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1 Definice

1.1 Realna cisla
1.1.1 Definice funkce, funkce prosta, na a bijekce

e Funkce (zobrazeni): Funkce f z mnoziny A do mnoziny B, neboli f : A — B, je usporddand trojice
(A,B,f), kde fCAx BaVaec A 3be B:afb, neboli f(a) =0b. (Plati: Dy = A, Hy = B)

¢ Funkce prostd (injektivni): Funkce f: X — Y pro Vz,z’ € X je prostd < f(z) = f(2') = z =12
Dvéma ruznym x nepritadime stejné y. TakZe Yy existuje nejuyse jedno x.

e Funkce na (surjektivni): Funkce f: X — Y jena < f[X] =Y.
Yy existuje alespori jedno x.

¢ Funkce bijektivni: Funkce f : X — Y je bijektivni <= je prostd i na. ( 3z )

Obraz mnoziny C C A je f[C] :={f(a) |a € C} C B.

1.1.2 Supremum a infimum v linedrnim usporadani

Nechf A je mnoZina s uspoifdddnim (A4,<) a B je mnoZina, t.z.. B C A. Prvky a € A jsou supremem (resp.
infimem) mnoziny B, kdyz spliuji sup(B) := min(H(B)) a inf(B) := max(D(B)) v A.

1. Mnozina hornich mezi H(B) := {3h € A,Ybe€ B |b< h}
2. Mnozina dolnich mezi D(B) := {3d € A,¥be€ B |b>d}

1.1.3 Nejvyse spocCetna a nespcetna &isla
Nechf X je mnoZina, potom X je:
e spocetnd <= existuje bijekce f: N — X.
e nejvyse spocetnd <= je kone¢na nebo spocetna.
e nespocetnd <= neni nejvyse spocetné.
Nekonecnd <= existuje prostd funkce f: N — X.
Koneénd <= neni nekonecnd.
1.2 Limity
1.2.1 Vldastni a nevlastni limita posloupnosti, podposloupnost

Redlnd posloupnost (an) = (a1,az,...) € R je funkce a : N — R.

Limita posloupnosti Necht (a,) je realna posloupnost a L € R*, kde R* je R spolu s +o0o0. Potom L je limita

posloupnosti (a,,), pokud:
Ve,3Ing:n >nyg = a, € U(L,€).

Piseme lim a,, = L.
n—oo

e Okoli bodu b=U(b,e) :=(b—¢e,b+¢)
e Prstencové okoli bodu b = P(b,e) := U(b,e) \ {e} = (b—¢,b) U (b,b+¢)

Vlastni a nevlastni limita Pokud L € R, pak konverguje a mluvime o limité vlastni, pokud L = 400, pak
diveguje a mluvime o limité nevlastni.

Podposloupnost (b,,) je podposloupnosti posloupnosti (a,), pokud existuje takova posloupnost
VmGN:m1<m2<~~€N,

kde Vn : b, = ap,,. Znacime jako (by) < (an).



1.2.2 Liminf a limsup posloupnosti
Limes inferior (resp. superior) redlné posloupnosti (a,,) definujeme jako lim inf a,,, resp. limsup a,,.
e Hromadny bod A posloupnosti (a,), pokud je limitou néjaké podposloupnosti posloupnosti (ay,).

e H definujeme jako mnozinu hromadnych bodi, neboli H(a,) := {A € R* | A je hromadny bod (ay,)}.

1.3 Rady
1.3.1 Rada, ¢asteény soucet fady, soucet Fady

Rada je posloupnost (a,) C R.

Ciastecny soucet fady (ay) je (sp) := (a1 +as + -+ ap)
oo

Soucet fady je limita Zan = Zlan =ay+as+-- = nli_>rrolo(a1 +as+---+a,) =lims, € R*.
n—

1.3.2 Geometricka fada a jeji soucet, absolutné konvergentni fada

o0
Geometricka rada je fada Z "=14+q¢+¢@+---+q"+..., kde g € R je kvocient.

n=0
! 1
0o g pro [q| <
Soucet geometrické fady je Z q" = { +oo prog>1
n=0 neexistuje pro ¢ < —1

Absolutné konvergentni fada Rada 3" a, je AK, pokud konverguje fada 3 |ay|.
Turzeni: Kazdd AK konverguje. Dikaz: Yy a, md (sp). UkdZeme, Ze (sn) je Cauchyova...

1.4 Funkce

1.4.1 Limita funkce, jednostranna limita funkce
Limita funkce Funkce f: M — R ma v bodé a € R*, kde a je limitni bod mnoziny M, limitu A € R*, pokud
Ve > 0,30 > 0,Vz € P(a,0) "M : f(z) CU(A,¢), tedy lim f(x) = A.
r—a

Limitni body mnoziny M C R prvku L € R* =Ve : P(L,e) N M # 0.
Jednostranng limita funkce Podobng, jen Vo € P*(a,8) N M...

1.4.2 Exponenciala, logaritmus, kosinus a sinus

s n? nd
Exponencidla Vzr € R:e® =exp(z) := E — =142+ —+—+---:R=>R
— n! 2 6
oo 1 "=
Eulerovo éislo = et = E — €1 a je rovno =~ 2.718...
— n!

Logaritmus logz je inverzn{ funkce k exponencidle, tedy log := exp~! : (0,00) — R
Plati dulezité vztahy: log(xzy) = log(z) + log(y), log(1) = 0, atd.

) ) 00 (71)nt2n ) (71)nt2n+1 ) ,
Cosinus a sinus Vi € R:cost := ———— a sint := ————— JdOuCl zR—-R
nZ:o (2n)! (2n + 1)

1.4.3 Spojitost funkce v bodé a jednostranna spojitost
Spojitost funkce v bodé Nechf a € M CR a f: M — R. Funkce f je spojitd v bodé a, kdy#
Ve,36,Vz € U(a,0) "M : f(z) CU(f(a),e).

