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1. ročńık bc. informatika
doc. RNDr. Martin Klazar, Dr.

Obsah

1 Definice 3
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2.2.2 Geometrická posloupnost a Liminf a limsup . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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2.4.1 O Riemannově funkci a Limita složené funkce . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Heineho definice spojitosti, Blumbergova definice spojitosti a počet spojitých funkćı . . . . 9
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3.6.1 Monotonie Newtonova integrálu a Derivace jsou Darbouxovy . . . . . . . . . . . . . . . . . 17
3.6.2 Bachetova identita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1 Definice

1.1 Reálná č́ısla

1.1.1 Definice funkce, funkce prostá, na a bijekce

� Funkce (zobrazeńı): Funkce f z množiny A do množiny B, neboli f : A → B, je uspořádaná trojice
(A,B, f), kde f ⊆ A×B a ∀a ∈ A,∃!b ∈ B : afb, neboli f(a) = b. (Plat́ı: Df = A, Hf = B)

� Funkce prostá (injektivńı): Funkce f : X → Y pro ∀x, x′ ∈ X je prostá ⇐⇒ f(x) = f(x′) =⇒ x = x′.
Dvěma r̊uzným x nepřiřad́ıme stejné y. Takže ∀y existuje nejvýše jedno x.

� Funkce na (surjektivńı): Funkce f : X → Y je na ⇐⇒ f [X] = Y .
∀y existuje alespoň jedno x.

� Funkce bijektivńı: Funkce f : X → Y je bijektivńı ⇐⇒ je prostá i na. ( ∃!x )

Obraz množiny C ⊆ A je f [C] := {f(a) | a ∈ C} ⊆ B.

1.1.2 Supremum a infimum v lineárńım uspořádáńı

Necht’ A je množina s uspořádáńım (A,<) a B je množina, t.ž.: B ⊆ A. Prvky a ∈ A jsou supremem (resp.
infimem) množiny B, když splňuj́ı sup(B) := min(H(B)) a inf(B) := max(D(B)) v A.

1. Množina horńıch meźı H(B) := {∃h ∈ A,∀b ∈ B | b ≤ h}

2. Množina dolńıch meźı D(B) := {∃d ∈ A,∀b ∈ B | b ≥ d}

1.1.3 Nejvýše spočetná a nespčetná č́ısla

Necht’ X je množina, potom X je:

� spočetná ⇐⇒ existuje bijekce f : N → X.

� nejvýše spočetná ⇐⇒ je konečná nebo spočetná.

� nespočetná ⇐⇒ neńı nejvýše spočetná.

Nekonečná ⇐⇒ existuje prostá funkce f : N → X.
Konečná ⇐⇒ neńı nekonečná.

1.2 Limity

1.2.1 Vlastńı a nevlastńı limita posloupnosti, podposloupnost

Reálná posloupnost (an) = (a1, a2, . . . ) ∈ R je funkce a : N → R.

Limita posloupnosti Necht’ (an) je reálná posloupnost a L ∈ R∗, kde R∗ je R spolu s ±∞. Potom L je limita
posloupnosti (an), pokud:

∀ε, ∃n0 : n ≥ n0 =⇒ an ∈ U(L, ε).

Ṕı̌seme lim
n→∞

an = L.

� Okoĺı bodu b ≡ U(b, ε) := (b− ε, b+ ε)

� Prstencové okoĺı bodu b ≡ P (b, ε) := U(b, ε) \ {ε} = (b− ε, b) ∪ (b, b+ ε)

Vlastńı a nevlastńı limita Pokud L ∈ R, pak konverguje a mluv́ıme o limitě vlastńı, pokud L = ±∞, pak
diveguje a mluv́ıme o limitě nevlastńı.

Podposloupnost (bn) je podposloupnost́ı posloupnosti (an), pokud existuje taková posloupnost

∀m ∈ N : m1 < m2 < · · · ∈ N,

kde ∀n : bn = amn
. Znač́ıme jako (bn) ≺ (an).
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1.2.2 Liminf a limsup posloupnosti

Limes inferior (resp. superior) reálné posloupnosti (an) definujeme jako lim inf an, resp. lim sup an.

� Hromadný bod A posloupnosti (an), pokud je limitou nějaké podposloupnosti posloupnosti (an).

� H definujeme jako množinu hromadných bod̊u, neboli H(an) := {A ∈ R∗ | A je hromadný bod (an)}.

1.3 Řady

1.3.1 Řada, částečný součet řady, součet řady

Řada je posloupnost (an) ⊆ R.

Částečný součet řady (an) je (sn) := (a1 + a2 + · · ·+ an)

Součet řady je limita
∑

an =

∞∑
n=1

an = a1 + a2 + · · · := lim
n→∞

(a1 + a2 + · · ·+ an) = lim sn ∈ R∗.

1.3.2 Geometrická řada a jej́ı součet, absolutně konvergentńı řada

Geometrická řada je řada

∞∑
n=0

qn = 1 + q + q2 + · · ·+ qn + . . . , kde q ∈ R je kvocient.

Součet geometrické řady je

∞∑
n=0

qn =


1

1−q pro |q| < 1

+∞ pro q ≥ 1

neexistuje pro q ≤ −1

Absolutně konvergentńı řada Řada
∑

an je AK, pokud konverguje řada
∑

|an|.
Tvrzeńı: Každá AK konverguje. D̊ukaz:

∑
an má (sn). Ukážeme, že (sn) je Cauchyova...

1.4 Funkce

1.4.1 Limita funkce, jednostranná limita funkce

Limita funkce Funkce f : M → R má v bodě a ∈ R∗, kde a je limitńı bod množiny M , limitu A ∈ R∗, pokud

∀ε > 0,∃δ > 0,∀x ∈ P (a, δ) ∩M : f(x) ⊆ U(A, ε), tedy lim
x→a

f(x) = A.

Limitńı body množiny M ⊆ R prvku L ∈ R∗ ≡ ∀ε : P (L, ε) ∩M ̸= ∅.

Jednostranná limita funkce Podobně, jen ∀x ∈ P±(a, δ) ∩M...

1.4.2 Exponenciála, logaritmus, kosinus a sinus

Exponenciála ∀x ∈ R : ex = exp(x) :=

∞∑
n=0

xn

n!
= 1 + x+

n2

2
+

n3

6
+ · · · : R → R.

Eulerovo č́ıslo ≡ e1 =

∞∑
n=0

1

n!
∈ I a je rovno ≈ 2.718...

Logaritmus log x je inverzńı funkce k exponenciále, tedy log := exp−1 : (0,∞) → R
Plat́ı d̊uležité vztahy: log(xy) = log(x) + log(y), log(1) = 0, atd.

Cosinus a sinus ∀t ∈ R : cos t :=

∞∑
n=0

(−1)nt2n

(2n)!
a sin t :=

(−1)nt2n+1

(2n+ 1)!
jdoućı z R → R

1.4.3 Spojitost funkce v bodě a jednostranná spojitost

Spojitost funkce v bodě Necht’ a ∈ M ⊆ R a f : M → R. Funkce f je spojitá v bodě a, když

∀ε,∃δ, ∀x ∈ U(a, δ) ∩M : f(x) ⊆ U(f(a), ε).

Neboli funkce f je v bodě a spojitá, pokud limx→a f(x) = f(a).
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Jednostranná spojitost Podobně, jen je zleva (−) resp. zprava (+) spojitá a pro ∀x ∈ U±(a, δ) ∩M...

1.4.4 Asymptotické symboly

Symbol O Necht’ jeM ⊆ R, N ⊆ M a f, g : M → R jsou funkce. Potom pokud ∃c ≥ 0,∀x ∈ N : |f(x)| ≤ c·|g(x)|,
pak ṕı̌seme f(x) = O(g(x)), pro x ∈ N . (Nesmı́ nastat lim f(x)

g(x) = ∞.)

Symbol o a ∼ Necht’ a ∈ R∗ je limitńı bod množiny M ⊆ R a f, g : M → R jsou funkce, kde

∃δ∀x ∈ P (A, δ) ∩M(g(x) ̸= 0) potom pro

� malé o: lim
x→a

f(x)

g(x)
= 0 =⇒ f(x) = o(g(x)) pro x → a,

� asymptotickou rovnost ∼: lim
x→a

f(x)

g(x)
= 1 =⇒ f(x) ∼ g(x) pro x → a.

