ 1

T wil]

o Diky 2.: ||ui|| = Hmw

e Diky lemmatu o vymeéné: L(vq,...,vi—1,u;) = L(V1,...,0i—1,w;) = L(v1,...,0;).
Lemma: Nechf py je ortogondlni projekce W na V', potom Yv; € Z : u — pz(u) Lv;.
Proof. #1

(u—=pz(u) | vi) = <u =D (ulvg)v; Ivi> {ulvr) = (ulv;){vjlvs) = (ulvi) = (ulvi) = 0

j=1 j=1
O
Lemma: Nechf Y genen;je vektorovy prostor V nad K. Jestlize pro vektor v € V exisutji vy,...,v, € Y a
ai,...,an €K t.2.: u= Zaivi, kde a; # 0 pro néjaké i, potom L((Y \ v;) Uu) =V.
i=1
Proof. #2
U= a1 + -+ av; +..oapv, = v; = ai U — Zajvj . Jakékoli w € V muzeme zapsat jako linearni

J#i
kombinaci prvku z Y. Vyskytuje-li se v; v této kombinaci, dosadime za v; vyraz vyse. Tim ziskdme w jako linedrni
kombinaci prvku z (Y \ v;) U .

n
a;b;
V konec¢ném pifpadé, je-i Y = {vy,...,v,} aw = Z bjv;, dostaneme jmenovité w = Z—iu—i—z (bj - 4l> v;. O
i=1 J#i !
2.5.5 Vyslovte a dokazte vétu o izometrii a normé.

Véta: Linedrni zobrazeni mezi prostory V a W je izometrie, pravé kdyz zachovava souvisejici normu, tj.:

[lull = [[f ()|

Proof. Protoze norma zavisi na skaldrnim sou¢inu, mame — .
Pro <= porovnejme:

llu + aw||* = [Jull* + a{wlu) + alulw) + aal|w|*

1/ (u+ aw)[[? = [|f(@)|[* + a(f (w)| f(w)) +@(f (w)|f(w)) + aal| f (w)]]

e pro a =1 mdme: (wu) + (ulw) = (f(w)|f(w)) + (f(w)|f(w))
e pro a =imameé: (wlu) — (ufw) = (f(w)|f(u)) = (f(w)|f(w))
= (ulw) = {f(u)|f(w)) O

2.5.6 Vyslovte a dokazte vétu o izometrii a vlastnostech jeji matice.

Véta: Necht V a W jsou prostory se skaldrnim soucinem koneéné dimenze a X,Y jsou jejich ortonormélni baze.
Linedrn{ zobrazeni f : V' — W je bijektivn{ izometrie <= [f]xy je unitérni.

Proof. Linearni bijekce implikuje stejné dimenze a naopak.

Protoze X je ortonormalni: (u|w) = [w]{[u]x

Protoze Y je ortonormalni: (f(u)|f(w)) = [F(w)Z[f )]y = [wlZ[f1%y[f]xy [ulx

Maticova rovnost 2Ty = zT Ay plati pro viechny vhodné vektory z a y pouze v pifpadé, je-li A jednotkova
matice. V naSem pifpadé je f izometrie, pokud Vu,w : [w]i[u]lx = [W]E[f)%y [flxy[u]x, coz plati prave kdyz

[f1%[flxy = I, neboli je-li [f]xy unitdrni. O
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2.5.7 Vyslovte a dokazte vétu o ortogonalnim dopliku.

Véta: Pro konecéné generovany prostor W se skalarnim sou¢inem a podprostor V' plati:
(VHt =V a dimV +dimV* = dim W

Proof. Zvolime néjakou ortonormélni bazi X prostoru V' a doplnime ji na ortonormélni bazi Z prostoru W.
Oznatme Y =Z\ X, X = (z1,...,21), Y = (Y1,---,y1)-
Kazdé u € L(X) =V je kolmé ke kazdému v € L(Y):

(ulo) = <Zalezbjyj>_zi By} =0

protoze Z je ortonorméln{ baze. Proto £L(Y) C V1.

Nyni vezméme w € V1 a uvazme [w]z. Protoze Z je ortonormalni, koeficienty w vzhledem k Z jsou Fourierovy
koeficienty dané skalarnim sou¢inem w s prvky baze Z.