Neboli funkce f je v bodé a spojitd, pokud lim,_,, f(z) = f(a).



Jednostranna spojitost Podobné, jen je zleva (—) resp. zprava (+) spojita a pro Vo € U*(a,8) N M...

1.4.4 Asymptotické symboly

Symbol O Nechf je M CR, N C M a f,g: M — R jsou funkce. Potom pokud 3¢ > 0,Vz € N : |f(z)| < c-|g(2)],
=)

pak piseme f(z) = O(g(x)), pro © € N. (Nesmi nastat lim ()

00.)

Symbol 0 a ~ Necht a € R* je limitni bod mnoziny M CR a f,g: M — R jsou funkce, kde

AoVz € P(A,0) N M (g(x) # 0) potom pro

;o f@)
e malé o: lim —= =0 = f(z) = o(g(x)) pro x — a,
ti 20 (@) = olg())
. e f@)
e asymptotickou rovnost ~: lim ——~ =1 = f(x) ~ g(x) pro z — a.

1.4.5 Kompaktni, oteviena a uzavienia mnozina

Kompaktni mnozina Mnozina M C R je kompakini, kdyz V(a,) C M mé konvergentni podposloupnost (a,,, )
s limay,,, € M. (Kdyz je M omezend a uzaviend.)

Oteviend mnozina Mnozina M C R je oteviend, kdyz Ya € M,35 : U(a,0) C M.

Uzaviend mnozina Mnozina M C R je uzavrend, kdyz V(a,) C M :lima, =a = a € M.

1.4.6 Lokdlni a globéalni a ostré extrémy
Globalni extrém Necht a € M C R a nechf f: M — R. Funkce f m4 na M v bodé a globdlni mazimum (resp.
minimum), kdyz Ve € M : f(z) < f(a), resp. f(z) > f(a).

Lok&lni extrém Necht a € M C R a necht f: M — R. Funkce f md na M v bodé a lokdini mazimum (resp.
minimum), kdyz 30,Vo € U(a,d) N M : f(z) < f(a), resp f(x) > f(a).

Ostry extrém Pokud plat{ ostré nerovnosti v definici o lokélnim/globdlnim extrému, jednd se o ostry extrém.

1.5 Derivace

Oboustranny limitni bod (OLB) mnoziny M je ¥ : P~ (a,6) "M # 0 # P*(a,d) N M.

1.5.1 Derivace funkce, jedonstranna derivace funkce
Funkce f je diferencovatelnd, pokud d vlastni limitu, tedy pokud je spojitd.

Derivace funkce Necht bod a € M je limitn{ bod mnoziny M C R a f = f(z) : M — R je funkce. Potom
derivace f v bodé a je limita

fl(a) = ﬁ(&) = lim M

dx T—a r—a h—0

Jedonstranna derivace funkce Nechtf bod a € M je levy (=), resp. pravy (+), limitni bod mnoziny M C R a
f=f(z): M — R je funkce. Potom derivace funkce f v bodé a zleva, resp. zprava je limita

ful) = tim L@ =I@ oy flath) = fla)

z—at r—a h—0% h

1.5.2 Standardni definice tecny

Necht a € M C R, a je limitni bod mnoziny M a f : M — R je diferencovatelnd v a. Teénou ke grafu Gy funkce
f v bodé (a, f(a)) € Gy rozumime piimku [ definovanou:

Lry=f(a)- (x—a)+ f(a).

Je to jeding primka se sklonem (smérnici) f'(a) prochdzejici bodem (a, f(a)).



1.5.3 Derivace vys§ich rada

Necht () # M C R je oteviend mnoZina a f: M - R, fo:= faproi=1,2,...,n € N plati, ze D(f;_1) = M a
fi == (fi—1)'. Pak kazdou funkci f) := f; : M - R, i =1,2,...,n nazveme derivaci fddu i.

Alternativné:

Necht a € M C R, pokud f : U(a,d) — R na U(a, §) mé derivaci f~1(z) fddu n — 1, potom derivace fadu n je

F™(a) == lim S (@) - f(nil)(a)'

T—a T —a

1.5.4 Ryze konvexni a konkavni funkce
Necht I C R je interval. Funkce f : I — R je konvexni (resp. konkdvni), pokud
Va,be € La<b<c: (b f(b) < Kla f(a), e, f(c)). (resp. >)

Pro ostré nerovnosti je ryze konvexni/ ryze konkdun.

1.5.5 Inflexni bod

Necht @ € M C R, kde a je OLB mnoziny M; f: M — R al je tetna ke Gy v (a, f(a)). Tento bod je potom
inflenim bodem grafu funkce f, pokud:

35,Vr € P~ (a,6) N M AVZ' € P (a,0) N M = (x, f(z)) <IA (2, f(2') >,

(= bod, ve kterém " =0 a f' =0 nebo [’ neexistuje; dochdzi ke zméné sméru funkce).

1.5.6 Svislé asymptoty a asymptoty v nekonec¢nu

Svislé asymptoty Necht M C R, b € R je levy (resp. pravyj) limitni bod mnoziny M a f: M — R je funkce.
Potom kdyz liril f(z) = £o0, nazveme piimku x = b levou (resp. pravou) svislou asymptotou funkce f.
z—bT

Asymptoty v nekoneénu Necht M C R; +oo je limitni bod mnoZiny M; a,b € R a f : M — R je funkce.
Potom kdyz hm (f(a:) — (ax + b)) = 0, nazveme pifmku y = ax + b asymptotou funkee f v +oo.

1.5.7 Tayloruv polynom funkce, Taylorova fada funkce

Taylorav polynom funkce Nechf Vn e N: f, f/, f”,...,f* 1 :U(b,6) = R a 3f™(b) € R. Potom polynom

n (J)
be Zf x—b
j=0

nazveme Taylorovym polynomem funkce f fddu n se stfedem v b.
Priklady dilezitiich Taylorovych polynomii: e® = T (x), sin(x) = T{,’&l(w).