1.4.5 Kompaktńı, otevřená a uzavřená množina

Kompaktńı množina Množina M ⊆ R je kompaktńı, když ∀(an) ⊆ M má konvergentńı podposloupnost (amn
)

s lim amn
∈ M . (Když je M omezená a uzavřená.)

Otevřená množina Množina M ⊆ R je otevřená, když ∀a ∈ M,∃δ : U(a, δ) ⊆ M .

Uzavřená množina Množina M ⊆ R je uzavřená, když ∀(an) ⊆ M : lim an = a =⇒ a ∈ M .

1.4.6 Lokálńı a globálńı a ostré extrémy

Globálńı extrém Necht’ a ∈ M ⊆ R a necht’ f : M → R. Funkce f má na M v bodě a globálńı maximum (resp.
minimum), když ∀x ∈ M : f(x) ≤ f(a), resp. f(x) ≥ f(a).

Lokálńı extrém Necht’ a ∈ M ⊆ R a necht’ f : M → R. Funkce f má na M v bodě a lokálńı maximum (resp.
minimum), když ∃δ, ∀x ∈ U(a, δ) ∩M : f(x) ≤ f(a), resp f(x) ≥ f(a).

Ostrý extrém Pokud plat́ı ostré nerovnosti v definici o lokálńım/globálńım extrému, jedná se o ostrý extrém.

1.5 Derivace

Oboustranný limitńı bod (OLB) množiny M je ∀δ : P−(a, δ) ∩M ̸= 0 ̸= P+(a, δ) ∩M .

1.5.1 Derivace funkce, jedonstranná derivace funkce

Funkce f je diferencovatelná, pokud á vlastńı limitu, tedy pokud je spojitá.

Derivace funkce Necht’ bod a ∈ M je limitńı bod množiny M ⊆ R a f = f(x) : M → R je funkce. Potom
derivace f v bodě a je limita

f ′(a) =
df

dx
(a) := lim

x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
.

Jedonstranná derivace funkce Necht’ bod a ∈ M je levý (−), resp. pravý (+), limitńı bod množiny M ⊆ R a
f = f(x) : M → R je funkce. Potom derivace funkce f v bodě a zleva, resp. zprava je limita

f ′
±(a) := lim

x→a±

f(x)− f(a)

x− a
= lim

h→0±

f(a+ h)− f(a)

h
.

1.5.2 Standardńı definice tečny

Necht’ a ∈ M ⊆ R, a je limitńı bod množiny M a f : M → R je diferencovatelná v a. Tečnou ke grafu Gf funkce
f v bodě (a, f(a)) ∈ Gf rozumı́me př́ımku l definovanou:

l : y = f ′(a) · (x− a) + f(a).

Je to jediný př́ımka se sklonem (směrnićı) f ′(a) procházej́ıćı bodem (a, f(a)).
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1.5.3 Derivace vyšš́ıch řád̊u

Necht’ ∅ ≠ M ⊆ R je otevřená množina a f : M → R, f0 := f a pro i = 1, 2, . . . , n ∈ N plat́ı, že D(fi−1) = M a
fi := (fi−1)

′. Pak každou funkci f (i) := fi : M → R, i = 1, 2, . . . , n nazveme derivaćı řádu i.
Alternativně:
Necht’ a ∈ M ⊆ R, pokud f : U(a, δ) → R na U(a, δ) má derivaci f (n−1)(x) řádu n− 1, potom derivace řádu n je

f (n)(a) := lim
x→a

f (n−1)(x)− f (n−1)(a)

x− a
.

1.5.4 Ryze konvexńı a konkávńı funkce

Necht’ I ⊆ R je interval. Funkce f : I → R je konvexńı (resp. konkávńı), pokud

∀a, b, c ∈ I, a < b < c : (b, f(b) ≤ K(a, f(a), c, f(c)). (resp. ≥)

Pro ostré nerovnosti je ryze konvexńı/ ryze konkávńı.

1.5.5 Inflexńı bod

Necht’ a ∈ M ⊆ R, kde a je OLB množiny M ; f : M → R a l je tečna ke Gf v (a, f(a)). Tento bod je potom
infleńım bodem grafu funkce f , pokud:

∃δ, ∀x ∈ P−(a, δ) ∩M ∧ ∀x′ ∈ P+(a, δ) ∩M =⇒ (x, f(x)) ≤ l ∧ (x′, f(x′)) ≥ l,

(= bod, ve kterém f ′′ = 0 a f ′ = 0 nebo f ′ neexistuje; docháźı ke změně směru funkce).

1.5.6 Svislé asymptoty a asymptoty v nekonečnu

Svislé asymptoty Necht’ M ⊆ R, b ∈ R je levý (resp. pravý) limitńı bod množiny M a f : M → R je funkce.
Potom když lim

x→b∓
f(x) = ±∞, nazveme př́ımku x = b levou (resp. pravou) svislou asymptotou funkce f .

Asymptoty v nekonečnu Necht’ M ⊆ R; ±∞ je limitńı bod množiny M ; a, b ∈ R a f : M → R je funkce.
Potom když lim

x→±∞
(f(x)− (ax+ b)) = 0, nazveme př́ımku y = ax+ b asymptotou funkce f v ±∞.

1.5.7 Taylor̊uv polynom funkce, Taylorova řada funkce

Taylor̊uv polynom funkce Necht’ ∀n ∈ N : f, f ′, f ′′, . . . , fn−1 : U(b, δ) → R a ∃f (n)(b) ∈ R. Potom polynom

T f,b
n (x) :=

n∑
j=0

f (j)(b)

j!
(x− b)j ,

nazveme Taylorovým polynomem funkce f řádu n se středem v b.
Př́ıklady d̊uležitých Taylorových polynom̊u: ex = T f,0

n (x), sin(x) = T f,0
2n+1(x).

Taylorova řada funkce Necht’ ∀n ∈ N0 : f (n) : U(a, δ) → R. Pokud ∀x ∈ U(a, δ) plat́ı

f(x) :=

∞∑
n=0

f (n)(a)

n!
· (x− a)n,

pak řekneme, že funkce f na U(a, δ) je součtem své Taylorovy řady se středem v a.

1.6 Integrály

1.6.1 Primitivńı funkce

Necht’ I ⊆ R je netriviálńı interval a F, f : I ∈ R. Potom F je primitivńı funkce k f , neboli F =

∫
f , pokud

F ′ = f na celém I.

1.6.2 Stejnoměrná spojitost

Necht’ M ⊆ R a f : M → R, potom f na M je stejnoměrně spojitá, pokud:

∀ε, ∃δ : ∀a, b ∈ M ∧ |a− b| ≤ δ =⇒ |f(a)− f(b) ≤ ε.

Plat́ı, že každá spojitá funkce f : M → R je pro kompaktńı M ⊆ R stejnoměrně spojitá.
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1.6.3 Newton̊uv integrál funkce (nevlastńı)

Necht’ f : (a, b) → R, kde a < b, má primitivńı funkci F a existuj́ı vlastńı limity F (a) := lim
x→a

F (x) a F (b) :=

lim
x→b

F (x), potom Newton̊uv integrál funkce f na intervalu (a, b) definujeme jako:∫ b

a

f := F (b)− F (a) = lim
x→b

F (x)− lim
x→a

F (x).

1.6.4 Riemann̊uv integrál funkce a množina mı́ry O

Riemann̊uv integrál funkce Funkce f : [a, b] → R, kde a < b, je riemannovsky integrovatelná, neboli
f ∈ R(a, b), pokud ∃c,∀ε,∃δ, ∀(a, t) plat́ı, že: ||a|| < δ =⇒ |R(a, t, f)− C| < ε..
Ṕı̌seme také jako:

(R)

∫ b

a

f = c nebo jako (R)

∫ b

a

f(x)dx = c.

Množina mı́ry O Množina M ⊆ R má mı́ru 0, pokud plat́ı:

∀ε, ∃[an, bn],∀n ∈ N, kde an < bn : M ⊆
∞⋃

n=1

[an, bn] ∧
∞∑

n=1

(bn − an) < ε.