Protoze w € V1, mdme Vz; € X : (w|x;) = 0, tedy: w € L(Y), tj VJ- CL(Y) atedy V1 =L(Y).

Nyni: dlmV—&-dlmVJ- | X|+ Y] =|Z| =dimW ataké (V)L =L(Z\Y)=L(X)=V. O

2.5.8 Vyslovte a dokazte vétu o skalarnim souc¢inu dvou vektora a Gramové matici.

Véta: Necht V je prostor se skaldrnim souc¢inem a bazi X = (vq,...,v,). Potom Gramova matice A definovdna
ai; = (v;|v;) splituje Vu,w € V : (u|lw) = [w]E AT [u] x.
(Pokud X je ortonormdlni bdze, pak A = 1,,).

n n
Proof. Ozna¢me [u]x = (by,...,b,)T, [w]x = (c1,...,¢cn)T, tj. u= Z biv; a w = Z ¢;v;. Dostavame:
i=1 j=1

n

ZCJUJ> = ZZ iCj(vilv;) = [w }EAT[U]X

(ufw) = <Zb v;

2.6 Pozitivné definitni matice
2.6.1 Vyslovte a dokazte vétu o tiech ekvivalentnich podminkach pro pozitivné definitni matice.
Véta: Pro hermitovskou matici A jsou nésledujici podminky ekvivalentni:

1. A je pozitivné definitivn{

2. A m4 vSechna vlastni ¢ésla kladna

3. Existuje reguldrni matice U, t.z.: A = UHU.

Proof.

1 = 2: Protoze A je hermitovskd, m4 vlastni ¢isla redlnd. Necht x je netrividlni vlastni vektor odpovidajici
vlastnimu é&fslu A, potom 0 < 2 Az = Atz = Mz|z). Z (x|r) > 0 mdme A > 0.

2 = 3: Protoze A je hermitovskd, existuji unitdrni R a diagondlni D, t.z.: A = RYDR. Vezméme diagonalni
D :dj; =+/di; aU = DR. Nyni UHU (DR)HDR REDHDR = RHDR A. U je regularni, protoze unitdrni
i dlagonalnl matice jsou regularni.

3 = 1:Pokud x € C"\ 0, pak Uz # 0, protoze U je reguldrni. Nyni: 27 Ar = 2HUH Uz = (U2)"H Uz =
(Uz|Uz) > 0. O
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2.6.2 Vyslovte a dokazte vétu o rekurentni podmince pro pozitivné definitni matice.

H
ala ~
Véta: Blokova matice A = 1 je pozitivné definitni <= « > 0 a matice A — éaaH je pozitivné definitni.
a
Proof.
Gaussova eliminace prvniho sloupce A odpovidéd soucinu
1 0" a | a af
—La T alA | |0 A—éaaH
Nésledné dostavame:
1 0F ] [ala® | [1 —La] | a 0
—éa I a | A 011 “lo A—éaaH

Matice elementdrnich tiprav je reguldrni, a tak A je pozitivné definitni <= vyslednd blokova matice je pozitivné
definitni, coz nastavd <= m4 oba nenulové bloky pozitivné definitni. O

2.6.3 Vyslovte a dokazte vétu o pozitivné definitnich maticich a determinantech.

Véta: Hermitovska matice A fddu n je pozitivné definitni <= matice Ay, ..., A, maji kladné determinanty,
kde A; se sestava z prvnich i fadku a sloupcu A

Proof. Pouzijeme Gaussovu eliminace A ~~ A’ pro test, zda je A pozitivné definitni. Necht aq,...,q, jsou

prvky na diagondle vysledné trojuhelnikové matice A’. Protoze jsme eliminovali fddky shora doli, médme det A =

det A’ = Haj =det A;_1;. A je pozitivné definitni <— «y,...,a, >0 < det Ay,...,det 4, >0 O]
Jj<i

2.6.4 Uvedte a dokazte spravnost algoritmu pro vypoéet Choleského rozkladu.

Algoritmus: Pro kazdou pozitivné definitni matici A existuje unikdtni trojuhelnikova matice U s kladnou
diagonalou, t.z.: A= UMU. Matice U se nazjva Choleského rozklad.