Taylorova fada funkce Necht Vn € Ny : ) : U(a,§) — R. Pokud Yz € U(a, §) plati

> £(n)(q
:an!().(x_a)n7

n=0

pak Fekneme, ze funkee f na U(a,d) je souctem své Taylorovy fady se stfedem v a.

1.6 Integraly
1.6.1 Primitivni funkce

Necht I C R je netrividlni interval a F, f : I € R. Potom F je primitivni funkce k f, neboli F' = /f, pokud

= f na celém [I.

1.6.2 Stejnomérna spojitost
Necht M CR a f: M — R, potom f na M je stejnomérné spojitd, pokud:
Ve,36:Va,be M A|la—b <§ = |f(a) — f(b) <e.

Plati, Ze kazdd spojitd funkce f : M — R je pro kompakini M C R stejnomérné spojitd.



1.6.3 Newtonuv integral funkce (nevlastni)

Necht f : (a,b) — R, kde a < b, m4 primitivn{ funkci F a existuji vlastni limity F(a) := lim F(z) a F(b) :=

Tr—ra
lirr}) F(z), potom Newtonuv integrél funkce f na intervalu (a,b) definujeme jako:
xr—r

b
/ f:=F()— F(a) = lim F(z) — lim F(z).

z—b r—a

1.6.4 Riemannuv integral funkce a mnozina miry O

Riemannuv integral funkce Funkce f: [a,b] — R, kde a < b, je riemannovsky integrovatelnd, neboli
f € R(a,b), pokud 3c, Ve, 36,V(a,t) plati, ze: |[al]| < § = |R(a,t, f) —C| <e..

Piseme také jako:
b b
R)/ f = c nebo jako (R)/ f(z)dz =

Mnozina miry O Mnozina M C R ma miru 0, pokud plati:

Ve, 3lan, bn],Vn € N, kde a,, < b, : M C U Ay by /\Z(bn—an)<5.

1.6.5 Henstock-Kurzweilav integral

Necht f : [a,b] — R je HK-integrovatelnd, neboli f € HK(a, b), pokud e, Ve, 4., kalibr na [a,b], Ze pro V déleni s
body (@,1) intervalu [a, b] plati, Ze (a,t) je d.-jemné = |R(a,t,f) —c| <e.
Piseme také jako:

b b
(HK)/ f = ¢ nebo jako (HK)/ f(z)dx =

1.6.6 Délka grafu funkce, plocha mezi grafy, objem rotaéniho télesa
Délka grafu funkce Necht f: [a,b] — R m4 ratifikovatelny graf, pokud:
UGy) :=sup({L(@, f) | @ je délent intervalu [a,b]}).
Plocha mezi grafy Necht f,g: [a,b] = R, kde f < g. Plocha tutvaru Gy, je potom:
A(Gyq) :==inf({M(f,g9,a) | @ je délent intervalu [a,b]}).
Vzorec pro vypocet plochy mezi grafy je: A(Gyq) = /b(g - f).
Objem rota¢niho télesa Necht funkce f : [a,b] — [0, +00). Objem utvaru T} je:
V(Ty) :=inf({K(f,a) | a je déleni intervalu [a,Db]}).

K definujeme jako soucet a Ty := {(x,y,2) € R® |a <z <bAy?+ 2? <f x)?}.

Vzorec pro vgpocet objemu rotacniho télesa je: V(a,b, f) =V (Ty) = 71'/ 12



2 Veéty a tvrzeni bez dikazu

2.1 Realna cisla
2.1.1 Definice a vlastnosti redlnych &isel

Redlna ¢&isla tvoi{ mnozinu R := C/ ~, kde C je mnozina vsech Cauchyovych posloupnosti a ~ je relace
shodnosti na C. Kde pro k,ng,m,n € N je:

e Cauchyova posloupnost (a,) C Q :VkIng : m,n > ng = |am — an| < %
* Relace shodnosti (a,) ~ (by) < VkIng:n >ng = |an —by| <
Vlastnosti redlnych éisel Na mnoziné R je ddna bindrni relace (<) C R x R, operace s¢itani (4), ndsobenf (-)
a vyznacné prvky 0,1, tedy uspofadané téleso (R,0,1,+, -, <).
(Plati komutativita, distributivita, asociativita, existence 0,1, atd.)
2.2 Limity
2.2.1 O podposloupnostech a existence monoténni posloupnosti
O podposloupnostech Necht (a,) je libovolnd realné posloupnost a A € R*. Potom plati:
1. (a,) mé podposloupnost, kterd m4 limitu.
2. (ap) nem4 limitu <= (a,) ma dvé podposloupnosti s dvéma ruznymi limitami.

3. lima, # A <= (a,) md podposloupnost, kterd ma limitu raznou od A.
Existence monoténni posloupnosti Kazda posloupnost redlnych ¢isel ma monoténni podposloupnost.

2.2.2 Geometricka posloupnost a Liminf a limsup

Limita geometricka posloupnosti Necht ¢ € R, potom

0 lg| <1
=1
lim ¢" = a

neexistuje q < —1

Liminf a limsup Pro kazdou (a;) C R je mnozina H(a,) neprazdnd. V linedrnim uspoifadani (R*, <) md
minimum i maximum.