1.6.5 Henstock-Kurzweil̊uv integrál

Necht’ f : [a, b] → R je HK-integrovatelná, neboli f ∈ HK(a, b), pokud ∃c,∀ε, ∃δc, kalibr na [a, b], že pro ∀ děleńı s
body (a, t) intervalu [a, b] plat́ı, že (a, t) je δc-jemné =⇒ |R(a, t, f)− c| < ε.
Ṕı̌seme také jako:

(HK)

∫ b

a

f = c nebo jako (HK)

∫ b

a

f(x)dx = c

1.6.6 Délka grafu funkce, plocha mezi grafy, objem rotačńıho tělesa

Délka grafu funkce Necht’ f : [a, b] → R má ratifikovatelný graf, pokud:

ℓ(Gf ) := sup({L(a, f) | a je děleńı intervalu [a, b]}).

Plocha mezi grafy Necht’ f, g : [a, b] → R, kde f ≤ g. Plocha útvaru Gf,g je potom:

A(Gf,g) := inf({M(f, g, a) | a je děleńı intervalu [a, b]}).

Vzorec pro výpočet plochy mezi grafy je: A(Gf,g) :=

∫ b

a

(g − f).

Objem rotačńıho tělesa Necht’ funkce f : [a, b] → [0,+∞). Objem útvaru Tf je:

V (Tf ) := inf({K(f, a) | a je děleńı intervalu [a, b]}).

K definujeme jako součet a Tf := {(x, y, z) ∈ R3 | a ≤ x ≤ b ∧ y2 + z2 ≤ f(x)2}.

Vzorec pro výpočet objemu rotačńıho tělesa je: V (a, b, f) = V (Tf ) := π

∫ b

a

f2.

7



2 Věty a tvrzeńı bez d̊ukazu

2.1 Reálná č́ısla

2.1.1 Definice a vlastnosti reálných č́ısel

Reálná č́ısla tvoř́ı množinu R := C/ ∼, kde C je množina všech Cauchyových posloupnost́ı a ∼ je relace
shodnosti na C. Kde pro k, n0,m, n ∈ N je:

� Cauchyova posloupnost (an) ⊆ Q : ∀k∃n0 : m,n ≥ n0 =⇒ |am − an| ≤ 1
k .

� Relace shodnosti (an) ∼ (bn) ⇐⇒ ∀k∃n0 : n ≥ n0 =⇒ |an − bn| ≤ 1
k

Vlastnosti reálných č́ısel Na množině R je dána binárńı relace (<) ⊆ R×R, operace sč́ıtáńı (+), násobeńı (·)
a význačné prvky 0, 1, tedy uspořádané těleso (R, 0, 1,+, ·, <).
(Plat́ı komutativita, distributivita, asociativita, existence 0, 1, atd.)

2.2 Limity

2.2.1 O podposloupnostech a existence monotónńı posloupnosti

O podposloupnostech Necht’ (an) je libovolná reálná posloupnost a A ∈ R∗. Potom plat́ı:

1. (an) má podposloupnost, která má limitu.

2. (an) nemá limitu ⇐⇒ (an) má dvě podposloupnosti s dvěma r̊uznými limitami.

3. lim an ̸= A ⇐⇒ (an) má podposloupnost, která má limitu r̊uznou od A.

Existence monotónńı posloupnosti Každá posloupnost reálných č́ısel má monotónńı podposloupnost.

2.2.2 Geometrická posloupnost a Liminf a limsup

Limita geometrická posloupnosti Necht’ q ∈ R, potom

lim
n→∞

qn =


0 |q| < 1

1 q = 1

+∞ q > 1

neexistuje q ≤ −1

.

Liminf a limsup Pro každou (ab) ⊆ R je množina H(an) neprázdná. V lineárńım uspořádáńı (R∗, <) má
minimum i maximum.

2.3 Řady

2.3.1 O harmonických č́ıslech a Riemannova věta

O harmonických č́ıslech Necht’ hn =

n∑
j=1

1

j
jsou harmonická č́ısla, potom ∃c > 0, t.ž.:

∀n ∈ N : hn = log n+ γ +∆n,

kde c je konstanta, |∆n| ≤ c
n , a γ = 0.57721 . . . je tzv. Eulerova konstanta.

Harmonická č́ısla jsou (sn) harmonické řady. Eulerova konstanta γ := lim
n→∞

(1 +
1

2
+

1

3
+ · · ·+ 1

n
− log n).

Riemannova věta Necht’
∞∑

n=1

an je řada typu 1− 1 + 1
2 − 1

2 + · · ·+ 1
n − 1

n + . . . , tedy necht’ plat́ı:

1. lim an = 0,

2.
∑

akn
= +∞, kde akn

jsou kladné sč́ıtance řady,

3.
∑

azn = −∞, kde azn jsou záporné sč́ıtance řady,

potom pro každé S ∈ R∗ existuje bijekce π : N → N, t.ž.:
∞∑

n=1

aπ(n) = S.
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2.4 Funkce

2.4.1 O Riemannově funkci a Limita složené funkce

O Riemannově funkci Riemannova funkce je spojitá právě a jenom v iracionálńıch č́ıslech.

Riemannova funkce r : R → {0} ∪ { 1
n | n ∈ N}, tedy r(x) =

{
0 x ∈ I
1
n x = m

n ∈ Q a m
n je zlomek v základńım tvaru.

Limita složené funkce Necht’ a, b, L ∈ R∗, M,N ⊆ R, a je limitńı bod M , b je limitńı bod N a necht’ funkce
g : M → N a f : N → R maj́ı limity lim

x→a
g(x) = b a lim

x→b
f(x) = L.

Složená funkce f(g) : M → R má potom limitu limx→A f(g)(x) = L ⇐⇒ plat́ı jedna z podmı́nek:{
b ∈ N =⇒ f(b) = L . . . . . . . . . . . . .f(x) je spojitá v L

∃δ, ∀x ∈ P (A, δ) ∩M : b /∈ g(x) . . .na nějakém prstencovém okoĺı funkce nenabývá hodnotu b
.

2.4.2 Heineho definice spojitosti, Blumbergova definice spojitosti a počet spojitých funkćı

Heineho definice spojitosti Funkce f : M → R je spojitá v bodě a ∈ M ⊆ R právě tehdy, když

∀(an) ⊆ M : lim an = a =⇒ lim f(an) = f(a).

Blumbergova definice spojitosti ∀f : R → R,∃M ⊆ R, t.ž.: M je hustá v R a restrikce f |M je spojitá funkce.

� Hustá množina N v M : ∀a ∈ M,∀δ : U(a, δ) ∩N ̸= 0

� Restrikce (zúžeńı): A ⊆ B,C; f : B → C. Restrikce na A je funkce f |A : A → C ≡ ∀x ∈ A : (f |A)(x) := f(x)

Počet spojitých funkćı ∃ bijekce h : R → C(R), kde C(M) definujeme pro M ⊆ R jako

C(M) := {f : M → R | f je spojitá}.

2.5 Derivace

2.5.1 Derivace složené funkce a derivace inverzńı funkce

Derivace složené funkce Necht’ a ∈ M ⊆ R, a je limitńı bod množiny M , g : M → N je spojitá v a s derivaćı
g′(a) ∈ R∗; g(a) ∈ N je limitńı bod množiny N ⊆ R. Necht’ f : N → R je funkce s derivaćı f ′(g(a)) ∈ R∗, potom
složená funkce f(g) : M → R má derivaci

(f(g))′(a) = f ′(g(a)) · g′(a), pokud je součin napravo definován.

Alternativně:
Necht’ f má derivaci v bodě b, funkce g má derivaci v bodě a, b = g(a) a g je spojitá v a. Potom

(f ◦ g)′(a) = f ′(b) · g′(a) = f ′(g(a)) · g′(a).

Derivace inverzńı funkce Necht’ a ∈ M ⊆ R, a je limitńı bod množiny M , f : M → R je prostá funkce s
derivaćı f ′(a) ∈ R∗ a inverzńı funkce f−1 : f [M ] → M je spojitá v b := f(a), potom když:

1. f ′(a) ∈ R \ {0}, pak (f−1)′(b) =
1

f ′(a)
=

1

f ′(f−1(b))

2. f ′(a) = 0 a f roste (resp. klesá) v bodě a, pak (f−1)′(b) = ±∞

3. f ′(a) = ±∞ a b je limitńı bod množiny f [M ], pak (f−1)′(b) = 0.