Input:  Hermitovskd matice A
Output:  Choleského rozklad U, pokud je A pozitivné definitni

for 1 =1,...,n do:

1—1
Q5 — § Uk Uk
k=1

if u; ¢ RT then STOP (A neni pozitivné definitn{)

for j=4+1,...,n do:

i—1
1
Wij = — | Gij — E Ui U j
Ui =1
end

end

Spravnost: Predpoklddejme, ze algoritmus selze x béhem i-té iterace, tj. a < uf .
Méme A =UHU a a=U"u.

hi|lo |
*

UH

.c:t
=
*

1]

I
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Necht 27 =[ZT [1]0...0] kde # = ~U~'u.

Nyni 2 Az
Az +i"a+ a3+ a=
= (~U ) HUHD) (U ) + (U )2 (O u) + (UH)H (~U ) + a =
uf oy —

0y, uHu—uHu+a:a—uHu§0

Proto A neni pozitivné definitni

2.7 Kvadratické a bilinearni formy

2.7.1 Vyslovte a dokazte vétu o diagonalizovatelnosti matic forem.

Véta: Pokud je g kvadraticka forma vektorového prostoru V konecéné dimenze n nad télesem K jiné Charakteristiky
nez 2, pak mé forma g diagonalni matici B vzhledem k vhodné bazi X.

Véta: Pro jakoukoli symetrickou matici A € K"*" s char(K) # 2 existuje reguldrni matice R, t.z.: RTAR je
diagonalni.

Proof. Indukci podle n.

T
Oznacme A = A, = @la
a|A
_1I,T
(a) Kdyz a # 0, volime P, = (1) Iaa , pak:
n—1
PTAP—l OT.ozaT.l—éaT_aaT lalof
noman —éa 1,1 al A 0 1 0 féaaTJrA 10| Anq

kde A,_1 = A — Laa” je symetricka.

[e3%

T
Dle indukéniho piedpokladu existuje R,,—1 pro A,_1. Zvolime R, = P, - (1) OR , pak:
n—1
T N J1jo” ] [a]0"
B Anin = g gr— P b = S T RT A R

REAHRH je tedy diagonélni.

(b) Pokud o = 0, ale a # 0, pak a;1 # 0 pro néjaké i. Pouzijeme elementdrni matici E pro pficteni i-tého
sloupce k prvnimu. Vezmeme A = ETAE namisto A. Protoze o/ = 2a; 1 # 0, miizeme postupovat jako (a).

~ 1 T
(¢) Kdyz a« =0 a a =0, pak vezmeme A,_; = A a R, = 5 OR .
n—1
O
2.7.2 Uvedte a dokazte Sylvestertiv zidkon setrvaénosti — o diagonalizaci kvadratickych forem.

Veéta: Kazdd kvadratickd forma na kone¢né generovaném realném vektorovém prostoru méa vzhledem k vhodné
bazi diagondlni matici pouze s 1,—1,0. VSechny takové diagondlni matice odpovidajici téze formé maji stejny
pocet 1 a stejny pocet —1.

Proof.

1. Existence: Necht B je matici formy vzhledem k n&jaké bdzi Y. Redlné symetrické matice lze diagonalizovat,
=0 dj;=0s;=1
neboli B = RT DR pro reguldrni R. Rozlozime D = STD’'S, kde d; ; ¢ >0 d; = 1.s;; = \/dy;
<0 d;,=—1.s;=+—di
Nynf je SR reguldrni a B = (SR)T D’'SR. Zvolime bézi X tak, ze soufadnice vektorti X vzheldem k Y jsou
sloupce SR, tzn. [id]xy = SR a také [id]yx = (SR)~L.
Nynf [id]L  Blidlyx = ((SR)")T(SR)TD'SR(SR)~* = D’ je hledan4 diagondln{ matice formy.
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2. Jednoznaénost poétu 1,—1,0: Necht X = (ug,...,u,), Y = (v1,...,v,) jsou dvé baze, t.z.: odporujici
matice B a B’ formy g jsou diagondlni s 1, —1,0 usporfddanymi tak, ze nejdrive jsou 1, potom —1 a 0 jsou
posledni. Protoze souéiny s reguldrnimi maticemi [id] xy nemeéni hodnost:

#0vB=n—-rank B=n—rank B’ =#0v B’

Necht r = #1 v B, s = #1 v B'. Pokud r > s, pak uvazme podprostory L(u1,...,uz) a L(Vsi1,-..,0n).
Soucet jejich dimenzi r 4+ n — s presahuje n, maji tedy netrividlni prunik.