2.3 Rady

2.3.1 O harmonickych ¢islech a Riemannova véta
1

O harmonickych é&islech Necht h,, = Z — jsou harmonicka ¢isla, potom Je > 0, t.z.:
j=1

VneN: h, =logn+~v+A,,
kde c je konstanta, |A,| < £, a v =0.57721... je tzv. Eulerova konstanta.
1 1 1
Harmonickd ¢isla jsou (s,) harmonické fady. Eulerova konstanta v := lim (1 4+ 3 +-+4--+——logn).
n—oo n

3

(o)
Riemannova véta Necht Z an je fada typu 1 — 1+ % - % + 4t % — % + ..., tedy necht plati:

n=1

1. lima, =0,
2. Y ag, = +oo, kde ay, jsou kladné scitance fady,
3. > a,, = —o0, kde a,, jsou zadporné s¢itance rady,

potom pro kazdé S € R* existuje bijekce 7 : N — N, t.z.: Z Ur(n) = S.

n=1



2.4 Funkce
2.4.1 O Riemannové funkci a Limita slozené funkce

O Riemannové funkci Riemannova funkce je spojitd pravé a jenom v iraciondlnich ¢islech.

0 ze€l
1

Riemannova funkce r: R — {0} U{L | n € N}, tedy r(x) = ' ) )
" r="6€Q at je zlomek v zdkladnim tvaru.

Limita slozené funkce Nechf a,b,L € R*, M, N C R, a je limitni bod M, b je limitni bod N a nechf funkce
g: M — Na f:N— R maji limity limg(x):balintf(x):L.

r—a r—r
Slozend funkce f(g) : M — R mé potom limitu lim,_, 4 f(g)(z) = L <= plati jedna z podminek:

beN = f(b)=L............. f(x) je spojitd v L
36,Ve € P(A,0) N M : b ¢ g(x)...na néjakém prstencovém okoli funkce nenabyvd hodnotu b

2.4.2 Heineho definice spojitosti, Blumbergova definice spojitosti a pocet spojitych funkci
Heineho definice spojitosti Funkce f: M — R je spojitd v bodé a € M C R préavé tehdy, kdyz

Y(an) € M :lima, =a = lim f(a,) = f(a).

Blumbergova definice spojitosti Vf:R — R, IM C R, t.z.: M je hustd v R a restrikce f|M je spojitd funkee.
e Hustd mnozina N v M: Va € M,¥6 :U(a,d) NN #0
e Restrikce (zizent): AC B,C; f: B — C. Restrikce na A je funkce fl[A: A - C=Ve € A: (f|A)(x) := f(z)

Pocet spojitych funkci 3 bijekce h: R — C(R), kde C(M) definujeme pro M C R jako

C(M):={f: M —R| [ je spojitd}.

2.5 Derivace
2.5.1 Derivace slozené funkce a derivace inverzni funkce

Derivace slozené funkce Necht a € M C R, a je limitnf bod mnoziny M, g : M — N je spojita v a s derivaci
g'(a) € R*; g(a) € N je limitn{ bod mnoziny N C R. Necht f: N — R je funkce s derivaci f'(g(a)) € R*, potom
slozend funkce f(g) : M — R md derivaci

(f(9)) (a) = f'(g(a)) - ¢'(a), pokud je soucin napravo definovdn.

Alternativné:
Necht f m4 derivaci v bodé b, funkce g ma derivaci v bodé a, b = g(a) a g je spojitd v a. Potom

(fog)(a)=f(b)-g'(a) = f'(9(a)) - ¢'(a).
Derivace inverzni funkce Necht a € M C R, a je limitni bod mnoziny M, f : M — R je prostd funkce s
derivaci f’(a) € R* a inverznf funkce f~1: f[M] — M je spojitd v b := f(a), potom kdyZ:
1 1
1. f'(a) € R\ {0}, pak (f~1)(b) = =
(@ € A0 bk (70 = 7 = P

2. f'(a) =0 a f roste (resp. klesd) v bodé a, pak (f~')'(b) = +o0

3. f'(a) = 00 a b je limitni bod mnoziny f[M], pak (f~*)'(b) = 0.

2.5.2 [D’Hospitalovo pravidlo a konvexivita a konkavita f”

I’Hospitalovo pravidlo Nechf a € R; f,g: P*(a,d) — R maji vlastn{ derivace, ¢’ # 0 a
lim f(x) = lim g(x) = 0 nebo lim g(x) = +oo, potom:
r—ra r—ra r—a

lim M = lim (@)
z—a g x) z—a g'(x)

, pokud posledni limita existuje.

Veéta plati i pro P~ (a,0), P(a,0) a pro a = to0.



Konvexivita a konkavita f”: Necht I C R je interval, f : [ — R je spojitd, D(f) = I°,Ve € I°,3f"(c) € R*.
1. f" >0 (resp. [/ <0) = [ je konvexni (resp. konkdvni)

2. f” >0 (resp. f" <0) = f je ryze konvexni (resp. ryze konkduni).

2.6 Integraly
2.6.1 Lagrangetv a Cauchytuv zbytek Taylorova polynomu a Bellova é&isla

Necht f, £, ", ..., f®*Y : U(a,8) - R, kde n € N.

Lagrangeuv zbytek Vi € P(a,d)3c mezi a a z, t.7.:

TR0

RE () = Ty

(z —a)

Cauchyuv zbytek Vi € P(a,d)3c mezi a a x, t.2.:
i) (z—or

n!

RE* () = (@)

oo

1

Bellova ¢&isla Vz € (—1,1) plati: e = = exp(exp(z n je pocet rozkladu mnoZiny.

2.6.2 Riemann = Newton a integrace substituci
Riemann = Newton Necht f : [a,b] — R je spojitd a F': [a,b] — R je k ni primitivni, potom

lim R(a,t, f) = F(b) — F(a).

llal|—0

Riemanniv soucet: R(a,t, f) = Z(ai —a;—2) - f(t;), kde @ je délent intervalu I, tedy @ = (ao, ..., ax).
i=1

Integrace substituci Necht I, J C R jsou netrividln{ intervaly; g: I — J; ¢’ : I -+ R a f:J — R. Potom

1F/fnaJ:>F /f ¢'nal

2. pokud g je surjekce A g’ # 0 na I, pak plati: G = /f dnal = G(g') = /f na J.