2.5.2 l’Hospitalovo pravidlo a konvexivita a konkavita f”

l’Hospitalovo pravidlo Necht’ a ∈ R; f, g : P+(a, δ) → R maj́ı vlastńı derivace, g′ ̸= 0 a
lim
x→a

f(x) = lim
x→a

g(x) = 0 nebo lim
x→a

g(x) = ±∞, potom:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
, pokud posledńı limita existuje.

Věta plat́ı i pro P−(a, δ), P (a, δ) a pro a = ±∞.
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Konvexivita a konkavita f ′′: Necht’ I ⊆ R je interval, f : I → R je spojitá, D(f) = I0,∀c ∈ I0,∃f ′′(c) ∈ R∗.

1. f ′′ ≥ 0 (resp. f ′′ ≤ 0) =⇒ f je konvexńı (resp. konkávńı)

2. f ′′ > 0 (resp. f ′′ < 0) =⇒ f je ryze konvexńı (resp. ryze konkávńı).

2.6 Integrály

2.6.1 Lagrange̊uv a Cauchẙuv zbytek Taylorova polynomu a Bellova č́ısla

Necht’ f, f ′, f ′′, . . . , f (n+1) : U(a, δ) → R, kde n ∈ N.

Lagrange̊uv zbytek ∀x ∈ P (a, δ)∃c mezi a a x, t.ž.:

Rf,a
n (x) :=

f (n+1)(c)

(n+ 1)!
· (x− a)n+1

Cauchẙuv zbytek ∀x ∈ P (a, δ)∃c mezi a a x, t.ž.:

Rf,a
n (x) :=

f (n+1)(c) · (x− c)n

n!
· (x− a)

Bellova č́ısla ∀x ∈ (−1, 1) plat́ı: ee
x−1 = exp(exp(x)− 1) =

∞∑
n=0

Bnx
n

n!
, kde Bn je počet rozklad̊u množiny.

2.6.2 Riemann = Newton a integrace substitućı

Riemann = Newton Necht’ f : [a, b] → R je spojitá a F : [a, b] → R je k ńı primitivńı, potom

lim
||a||→0

R(a, t, f) = F (b)− F (a).

Riemann̊uv součet: R(a, t, f) :=

k∑
i=1

(ai − ai−2) · f(ti), kde a je děleńı intervalu I, tedy a = (a0, . . . , ak).

Integrace substitućı Necht’ I, J ⊆ R jsou netriviálńı intervaly; g : I → J ; g′ : I → R a f : J → R. Potom

1. F =

∫
f na J =⇒ F (g) =

∫
f(g) · g′ na I

2. pokud g je surjekce ∧ g′ ̸= 0 na I, pak plat́ı: G =

∫
f(g) · g′ na I =⇒ G(g−1) =

∫
f na J .

2.6.3 Per partes a int(r(x))

Per partes Necht’ f, g, F,G : (a, b) → R, kde a < b ∈ R∗; F (resp. G) je primitivńı k f (resp. ke g). Potom, když
jsou definovány dva ze tř́ı člen̊u Ti, pak plat́ı:

(N)

∫ b

a

fG︸ ︷︷ ︸
T1

= [FG]ba︸ ︷︷ ︸
T2

−(N)

∫ b

a

Fg︸ ︷︷ ︸
T3

.

(= pro neurčitý integrál:

∫
f ′g = fg −

∫
fg′ )

Integrál r(x): ∀ racionálńı funkce r(x), kde r(x) = p(x)
q(x) : R \ Z(r) → R, existuje funkce R(x) ve tvaru:

R(x) = r0(x) +

k∑
i=1

si · log(|x− α|) +
l∑

i=1

ti · log(ai(x)) +
m∑
i=1

ui · arctan(bi(x)),

kde r0(x) je racionálńı funkce; k, l,m ∈ N0; prázdné
∑

:= 0; si, ti, ui ∈ R; αi ∈ Z(r(x)); ai(x) jsou ireducibilńı

trojčleny a bi ∈ R[x] jsou nekonstantńı lineárńı polynomy, t.ž.: na každém ∅ ≠ I ⊆ R\Z(r(x)) plat́ı R(x) =

∫
r(x).

Plat́ı, že Ireducibilńı trojčlen je polynom stupně 2 a Z(r) := {a ∈ R | q(a) = 0}.
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2.6.4 O restrikćıch, Lebesgueova věta a ZVA 2

O restrikćıch Pokud a < b < c ∈ R a f : [a, c] → R, pak: f ∈ R(a, c) ⇐⇒ f ∈ R(a, b) ∧ f ∈ R(b, c), neboli∫ c

a

f =

∫ b

a

f +

∫ c

b

f.

Lebesgueova věta Pro každou f : [a, b] → R plat́ı, že f ∈ R(a, b) ⇐⇒ f je omezená a nespojitá (*) s mı́rou 0.
(*) BN(f) := {x ∈ M | f je nespojitá v x} .

Základńı věta analýzy 2 Necht’ f, F : (a, b) → R, kde a < b; F je primitivńı k f a f ∈ R(a, b). Potom existuj́ı
vlastńı limity Fa := lim

x→a
F (x) a Fb := lim

x→b
F (x) a plat́ı:

(R)

∫ b

a

f = Fb − Fa = (N)

∫ b

a

f.

2.6.5 Riemann = Darboux a HK. int a N. int

Riemann = Darboux Necht’ f : [a, b] → R, potom:

f ∈ R(a, b) ⇐⇒
∫ b

a

f =

∫ b

a

f ∈ R.

Pokud plat́ı obě strany ekvivalence, pak: (R)

∫ b

a

f =

∫ b

a

f =

∫ b

a

f .

HK.
∫

a N.
∫
: Necht’ a < b; F, f : [a, b] → R, kde F je spojitá a F ′ = f na (a, b). Pak f ∈ HK(a, b) a plat́ı

(HK)

∫ b

a

f = F (b)− F (a) = (N)

∫ b

a

f.

2.6.6 Délka grafu a Integrálńı kritérium

Délka grafu Necht’ f : [a, b] → R je spojitá a f ′ ∈ R(a, b), potom:

ℓ(Gf ) =

∫ b

a

√
1 + (f ′)2 ∈ (0,+∞).

Integrálńı kritérium Necht’ m ∈ Z a f : [m,+∞) → R je nezáporná a nerostoućı funkce. Potom

řada

∞∑
n=m

f(n) konverguje ⇐⇒ lim
n→∞

∫ n

m

f < +∞.
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3 Věty a tvrzeńı s d̊ukazem

3.1 Reálná č́ısla

3.1.1 Odmocnina ze dvou neńı racionálńıch a Cantorova věta

Věta (
√
2 /∈ Q): Rovnice x2 = 2 nemá v oboru Q řešeńı.

D̊ukaz. Pro spor předpokládejme, že ∃a, b ∈ N, t.ž.:
(
a
b

)2
= 2. Máme tedy a2 = 2b2, kde a2 je sudé. Neboli a = 2c

pro nějaké c ∈ N. Dostáváme (2c)2 = 2b2 ⇐⇒ 4c2 = 2b2 ⇐⇒ b2 = 2c2, neboli b2 je sudé, proto i b je sudé, což
je spor s nesoudělnost́ı a, b.  ■

Cantorova věta: Pro žádnou množinu X neexistuje surjekce f : X → P(X) z X na jej́ı potenci.

D̊ukaz. Pro spor předpokládejme, že f : X → P(X) je surjektivńı, kde X ̸= ∅. Dále uvažme:

Y := {x ∈ X | x /∈ f(x)} ⊆ X.

Protože f je surjektivńı, tak ∃y ∈ X t.ž. f(y) = Y .
(a) Pokud y ∈ Y , pak podle definice množiny Y plat́ı, že y /∈ f(y) = Y .
(b) Pokud y /∈ Y = f(y), má y vlastnost definuj́ıćı množinu Y a y ∈ Y .
V obou připadech se jedná o spor.  ■

3.2 Limity

3.2.1 Jendoznačnost limity a Bolzano-Weierstrassova věta

Věta (Jendoznačnost limity): Limita posloupnosti je jednoznačná ≡ lim an = K ∧ lim an = L =⇒ K = L.
(Neboli když má nejvýše jednu limitu.)