(Pouzivame pozorovind dimU + dimV = dim(U N V) + dim(L(U UV)) )

— Lev4 strana je ostie vétsi nez n, dim(L(U UV)) <dimR" =n = dim({UNV)>1

X R™ dim=n Y
- - Y
*u | L(ug,...,u,) || ®wy
dim=r *y,
' R
*u, °v ® Vsp1
U L(Vsi1y.-.,Vn)

*u, dm=n—s |®v, J

.

Zvolme w € (L(u1,. .., ur) N L(Vst1,--,0,)) \ 0, tedy [w]x = (21,...,2,0,...,0)T,
[w]y = (0,...,0,Ys41s---,yn)T. Nynif g(w) = [w]k Blw]x =22 +---+ 22 >0,

ale g(w) = (W], B'[wly = —yZ,1 =+ = Yiunk 5 < 0, coZ je spor.

Dostavame r>s, symetricky téz s>7 a proto r = s.

O
2.8 Aplikace
2.8.1 Vyslovte a dokazte vétu o poctu pirimek svirajicich stejny uhel.
Véta: V R? mize byt nejvyse (“5') pifmek svirat stejny thel.
Proof. Predpokladejme, ze existuje n takovych piimek. Zvolime vektory jednotkové délky vy, ..., v, z kazdé primky
po jednom.

1 roi=7j
Dostaneme (v; | v;) = p J
cose jinak
Ukézeme, Ze matice v1v7 ,vov1 ..., vvl € R¥*? jsou linedrné nezavislé. Pak n < (d+1) protoze dimenze prostoru
symetrickych matic z RdXd i (d'gl).
Predpoklddejme, ze Z a;v;v; =0 (matice d x d plnd nul). Pro kazdé j € {1,...,n}:
=1
0= UTOUj =, (Zaﬂ)Z ) Za vivw! vj = Zal v; | vj = a; + cos goZal
i#]
Tyto podminky na ai,...,a, zapsané jako soustava rovnic:
1 cos? S cos? ¢ a 0
cos? 1 az | 0
: cos? ¢ :
cos?p ... cosiy 1 n 0

Matice této soustavy je reguldrni, proto a; = - -+ = a,, = 0. Tudiz v, vlT, UQUQT, ... ,vnvf jsou linearné nezavislé. [
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3 Prehled

(U piehledovych otazek Uvedte definice, tvrzeni, véty, pifklady a souvislosti. Ditkazy u piehledovych otézek nejsou
vyzadovény.)

3.1 Skaldrni souéin

3.1.1 Piehledové sepiste, co vite o skalarnim soucinu a souvisejici normé.

n
o Definice: Standardni skaldrni soucin na R™ : (u | v) = E uv; = v’ u.
i=1

n
o Definice: Standardni skaldrni soucin na C": (u | v) = Z u;T; = v¥u. Kde index H je
i=1

Herminovskd transpozice dand vztahem Afj =q5;.
o Definice: Skaldrni soucin (1.5.1)

o Definice: Norma (1.5.2)

o Véta: Cauchy-Schwarzovu nerovnost (2.5.1)

o Véta: Trojihelnikovd nerovnost (2.5.2)

o Véta: Nerovnost mezi aritmetickym a kvadratickym primérem: Pro libovolny vektor u € R™ plati:

Proof. Zvolime v = (1,1,...,1)T" a pouzijeme Cauchy-Schwarzovu nerovnost pro standardni skaldrni soucin:

Zui = (u o) <[{ulo)| <|lull - [|v]] =

o Vlastnosti:

— Uhel @ mezi vektory u a v je ddn vyrazem cos @ = %,
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