2.6.3 Per partes a int(r(x))

Per partes Necht f,g, F,G : (a,b) = R, kde a < b € R*; F (resp. G) je primitivni k f (resp. ke g). Potom, kdyz
jsou definovény dva ze tii clenu 75, pak plati:

b b
N [ 16 =Fat -y [ Fg.
/a T /a

—_—
T3

(= pro neuréity integrcil:/ flg=fg— /fg’ )

Integral r(x): V raciondlni funkce r(z), kde r(z) = :R\ Z(r) — R, existuje funkce R(x) ve tvaru:

q(T)
R(z) =ro(x +ZSZ log(|x — a) —|—Zt log(ai(z ))—i—Zu2 -arctan(b;(z)),
i=1
kde ro(x) je raciondlni funkce; k,l,m € Ng; prazdné > := 0; s;,¢;,u; € R; ay € Z(r(z)); ai(x) jsou ireducibilni
trojéleny a b; € R[] jsou nekonstantn{ linedrn{ polynomy, t.z.: na kazdém () # I C R\ Z(r(z)) plati R(z) = [ r(z).
Platt, Ze Ireducibilni trojclen je polynom stupné 2 a Z(r) :={a € R | q(a) = 0}.
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2.6.4 O restrikcich, Lebesgueova véta a ZVA 2
O restrikcich Pokuda<b<ceRa f:[a,c] = R, pak: f € R(a,c) < f € R(a,b) A f € R(b,c), neboli

/:f:/:er/bcf.

Lebesgueova véta Pro kazdou f : [a,b] — R plati, ze f € R(a,b) <= [ je omezend a nespojita (*) s mirou 0.
(*) BN(f) :=={x € M| f je nespojitd vz} .

Zakladni véta analyzy 2 Necht f, F: (a,b) = R, kde a < b; F' je primitivni k f a f € R(a,b). Potom existuji
vlastni limity Fy, := lim F(z) a Fp := lirr}7 F(z) a plati:
r—a xr—

<R>/:f=Fb—Fa=<N>/:f.

2.6.5 Riemann = Darboux a HK. int a N. int

Riemann = Darboux Necht f : [a,b] — R, potom:

f € R(a,b) — /abf/abfeR.

b b b
Pokud plati obé strany ekvivalence, pak: (R)/ f= / f :/ f-
HK. [ aN. [: Necht a <b; F, f:[a,b] - R, kde F je spojitd a F’ = f na (a,b). Pak f € HK (a,b) a plat{
b b
() [ 1 =FO) - Fa =) [ 1

2.6.6 Délka grafu a Integralni kritérium
Délka grafu Nechf f : [a,b] — R je spojitd a f’ € R(a,b), potom:

b
U(Gy) :/ V1+(f)? € (0,400).

Integralni kritérium Necht m € Z a f : [m,+00) — R je nezdpornd a nerostouci funkce. Potom

fada Z f(n) konverguje <= lim / f < +oo.
n—oo m

n=m
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3 Veéty a tvrzeni s dikazem

3.1 Realna ¢isla

3.1.1 Odmocnina ze dvou neni racionalnich a Cantorova véta

Véta (v2 ¢ Q): Rovnice 2 = 2 nemé v oboru Q fegen.

Diikaz. Pro spor predpokladejme, ze Ja,b € N, t.7.: (%)2 = 2. Mdme tedy a? = 2b?, kde a? je sudé. Neboli a = 2¢

pro néjaké ¢ € N. Dostavame (2¢)? = 202 <= 4c®> = 20> <= b? = 2¢?, neboli b? je sudé, proto i b je sudé, coz

je spor s nesoudélnosti a, b. 4 |

Cantorova véta: Pro zddnou mnozinu X neexistuje surjekce f : X — P(X) z X na jeji potenci.

Diikaz. Pro spor predpoklddejme, ze f : X — P(X) je surjektivni, kde X # (. Dale uvazme:
Yi={zeX|z¢ f(x)} CX.

Protoze f je surjektivnd, tak Jy € X t.z. f(y) =Y.

(a) Pokud y € Y, pak podle definice mnoziny Y plati, ze y ¢ f(y) =Y.

(b) Pokud y ¢ Y = f(y), mé y vlastnost definujici mnozinu Y ay € Y.

V obou pripadech se jedna o spor. 4 |

3.2 Limity
3.2.1 Jendoznaénost limity a Bolzano-Weierstrassova véta

Véta (Jendoznacnost limity): Limita posloupnosti je jednoznaénd = lima,, = K Alima, =L — K = L.
(Neboli kdyz md nejvyse jednu limitu.)

Diikaz. Necht lima,, = K ilima,, = L a necht Je.
Podle definice limity posloupnosti Ing, t.2.: m > ng = a, € U(K,¢e) ia, € U(L,¢).
Dostédvame Ve : U(K,e) NU(L,e) # 0. Tedy K = L. [ ]
Véta (Bolzano-Weierstrassova): Omezend posloupnost redlnych ¢isel mé vzdy konvergentni podposloupnost.
Diikaz. Nechf (a,) je omezend posloupnost a (by,) je monoténni podposloupnosti (a,), neboli (b,) < (a,).
(bn) je tak zjevneé je omezend a podle véty o robustné monotdnnd posloupnosti ma vlastni limitu. |
3.2.2 Limita a uspofadani a Cauchyova podminka
Véta (Limita a uspofadani): Necht (a,) a (b,) € R s lima, = K € R* a limb,, = L € R*. Potom plati:

1. K<L = dng:Vm,n > ng je am < by.

2. Vng,Im,n >ng A a,, > b, — K > L.
Diikaz.

1. Necht K < L, pak Je: U(K,e) < U(L,¢). Podle definice limity mame Ing : m,n > ny = a, € U(K,¢) a
b, € U(L,e). Tedy m,n > ny = an, < b,.