D̊ukaz. Necht’ lim an = K i lim an = L a necht’ ∃ε.
Podle definice limity posloupnosti ∃n0, t.ž.: n ≥ n0 =⇒ an ∈ U(K, ε) i an ∈ U(L, ε).
Dostáváme ∀ε : U(K, ε) ∩ U(L, ε) ̸= ∅. Tedy K = L. ■

Věta (Bolzano-Weierstrassova): Omezená posloupnost reálných č́ısel má vždy konvergentńı podposloupnost.

D̊ukaz. Necht’ (an) je omezená posloupnost a (bn) je monotónńı podposloupnost́ı (an), neboli (bn) ⪯ (an).
(bn) je tak zjevně je omezená a podle věty o robustně monotónńı posloupnosti má vlastńı limitu. ■

3.2.2 Limita a uspořádáńı a Cauchyova podmı́nka

Věta (Limita a uspořádáńı): Necht’ (an) a (bn) ∈ R s lim an = K ∈ R∗ a lim bn = L ∈ R∗. Potom plat́ı:

1. K < L =⇒ ∃n0 : ∀m,n ≥ n0 je am < bn.

2. ∀n0,∃m,n ≥ n0 ∧ am ≥ bn =⇒ K ≥ L.

D̊ukaz.

1. Necht’ K < L, pak ∃ε : U(K, ε) < U(L, ε). Podle definice limity máme ∃n0 : m,n ≥ n0 =⇒ am ∈ U(K, ε) a
bn ∈ U(L, ε). Tedy m,n ≥ n0 =⇒ am < bn.

2. Triviálně obměnou implikace.

■

Věta (Cauchyova podmı́nka): Posloupnost reálných č́ısel (an) je konvergentńı ⇐⇒ (an) je Cauchyova.

D̊ukaz. =⇒ Necht’ ε je dáno a lim an = a.

Potom ∃n0 : n ≥ n0 =⇒ |an − a| < ε
2 . Tedy:

m,n ≥ n0 =⇒ |am − an| ≤ |am − a|+ |a− an| <
ε

2
+

ε

2
= ε,

pak (an) je Cauchyova posloupnost.

⇐= Necht’ (an) je Cauchyova posloupnost. Vı́me, že (an) je omezená a proto má podle Bolzano-Weierstrassovy
věty konvergentńı podposloupnost (amn

) s limitou a. Pro dané ε tak máme n0 : n ≥ n0 =⇒ |amn
− a| < ε

2
a zároveň n ≥ n0 =⇒ |an − a| ≤ |an − amn

|+ |amn
− a| < ε

2 + ε
2 = ε. Dostáváme tedy, že an → a.

■

(Použili jsme vyjádřeńı am − an = (am − a) + (a− an) a trojúhelńıkovou nerovnost |c+ d| ≤ |c|+ |d|.)
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3.3 Řady

3.3.1 Nutná podmı́nka konvergence řady a Harmonická řada

Tvrzeńı (Nutná podmı́nka konvergence řady): Když řada
∑

an konverguje, pak lim an = 0.

D̊ukaz. Když
∑

an konverguje, pak S := lim sn ∈ R, kde sn =

n∑
j=1

aj .

Podle výsledk̊u o limitě podposloupnosti a podle aritmetiky limit dostáváme:

lim an = lim(sn − sn−1) = lim sn − lim sn−1 = S − S = 0.

■

Využ́ıváme platnosti lim(sn) = lim(sn−1) = S.

Tvrzeńı (Harmonická řada): Harmonická řada

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ . . . diverguje a má součet +∞.

D̊ukaz. Necht’ (hn) jsou částečné součty

∞∑
n=1

1

n
a (sn) jsou částečné součty

∞∑
n=1

an.

Potom plat́ı ∀n : 1
n > an, tedy i ∀n : hn > sn. Protože podle věty o jednom strážńıkovi se lim sn = +∞, pak i

limhn = +∞ a proto je
∑

1
n = +∞. ■

D̊ukaz. (Alternativně)
Pro částečné součty n a 2n plat́ı:

sn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
∧ s2n = 1 +

1

2
+

1

3
+ · · ·+ 1

n
+

1

n+ 1
+ · · ·+ 1

2n

s2n − sn =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
≥ 1

2n
+

1

2n
+ · · ·+ 1

2n
=�n · 1

2�n
=

1

2
.

Proto ∀n ∈ N : s2n − sn ≥ 1
2 a posloupnost (sn) t́ım splňuje Cauchyovu podmı́nku a diverguje.

■

3.4 Funkce

3.4.1 Heineho definice a Aritmetika limit funkćı

Věta (Heineho definice): Necht’ M ⊆ R, K,L jsou prvky R∗, K je limitńı bod množiny M a f : M → R. Pak

lim
x→K

f(x) = L ⇐⇒ ∀(an) ⊆ M \ {K} : lim an = K =⇒ lim f(an) = L.

Tedy L je limita funkce f v K ⇐⇒ pro každou posloupnost (an) v M , která má limitu K, ale nikdy se K nerovná,
funkčńı hodnoty (f(an)) maj́ı limitu L.

D̊ukaz.

=⇒ Předpokládáme, že lim
x→K

f(x) = L, že (an) ⊆ M \ {K} má limitu K a žě ε je dáno. Potom

∃δ : ∀x ∈ M ∩ P (K, δ) je f(x) ∈ U(L, ε).

Pro toto δ zároveň ∃n0 : n ≥ n0 =⇒ an ∈ P (K, δ) ∩M . Tedy n ≥ n0 =⇒ f(an) ∈ U(L, ε) a f(an) → L.

⇐= Za pomoci obměny ¬ =⇒ ¬. Předpokládáme, že lim
x→K

f(x) = L neplat́ı a proto ani pravá strana ekvivalence

neplat́ı. Tedy pro bod b:

∃ε > 0 : ∀δ > 0,∃b = b(δ) ∈ M ∩ P (K, δ), t.̌z.: f(b) /∈ U(L, ε).

Polož́ıme pro n ∈ N : δ = 1
n a ∀n ∈ N vybereme bod:

bn := b

(
1

n

)
∈ M ∩ P

(
K,

1

n

)
, t.̌z.: f(bn) /∈ U(L, ε).

Posloupnost (bn) lež́ı v M \ {K} a konverguje ke K, ale posloupnost hodnot (f(bn)) nekonverguje k L.
Pravá strana ekvivalence tedy neplat́ı.  

■
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Věta (Aritmetika limit funkćı): Necht’ M ∈ R, necht’ a,K,L ∈ R∗, kde a je limitńı bod množiny M a necht’

funkce f, g : M → R maj́ı limity lim
x→a

f(x) = K, lim
x→a

g(x) = L.

Potom plat́ı


lim
x→a

f(x) + g(x) = K + L

lim
x→a

f(x) · g(x) = K · L

lim
x→a

f(x)

g(x)
=

K

L
, kde pro g(x) = 0 definujeme

f(x)

g(x)
:= 0.

D̊ukaz. Z d̊uvodu podobnosti probereme jen pod́ıl.
Necht’ (an) ⊆ M \ {aA} s lim an = a. Podle Heineho definice limity funkce plat́ı:

=⇒ Necht’ lim f(an) = K, lim g(an) = L a předpokládejme, že L ̸= 0, proto i ∀n ≥ n0 : g(an) ̸= 0. Zároveň
předpokládejme, že K,L ̸= ±∞, tedy že konverguj́ı. Podle věty o AK posloupnost́ı se pak limity rovnaj́ı:

lim

(
f(an)

g(an)

)
=

lim f(an)

lim g(an)
=

K

L
.

⇐= Protože tento vztah plat́ı pro každou posloupnost
(

f(an)
g(an)

)
s (an) jako výše, tak podle Heineho definice je

lim
x→a

f(x)

g(x)
=

K

L
.

■

3.4.2 Nabýváńı mezihodnot a Princip minima a maxima

Věta (Nabýváńı mezihodnot): Necht’ a, b, c ∈ R; a < b; f : [a, b] → R je spojitá a f(a) < c < f(b) nebo
f(a) > c > f(b). Potom ∃d ∈ (a, b) : f(d) = c.