2. Trividlné obménou implikace.

Véta (Cauchyova podminka): Posloupnost redlnych ¢isel (a,,) je konvergentni <= (a,) je Cauchyova.

Diikaz. = Nechf ¢ je déno a lima,, = a.

Potom 3ng : n>ng = |a, —a| < 5. Tedy:

e €
m,m>ng = |am — an| < |am —al+|a—a,] < §+§:8,
pak (a,) je Cauchyova posloupnost.
<= Necht (a,) je Cauchyova posloupnost. Vime, Ze (a,) je omezend a proto ma podle Bolzano- Weierstrassovy
véty konvergentni podposloupnost (dy,, ) s limitou a. Pro dané ¢ tak mame ng : n > ng == |am,, —a| < §
a zarovei n > ng = |ap — al < |ay — am, | + |am, —a| < § + § = . Dostdvame tedy, ze a, — a.
|

(Pouzili jsme vyjddient am, — an = (am — a) + (@ — ay,) a trojihelnikovou nerovnost |c +d| < |c| +1d|.)
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3.3 Rady
3.3.1 Nutna podminka konvergence fady a Harmonicka rada

Tvrzeni (Nutnd podminka konvergence fady): Kdyz fada ) a,, konverguje, pak lima,, = 0.

n
Diikaz. Kdyz 3 a, konverguje, pak S :=lim s, € R, kde s,, = Zaj.
j=1
Podle vysledku o limité podposloupnosti a podle aritmetiky limit dostdvame:

lima,, = lim(s, — sp,—1) = lims,, —lims,_; =5 —S5=0.

|
Vyuzivame platnosti lim(s,) = lim(s,—1) = S.
> 11
Tvrzeni (Harmonicka fada): Harmonickd fada Z —=1+ 3 + 3 + ... diverguje a ma soucet +oo.
n
n=1
o0 1 o0
Diikaz. Necht (h,) jsou ¢astecné soucty Z:l ~a (sn) jsou Gastecné soucty 2:1 .
n= n=
Potom plati Vn : % > an, tedy i Vn : h, > s,. Protoze podle véty o jednom strdznikovi se lims, = 400, pak i
lim h,, = +0c0 a proto je Z% = +o0. |
Dikaz. (Alternativné)
Pro ¢astecné soucty n a 2n plati:
TR Pty Lo
S, = — — P — S — — — “ e — - P -
" 23 n' 2 "3 n' 41 2
1 + 1 + n 1 S 1 n 1 + + 1 1 1
S -8, = ——— — P R — R
T Al i+ 2 2n = 2n ' 2n 2n w2
Proto Vn € N : s9,, — 5, > % a posloupnost (s,) tim spliiuje Cauchyovu podminku a diverguje.
|

3.4 Funkce
3.4.1 Heineho definice a Aritmetika limit funkci
Véta (Heineho definice): Nechf M C R, K, L jsou prvky R*, K je limitni bod mnoziny M a f: M — R. Pak

lim f(z)=L < V(a,) CM\{K}:lima, = K = lim f(a,) = L.

z—K

Tedy L je limita funkce f v K <= pro kaZdou posloupnost (a,) v M, kterd md limitu K, ale nikdy se K nerovnd,
funkénd hodnoty (f(an)) majé limitu L.

Dikaz.

= Predpokldddme, ze lim f(z) = L, ze (a,) C M \ {K} mé limitu K a z¢ ¢ je ddno. Potom

z—K
30 : Vo € M N P(K,9) je f(z) € U(L,e).
Pro toto 0 zdroven 3Ing : n > ng = a, € P(K,0) N M. Tedy n > ng = f(a,) € U(L,¢) a f(a,) — L.

<= Za pomoci obmény = = -. Predpokldddme, ze lin}( f(x) = L neplati a proto ani pravé strana ekvivalence
z—

neplati. Tedy pro bod b:
Je>0:¥5>0,Fb=00) e MNP(K,J), t.2: f(b) ¢ U(L,e).
Polozime pron e N: § = % a Vn € N vybereme bod:

by = b (;) eMNP (K, i) L 2 f(by) & U(L, ).

Posloupnost (b,) lezi v M \ {K} a konverguje ke K, ale posloupnost hodnot (f(b,)) nekonverguje k L.
Prava strana ekvivalence tedy neplati. 4
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Véta (Aritmetika limit funkci): Nechf M € R, necht a, K, L € R*, kde a je limitn{ bod mnoziny M a necht
funkce f,¢9: M — R majf limity lim f(z) = K, lim g(x) = L.
r—a r—ra

lim f(z) +g(z) = K+ L
(z)-g

Potom plati { 1m f z)-g(z)=K-L
_flx) K - f=@)
lim ——= = — kde pro g(z) = 0 definujeme = 0.
o =T @) 9()

Diukaz. Z divodu podobnosti probereme jen podil.
Necht (a,) € M \ {aA} s lima, = a. Podle Heineho definice limity funkce plati:

= Necht lim f(a,) = K, limg(a,) = L a piedpokladejme, Ze L # 0, proto i Vn > ng : g(a,) # 0. Zdroven
predpokladejme, ze K, L # 400, tedy ze konverguji. Podle véty o AK posloupnosti se pak limity rovnaji:

lim (f(“")) _limf(an) _ K

g(an) ) limg(a,) L’
<= Protoze tento vztah plati pro kazdou posloupnost (%) s (ay) jako vyse, tak podle Heineho definice je
im 7)) _ K
e=ag(z) L

3.4.2 Nabyvani mezihodnot a Princip minima a maxima

Véta (Nabyvani mezihodnot): Necht a,b,c € R; a < b; f : [a,b] — R je spojitd a f(a) < ¢ < f(b) nebo
f(a) > c¢> f(b). Potom 3d € (a,b) : f(d) =c.

Diikaz. Predpoklddejme, ze f(a) < ¢ < f(b) (pro opacnou nerovnost obdobné).

Necht A :={z € [a,b] | f(z) < C} a d :=sup(A) € [a,b].

Cislo d je korektné definované, protoze mnozina A # () (a € A) a je shora omezens (b).

Ukézeme, Ze ke sporu vede f(d) < ¢i f(d) > ¢, proto f(d) = c. Ze spojitosti funkce f v a a v b plyne, ze d € (a,b).

(a) Pro f(d) < c. Ze spojitosti funkce f v d plyne, ze 36 : « € U(d,d) N [a,b)] = f(z) < c. Pak ale A obsahuje
vétsi ¢isla nez d. Dostdvame spor, protoze d je horni mez mnoziny A.

(b) Pro f(d) > c. Ze spojitosti funkce f v d plyne, ze 36 : € U(d, ) N [a,b] = f(x) > c. Pak ale V& € [a,d)
dostatec¢né blizké d lezi mimo A, coz je ve sporu d, jakoZto nejmensi horni mezi mnoziny A.

Véta (Princip minima a maxima): Necht M C R je neprdzdnd kompaktni mnozina a f : M — R je spojita.
Potom Ja,b € M,Vz € M : f(a) < f(z) < f(b).
v bodu @ minimum (nejmensi hodnotu)

a)

Rekneme, 7e f nabyva na M ) ) ) /
v bodu b maximum (nejvétsi hodnotu) f(b).

Diikaz. Dokézeme existenci maxima (pro minimum obdobné).
Zjevné plati, ze Vx € M : f(x) # 0. UkdZeme, Ze M je shora omezend sporem.

Kdyby nebyla, tak 3(a,,) € M : lim f(a,) = +oo.
Podle kompaktnosti M mé (a,,) konvergentni podposloupnost (a,,, ) s b := lim(a,,, ) € M. Pakilim f(a,,,) = +oo,
coz je spor, protoze podle Heineho definice je lim f(a,,) = f(a). 4

Lze definovat Vo € M : s := sup(f(x)) € R a podle definice suprema J(a,) C M s lim f(a,) = s.
Diky kompaktnosti M ma (a,) konvergentni podposloupnost (a,,) s b:=lima,,, € M.
Podle Heineho definice je lim f(an,, ) = f(b) = s. Protoze s = f(b) je horni mezi, tak Vo € M : f(b) > f(x).
|
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3.5 Derivace

3.5.1 Nutna podminka extrému a Leibniztiv vzorec

Véta (Nutnd podminka extrému): Nechf be M je OLB M CR, f: M — R, 3f'(b) € R* a f/(b) # 0. Potom
Vd3e,d e U(b, ) N M : f(c) < f(b) < f(d).

Tedy funkce f nemd v bodé b lokdlni extrém, nemd v b ani lokdlni minimum ani lokdlni maximum.

Diikaz. Necht be M CRa f: M — R ad je ddno. Necht f/(b) < 0 (opacnd nerovnost obdobné).
Vezmeme tak malé €, ze Jy € U(f'(b),e) = y < 0). Nynf podle definice derivace funkce v bode:

<0
3:2xePb,ONM = w c U(f'(b),e).
f(z) = f(b)

Tedy kdyz P~ (b,0) N M, pak f(z) > f(b), protoze x —b < 0 a
Podobné kdyz = € PT(b,0) N M, pak f(z) < f(b).
Pfedpoklddejme, 7e § < § a Ic € PT(b,0) N M a d € P~ (b,0) N M. Prvky c,d existuji, protoze b je OLB M.
Proto plati ¢,d e U(b,6) "M = f(c) < f(b) a f(d) > f(b). [ |

0.
z—0b <

Véta (Leibniziiv vzorec): Necht b € M C R, b je LB mnoziny M, f,g: M — R a f nebo g je spojitd v b.
Potom

(f9)'(b) = f'(b) - g(b) + £(b) - g'(B),

kdyz pravd strana neni neurcity viyraz.

Diikaz. Necht je g spojitd v b (druhy pripad obdobné). Podle podle AL funkei plati

(fg)'(b) = Tim £&)9@) = FB)g®) _

o3 z—b )

iy f(x)g(x) ff(b)g(xgj - I;f(b)g(fv) —f(b)g(b) _

- lim (f(x) = f(b)) 9(92 - ,{(b) (g(xz) —g(b)) _
i T@) = 1) g9(x) — g(b)

lim (g() + £ 1) - Tim D790

z—b x—>b

LT (b - g(b) + F(5) - o (b)-

3.5.2 Lagrangeova véta a Derivace a monotonie 1
Véta (Lagrangeova): Pokud f je hezkd funkce, pak 3¢ € (a,b) : f'(c) = ————~ =: z.
Hezka funkce f : [a,b] — R je spojitd.

Diikaz. Necht g(x) := f(z)—(x—a)-z : [a,b] — R splituje piedpoklady Rolleovy véty, predeviim g(a) = g(b) = f(a),
takze 0 = ¢'(c) = f’(c¢) — z pro néjaké c € (a,b). |

Rolleova véta: f je hezkd & f(a) = f(b) = Fc € (a,b) : f(c) =0.

Véta (Derivace a monotonie 1): Necht I C R je interval, f : I — R je spojitd a Vc € I, 3f/(c). Potom
1. f">0 (resp. f' <0) na I = f na I neklesa (resp. neroste)
2. f'>0 (resp. f/ <0)na I° = f na I roste (resp. klesd).
Kde I° C I znaci vnitrek intervalu I, tedy I° = {a € T | 36 : U(a,§) C I}.
Diikaz. Necht je f' < 0 na I° (klesd) a x < y jsou lib(J)cx(ro)ln? cisla v 1.
v)—

Podle Lagrangeovy véty pro néjaké z € (z,y) C I° je yi(m) = f'(z) < 0.