D̊ukaz. Předpokládejme, že f(a) < c < f(b) (pro opačnou nerovnost obdobně).
Necht’ A := {x ∈ [a, b] | f(x) < C} a d := sup(A) ∈ [a, b].
Č́ıslo d je korektně definované, protože množina A ̸= ∅ (a ∈ A) a je shora omezená (b).
Ukážeme, že ke sporu vede f(d) < c i f(d) > c, proto f(d) = c. Ze spojitosti funkce f v a a v b plyne, že d ∈ (a, b).

(a) Pro f(d) < c. Ze spojitosti funkce f v d plyne, že ∃δ : x ∈ U(d, δ) ∩ [a, b] =⇒ f(x) < c. Pak ale A obsahuje
větš́ı č́ısla než d. Dostáváme spor, protože d je horńı mez množiny A.

(b) Pro f(d) > c. Ze spojitosti funkce f v d plyne, že ∃δ : x ∈ U(d, δ) ∩ [a, b] =⇒ f(x) > c. Pak ale ∀x ∈ [a, d)
dostatečně bĺızké d lež́ı mimo A, což je ve sporu d, jakožto nejmenš́ı horńı meźı množiny A.

■

Věta (Princip minima a maxima): Necht’ M ⊆ R je neprázdná kompaktńı množina a f : M → R je spojitá.
Potom ∃a, b ∈ M,∀x ∈ M : f(a) ≤ f(x) ≤ f(b).

Řekneme, že f nabývá na M

{
v bodu a minimum (nejmenš́ı hodnotu) f(a)

v bodu b maximum (největš́ı hodnotu) f(b).

D̊ukaz. Dokážeme existenci maxima (pro minimum obdobně).
Zjevně plat́ı, že ∀x ∈ M : f(x) ̸= ∅. Ukážeme, že M je shora omezená sporem.

Kdyby nebyla, tak ∃(an) ⊆ M : lim f(an) = +∞.
Podle kompaktnostiM má (an) konvergentńı podposloupnost (amn

) s b := lim(amn
) ∈ M . Pak i lim f(amn

) = +∞,
což je spor, protože podle Heineho definice je lim f(amn

) = f(a).  

Lze definovat ∀x ∈ M : s := sup(f(x)) ∈ R a podle definice suprema ∃(an) ⊆ M s lim f(an) = s.
Dı́ky kompaktnosti M má (an) konvergentńı podposloupnost (amn) s b := lim amn ∈ M .
Podle Heineho definice je lim f(amn

) = f(b) = s. Protože s = f(b) je horńı meźı, tak ∀x ∈ M : f(b) ≥ f(x).
■
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3.5 Derivace

3.5.1 Nutná podmı́nka extrému a Leibniz̊uv vzorec

Věta (Nutná podmı́nka extrému): Necht’ b ∈ M je OLB M ⊆ R, f : M → R,∃f ′(b) ∈ R∗ a f ′(b) ̸= 0. Potom

∀δ∃c, d ∈ U(b, δ) ∩M : f(c) < f(b) < f(d).

Tedy funkce f nemá v bodě b lokálńı extrém, nemá v b ani lokálńı minimum ani lokálńı maximum.

D̊ukaz. Necht’ b ∈ M ⊆ R a f : M → R a δ je dáno. Necht’ f ′(b) < 0 (opačná nerovnost obdobně).
Vezmeme tak malé ε, že ∃y ∈ U(f ′(b), ε) =⇒ y < 0). Nyńı podle definice derivace funkce v bodě:

∃θ : x ∈ P (b, θ) ∩M =⇒

<0︷ ︸︸ ︷
f(x)− f(b)

x− b
∈ U(f ′(b), ε).

Tedy když P−(b, θ) ∩M , pak f(x) > f(b), protože x− b < 0 a
f(x)− f(b)

x− b
< 0.

Podobně když x ∈ P+(b, θ) ∩M , pak f(x) < f(b).
Předpokládejme, že θ < δ a ∃c ∈ P+(b, θ) ∩M a d ∈ P−(b, θ) ∩M. Prvky c, d existuj́ı, protože b je OLB M .
Proto plat́ı c, d ∈ U(b, δ) ∩M =⇒ f(c) < f(b) a f(d) > f(b). ■

Věta (Leibniz̊uv vzorec): Necht’ b ∈ M ⊆ R, b je LB množiny M , f, g : M → R a f nebo g je spojitá v b.
Potom

(fg)′(b) = f ′(b) · g(b) + f(b) · g′(b),

když pravá strana neńı neurčitý výraz.

D̊ukaz. Necht’ je g spojitá v b (druhý př́ıpad obdobně). Podle podle AL funkćı plat́ı

(fg)′(b) = lim
x→b

f(x)g(x)− f(b)g(b)

x− b
=

= lim
x→b

f(x)g(x)

0︷ ︸︸ ︷
−f(b)g(x) + f(b)g(x)−f(b)g(b)

x− b
=

= lim
x→b

(f(x)− f(b)) g(x) + f(b) (g(x)− g(b))

x− b
=

= lim
x→b

f(x)− f(b)

x− b
· lim
x→b

(g(x) + f(b)) · lim
x→b

g(x)− g(b)

x− b
=

spojitost
= f ′(b) · g(b) + f(b) · g′(b).

■

3.5.2 Lagrangeova věta a Derivace a monotonie 1

Věta (Lagrangeova): Pokud f je hezká funkce, pak ∃c ∈ (a, b) : f ′(c) =
f(b)− f(a)

b− a
=: z.

Hezká funkce f : [a, b] → R je spojitá.

D̊ukaz. Necht’ g(x) := f(x)−(x−a)·z : [a, b] → R splňuje předpoklady Rolleovy věty, předevš́ım g(a) = g(b) = f(a),
takže 0 = g′(c) = f ′(c)− z pro nějaké c ∈ (a, b). ■

Rolleova věta: f je hezká & f(a) = f(b) =⇒ ∃c ∈ (a, b) : f(c) = 0.

Věta (Derivace a monotonie 1): Necht’ I ⊆ R je interval, f : I → R je spojitá a ∀c ∈ I0,∃f ′(c). Potom

1. f ′ ≥ 0 (resp. f ′ ≤ 0) na I0 =⇒ f na I neklesá (resp. neroste)

2. f ′ > 0 (resp. f ′ < 0) na I0 =⇒ f na I roste (resp. klesá).

Kde I0 ⊆ I znač́ı vnitřek intervalu I, tedy I0 = {a ∈ I | ∃δ : U(a, δ) ⊆ I}.

D̊ukaz. Necht’ je f ′ < 0 na I0 (klesá) a x < y jsou libovolná č́ısla v I.

Podle Lagrangeovy věty pro nějaké z ∈ (x, y) ⊆ I0 je f(y)−f(x)
y−x = f ′(z) < 0.

Protože y − x > 0, je f(x) > f(y) a f na I klesá. (Zbývaj́ıćı tři možnosti obdobně.)
■
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3.5.3 Taylor̊uv polynom a Nejednoznačnost primitivńı funkce

Lemma (o polynomech): Necht’ b ∈ R, n ∈ N0 a p(x) ∈ R[x] s deg p ≤ n. Pak lim
x→b

p(x)

(x− b)n
= 0 =⇒ p(x) ≡ 0.

D̊ukaz. Indukćı podle n.

� (i) Pro n = 0 plat́ı. p(x) = a0 a a0

1 → 0 je a0 = 0.

� (ii) Pro n > 0 předpokládejme, že plat́ı lim
x→b

p(x)

(x− b)n
= 0 =⇒ p(x) ≡ 0.

Potom p(b) = lim
x→b

p(x) = 0, tedy b je kořenem p(x) = (x− b) · q(x), kde q(x) ∈ R je stupně nejvýše n− 1.

Dostáváme tak z indukčńıho předpokladu

0 = lim
x→b

p(x)

(x− b)n
= lim

x→b

����(x− b) · q(x)
����(x− b)n

= lim
x→b

q(x)

(x− b)n−1

neboli, že q(x) = 0, proto i p(x) = (x− b) · 0 = 0.

□

Věta (Taylor̊uv polynom) Necht’ n ∈ N a f : U(b, δ) → R jsou jako v definici Taylorova polynomu.
T f,b
n (x) je jediný polynom p(x) ∈ R stupně nejvýše n, t.ž.:

f(x) = p(x) + o((x− b)n) pro x → b.

D̊ukaz. Indukćı podle n dokážeme aproximaci T f,b
n , tj. že lim

x→b

f(x)− T f,b
n (x)

(x− b)n
= 0.

� (i) Pro n = 1: podle AL funkćı je lim
x→b

f(x)− T f,b
1 (x)

x− b
= lim

x→b

f(x)− f(b)

x− b
− lim

x→b
f ′(b) = f ′(b)− f ′(b) = 0.

� (ii) Pro n ≥ 2: podle L’Hospitalova pravidla a indukce máme, že:

lim
x→b

f(x)− T f,b
n (x)

(x− b)n
= lim

x→b

(
f(x)− T f,b

n (x)
)′

((x− b)n)
′ =

1

n
lim
x→b

f ′(x)− T f ′,b
n−1(x)

(x− b)n−1
=

1

n
· 0 = 0.

Necht’ p(x) ∈ R[x] s deg(p) ≤ n splňuje, že lim
x→b

f(x)− p(x)

(x− b)n
= 0, potom ale:

lim
x→b

f(x)− T f,b
n (x)

(x− b)n
= lim

x→b

p(x)− f(x)

(x− b)n
+ lim

x→b

f(x)− T f,b
n (x)

(x− b)n
= 0 + 0 = 0.

Podle předešlého Lemmatu o polynomech tak dostáváme p(x) = T f,b
n (x).

■

Věta (Nejednoznačnost primitivńı funkce) Necht’ I ⊆ R je netriviálńı interval; F1, F2, f : I → R a F1, F2

je primitivńı k f . Potom ∃c ∈ R : F1 − F2 = c na I.

D̊ukaz. Necht’ ∃a, b ∈ I, a < b.
Podle Lagrangeovy věty o středńı hodnotě, použité pro funkci F1 − F2 a interval [a, b] plat́ı, že:

∃c ∈ (a, b) :
(F1 − F2)(b)− (F1 − F2)(a)

b− a
= (F1 − F2)

′(c) = F ′
1(c)− F ′

2(c) = f(c)− f(c) = 0.

Dostáváme tedy pro nějaké c, že ∀x ∈ I : F1(b)− F2(b) = F1(a)− F2(a) =⇒ F1(x)− F2(x) = c.
■
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3.6 Integrály

3.6.1 Monotonie Newtonova integrálu a Derivace jsou Darbouxovy

Věta (Monotonie Newtonova integrálu): Pokud f, g ∈ N(a, b) a f ≤ g na (a, b), pak (N)

∫ b

a

f ≤ (N)

∫ b

a

g.

D̊ukaz. Necht’ F , resp. G, je primitivńı k f , resp. ke g, a necht’ č́ısla c, d ∈ (a, b), kde c < d, jsou libovnolná.
Použijeme Lagrangeovu větu o středńı hodnotě pro F −G a interval [c, d].
Pro nějaký bod e ∈ (c, d) plat́ı:

(F (d)−G(d))− (F (c)−G(c)) = (F −G)′(e) · (d− c) =

= (F ′(e)−G′(e)) · (d− c) =

= (f(e)− g(e)) · (d− c) ≤ 0.

Proto plat́ı F (d)− F (c) ≤ G(d)−G(c).

Tato nerovnost se zachovává při lineárńıch přechodech c → a, d → b a dostaneme tak (N)

∫ b

a

f ≤ (N)

∫ b

a

g. ■

Věta (Derivace jsou Darbouxovy): Necht’ I ̸= ∅ je interval a f : I → R má primitivńı funkci =⇒ f má
Darbouxovu vlastnost.

D̊ukaz. Necht’ a < b; f, F : [a, b] → R; F je primitivńı k f a f(a) < c < f(b). Pro opačné nerovnosti obdobně.
Uvážme funkci G(x) := F (x)− cx : [a, b] → R.
Patrně G′ = F ′ − c = f − c na [a, b] a G je proto spojitá.
Podle věty o Principu minima a maxima G nabývá v nějakém d ∈ [a, b] minimum a podle tvrzeńı O derivaci a
monotonii 2 plyne z

G′(a) = f(a)− c < 0 a G′(b) = f(b)− c > 0, že d ∈ (a, b).

Nakonec podle věty O nutné podmı́nce extrému se

G′(d) = f(d)− c = 0, takže f(d) = c.

■

3.6.2 Bachetova identita

Tvrzeńı (Bachetova identita): Necht’ p, q ∈ R[x] nemaj́ı společný kořen, tj.: pro žádné z ∈ C neplat́ı, že
p(z) = q(z) = 0. Potom ∃r, s ∈ R[x], t.ž.:

r(x) · p(x) + s(x) · q(x) = 1.

D̊ukaz. Necht’ p, q ∈ R[x] a S := {r(x) · p(x) + s(x) · q(x) | r(x), s(x) ∈ R[x]}.
Necht’ polynom 0 ̸= t(x) ∈ S, má nejmenš́ı stupeň.
Libovolný a(x) ∈ S j́ım děĺıme se zbytkem:

a(x) = t(x) · b(x) + c(x),

kde b(x), c(x) ∈ R[x] a deg(c(x)) < deg(t(x)) nebo c(x) = 0.
Protože ale c(x) = a(x)− b(x) · t(x) ∈ S, plat́ı c(x) = 0 a a(x) = b(x)t(x), takže t(x) děĺı každý prvek v S.
Ale p(x), q(x) ∈ S a t(x) je oba děĺı.
Protože p(x) a q(x) nemaj́ı společný kořen, tak podle Zvalgovy věty * je t(x) nenulový konstantńı polynom.
B.Ú.N.O. je t(x) = 1. Tedy 1 ∈ S a máme uvedenou identitu. ■

* Zvalgova věta: ∀p(x) ∈ C[x] \ C,∃d ∈ C : p(α) = 0.
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3.6.3 Neomezené funkce jsou špatné a Baireova věta

Tvrzeńı (Neomezené funkce jsou špatné): Pokud funkce f : [a, b] → R neomezená, pak f /∈ R(a, b).
(Pokud je neomezená, pak neńı riemannovsky integrovatelná.)

D̊ukaz. Předpokládáme, že f : [a, b] → R je neomezená. Ukážeme, že:

∀n, ∃(a, t) : ||a|| < 1

n
∧ |R(a, t, f)| > n.

To je však v rozporu s Cauchyho podmı́nkou pro riemannovskou integrovatelnost funkce f .
Z neomezenosti f a z kompaktnosti [a, b] vyplývá, že existuje konvergentńı posloupnost (bn) ⊆ [a, b] s limitou
lim bn = α ∈ [a, b] a s lim |f(bn)| = +∞.
Necht’ je dáno n ∈ N.
Jako a vezmeme libovolné děleńı a = (a0, . . . , ak) intervalu [a, b] s ||a|| < 1

n , ale t.ž.: ∃j ∈ [k] : α ∈ [aj−1, aj ].
Pak vybereme libovolné body ∀i ̸= j : ti ∈ [ai−1, ai] a uváž́ıme neúplný Riemann̊uv součet

s :=

k∑
i=1,i̸=j

(ai − ai−1)f(ti).

Nyńı vybereme zbývaj́ıćı bod tj ∈ [aj−1, aj ] tak, že:

|(aj − aj−1)f(tj)| > |s|+ n.

To lze, protože bn ∈ [aj−1, aj ] pro každé dostatečně velké n.
Pak definujeme t jako sestávaj́ıćı ze všech těchto bod̊u a pomoćı trojúhelńıkové nerovnosti dostaneme požadované:

|R(a, t, f)| ≥ |(aj − aj−1)f(tj)| − |s| > n.

■

Věta (Baireova): Pokud a < b ∈ R a [a, b] =

∞⋃
n=1

Mn, pak některá množina Mn neńı ř́ıdká.

D̊ukaz. Necht’ v [a, b] =

∞⋃
n=1

Mn je každá množina Mn ř́ıdká, odvod́ıme spor.

M1 je ř́ıdká =⇒ ∃[a1, b1] ⊆ [a, b], t.ž.: a1 < b1 a [a1, b1] ∩M1 = ∅.
M2 je ř́ıdká =⇒ ∃[a2, b2] ⊆ [a1, b1], t.ž.: a2 < b2 a [a2, b2] ∩M2 = ∅, atd.
Takto źıskáme posloupnost vnořených interval̊u:

[a, b] ⊇ [a1, a2] ⊇ [a2, a2] ⊇ · · · ⊇ [an, bn] ⊇ . . . , t.ž.:

∀n ∈ N : an < bn ∧ [an, bn] ∩Mn = ∅.

Necht’ α := lim an ∈ [a, b].
(Limita existuje, protože a ∈ [a, b], protože (an) je neklesaj́ıćı a je zdola omezená č́ıslem a a shora č́ıslem b.)
Dokonce ∀m,n : an < bm, takže ∀n : α ∈ [an, bn].
Potom ale ∀n : α /∈ Mn dává spor, protože α ∈ [a, b]. ■

3.6.4 Dolńı součet je menš́ı než horńı a ZVA 1

Věta (
∫
≤

∫
): Necht’ f : [a, b] → R. Pro každá dvě děleńı a, b ∈ D(a, b) plat́ı, že

s(a, f) ≤
∫ b

a

f ≤
∫ b

a

f ≤ S(b, f),

D̊ukaz. Necht’ a a b jsou děleńı intervalu [a, b].
Vı́me, že c := a ∪ b. Pak totiž a, b ⊆ c a podle tvrzeńı O monotonii dolńıho a horńıho součtu je

s(a, f) ≤ s(c, f) ≤ S(c, f) ≤ S(b, f) a dostáváme s(a, f) ≤ S(b, f).

■

Dolńı součet: s(a, f)
Horńı součet: S(a, f)
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Věta (ZVA 1): Necht’ f : [a, b] → R a f ∈ R(a, b). Potom ∀x ∈ (a, b] je f ∈ R(a, x) a F : [a, b] → R, kde

F (x) :=

∫ x

a

f , je lipschitzovsky spojitá.

t.j.: spojitá v x ∈ [a, b] =⇒ F ′(x) = f(x).

D̊ukaz. Necht’ f ∈ R(a, b). Podle tvrzeńı o restrikćıch je f ∈ R(a′, b′) pro každé a ≤ a′ < b′ ≤ b.
Tedy F je správně definováno a F (a) = 0.
Protože f je omezená (tvrzeńı, že neomezené funkce jsou špatné), vezmeme omezuj́ıćı konstantu d > 0.
Necht’ c := 1+ d, necht’ x < y ∈ [a, b] a podle definice Riemannova integrálu necht’ (a, t) je takové s body intervalu

[x, y], že

∣∣∣∣∫ y

x

f −R(a, t, f)

∣∣∣∣ < y − x.

Podle tvrzeńı o restrikćıch a definice funkce F plat́ı, že:

|F (y)− F (x)| =
∣∣∣∣∫ y

x

f

∣∣∣∣ ≤ y − x+ |R(a, t, f)| ≤ y − x+ c · (y − x),

a tak |F (y)− F (x)| ≤ c · |y − x| a F je lipschitzovsky spojitá.

Necht’ f je v x0 ∈ [a, b] spojitá a ∃ε. Vezmeme č́ıslo δ, t.ž.:

x ∈ U(x0, δ) ∩ [a, b] =⇒ f(x) ∈ U(f(x0), ε).

Necht’ x ∈ P (x0, δ) ∩ [a, b] je libovolné, řekněme, že x > x0 (pro < obdobně).

Vezmeme děleńı s body (a, t) intervalu [x0, x], t.ž.:

∣∣∣∣∫ x

x0

f −R(a, t, f)

∣∣∣∣ < ε(x− x0). Potom:

F (x)− F (x0)

x− x0
− f(x0) =

1

x− x0
·
∫ x

x0

f − f(x0)

je menš́ı, než:
R(a, t, f) + ε(x− x0)

x− x0
− f(x0) <

����(x− x0)(���f(x0) + ε+ ε)

����x− x0
−���f(x0) = 2ε.

Podobně se dokáže, že je i větš́ı, než −2ε a dostaneme tak F ′(x0) = f(x0).
■

3.6.5 Abelova sumace

Věta (Abelova sumace): Necht’ a < b ∈ Z a f, f ′ ∈ R(a, b) a f je spojitá v b. Potom

∑
a<n≤b

f(n) =

∫ b

a

f +

∫ b

a

{x}f ′(x) =:

∫ b

a

T , je identita.

D̊ukaz. Dokažme, že b = a+ 1 (elmentárńı identita).
Identitu s mezemi a < b pak dostaneme jako součet elem. identit s mezemi a a a+ 1, a+ 1 a a+ 2 ... b− 1 a b.
Dokažme tedy elementárńı identitu. Podle integrace per partes pro b = a+ 1 je

T =

∫ a+1

a

(x− a)f ′(x) = [(x− a)f(x)]a+1
a −

∫ a+1

a

f,

takže opravdu:
∑

a<n≤b

f(n) = [(x− a)f(x)]a+1
a = f(a+ 1). ■

19


	Definice
	Reálná čísla
	Definice funkce, funkce prostá, na a bijekce
	Supremum a infimum v lineárním uspořádání
	Nejvýše spočetná a nespčetná čísla

	Limity
	Vlastní a nevlastní limita posloupnosti, podposloupnost
	Liminf a limsup posloupnosti

	Řady
	Řada, částečný součet řady, součet řady
	Geometrická řada a její součet, absolutně konvergentní řada

	Funkce
	Limita funkce, jednostranná limita funkce
	Exponenciála, logaritmus, kosinus a sinus
	Spojitost funkce v bodě a jednostranná spojitost
	Asymptotické symboly
	Kompaktní, otevřená a uzavřená množina
	Lokální a globální a ostré extrémy

	Derivace
	Derivace funkce, jedonstranná derivace funkce
	Standardní definice tečny
	Derivace vyšších řádů
	Ryze konvexní a konkávní funkce
	Inflexní bod
	Svislé asymptoty a asymptoty v nekonečnu
	Taylorův polynom funkce, Taylorova řada funkce

	Integrály
	Primitivní funkce
	Stejnoměrná spojitost
	Newtonův integrál funkce (nevlastní)
	Riemannův integrál funkce a množina míry O
	Henstock-Kurzweilův integrál
	Délka grafu funkce, plocha mezi grafy, objem rotačního tělesa


	Věty a tvrzení bez důkazu
	Reálná čísla
	Definice a vlastnosti reálných čísel

	Limity
	O podposloupnostech a existence monotónní posloupnosti
	Geometrická posloupnost a Liminf a limsup

	Řady
	O harmonických číslech a Riemannova věta

	Funkce
	O Riemannově funkci a Limita složené funkce
	Heineho definice spojitosti, Blumbergova definice spojitosti a počet spojitých funkcí

	Derivace
	Derivace složené funkce a derivace inverzní funkce
	l'Hospitalovo pravidlo a konvexivita a konkavita f''

	Integrály
	Lagrangeův a Cauchyův zbytek Taylorova polynomu a Bellova čísla
	Riemann = Newton a integrace substitucí
	Per partes a int(r(x))
	O restrikcích, Lebesgueova věta a ZVA 2
	Riemann = Darboux a HK. int a N. int
	Délka grafu a Integrální kritérium


	Věty a tvrzení s důkazem
	Reálná čísla
	Odmocnina ze dvou není racionálních a Cantorova věta

	Limity
	Jendoznačnost limity a Bolzano-Weierstrassova věta
	Limita a uspořádání a Cauchyova podmínka

	Řady
	Nutná podmínka konvergence řady a Harmonická řada

	Funkce
	Heineho deﬁnice a Aritmetika limit funkcí
	Nabývání mezihodnot a Princip minima a maxima

	Derivace
	Nutná podmínka extrému a Leibnizův vzorec
	Lagrangeova věta a Derivace a monotonie 1
	Taylorův polynom a Nejednoznačnost primitivní funkce

	Integrály
	Monotonie Newtonova integrálu a Derivace jsou Darbouxovy
	Bachetova identita
	Neomezené funkce jsou špatné a Baireova věta
	Dolní součet je menší než horní a ZVA 1
	Abelova sumace