Protoze y — z > 0, je f(x) > f(y) a f na I klesi. (Zbyvagici t7i moznosti obdobné.)
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3.5.3 Tayloruv polynom a Nejednozna¢nost primitivni funkce

Lemma (o polynomech): Necht b € R, n € Ny a p(z) € R[z] s degp < n. Pak lim

N b =0 = p(z) =0.

p(x)
b

Diikaz. Indukei podle n.
e (i) Pron = 0 plati. p(z) = ag a %= — 0 je ap = 0.

p(x)

e (i1) Pro n > 0 predpoklddejme, zZe plati lim —=0 = p(z) =0.

z—b (I — b)
Potom p(b) = lin%)p(x) =0, tedy b je kofenem p(z) = (z — b) - ¢(z), kde ¢(z) € R je stupné nejvyse n — 1.
r—

Dostavame tak z indukéniho predpokladu

0= lim p(@) = lim

z—b ({E — b)n z—b W z—b (:L’ — b)"fl

neboli, ze ¢(z) =0, proto i p(z) = (x —b)-0=0.

O
Véta (Tayloriav polynom) Necht n € Na f:U(b,d) — R jsou jako v definici Taylorova polynomu.
TIP(x) je jediny polynom p(zx) € R stupné nejvyse n, t.7.:
f(@) =p(x) +o((x — b)") pro x — b.
_ Tf,b
Diikaz. Indukei podle n dokdzeme aproximaci T, tj. ze lim M =0.
z—b (l’ — b)n
— b —f(
e (i) Pro n = 1: podle AL funkci je lim flo) = Ti7() = lim fa) = 7b) lim f/(b) = f'(b) — f'(b) = 0.
z—b r—>b z—b r—>b r—b
e (ii) Pro n > 2: podle L’Hospitalova pravidla a indukce mame, ze:
fib _ Tfb ! ") — TP
g J®) =T ) (f(z) - T} (/33)) B 4 C B 1 L CO S P
z—b ((E — b)” T—b ((1' — b)") n x—b (.’E — b)nfl n
: o f(@) —pl) .
Necht p(z) € R[z] s deg(p) < n spliiuje, ze lim o 0, potom ale:
T— xr—0o)"
- fla) =T ) L pla) — f(2) (z) - T/ (x) _ _
P R A Py [ Sy oy A
Podle predeslého Lemmatu o polynomech tak dostavame p(z) = T*(z).
|

Véta (Nejednoznaénost primitivni funkce) Necht I C R je netrividln{ interval; Fy, Fy, f : I — R a Fy, I
je primitivni k f. Potom 3c € R: F} — Fo =cna [.

Diikaz. Necht Ja, b€ I, a < b.

Podle Lagrangeovy véty o stredni hodnoté, pouzité pro funkci Fy — F» a interval [a, b] plati, ze:

(F1 — F»)(b) — (F1 — Fy)(a)
b—a

de € (a,b) = (F\ = F2)'(c) = Fi(c) = F3(c) = f(c) = f(c) = 0.

Dostédvame tedy pro néjaké c, ze Vo € I : Fy(b) — Fa(b) = Fi(a) — Fa(a) = Fi(z) — Fa(x) = c.
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3.6 Integraly

3.6.1 Monotonie Newtonova integralu a Derivace jsou Darbouxovy
b b
Véta (Monotonie Newtonova integralu): Pokud f,g € N(a,b) a f < g na (a,b), pak (N)/ f< (N)/ g.

Diikaz. Necht F, resp. G, je primitivni k f, resp. ke g, a necht ¢&isla ¢,d € (a,b), kde ¢ < d, jsou libovnoln4.
Pouzijeme Lagrangeovu vétu o stredni hodnoté pro F — G a interval [c, d].
Pro ngjaky bod e € (¢, d) plati:

(F(d) = G(d)) = (F(c) = G(c)) = (F = G)/(e) - (d — ¢) =
= (F'(e) = G'(e)) - (d —c)
= (fle)—g(e)) - (d—¢) <

0.
Proto plati F'(d) — F'(c) < G(d) — G(¢).

b b
Tato nerovnost se zachovava pfi linedrnich piechodech ¢ — a, d — b a dostaneme tak (N) / f<(N) / g N
a a

Véta (Derivace jsou Darbouxovy): Nechf I # @ je interval a f : I — R m4 primitivn{ funkci = f m4
Darbouxovu vlastnost.

Diikaz. Necht a < b; f,F : [a,b] — R; F je primitivni k f a f(a) < ¢ < f(b). Pro opacné nerovnosti obdobné.
Uvézme funkci G(z) := F(x) — cx : [a,b] = R.

Patrné G’ = F' —c= f — ¢ na [a,b] a G je proto spojité.

Podle véty o Principu minima a mazima G nabyvé v néjakém d € [a,b] minimum a podle tvrzeni O derivaci a
monotonii 2 plyne z

G'(a) = f(a) —c<0aG'(b)=f(b) —c>0,zede (a,b).

Nakonec podle véty O nutné podmince extrému se

G'(d) = f(d) — ¢ =0, takze f(d) = c.

3.6.2 Bachetova identita

Tvrzeni (Bachetova identita): Nechf p,q € R[z] nemaji spoleény kofen, tj.: pro Zddné z € C neplati, 7e
p(z) = q(z) = 0. Potom 3r, s € R[z], t.7.:

r(z) - p(z) +s(x) - q(z) = 1.

Diikaz. Necht p,q € Rlz] a S := {r(z) - p(x) + s(z) - q(z) | r(x), s(x) € R[z]}.
Necht polynom 0 # t(z) € S, m4 nejmens{ stupen.
Libovolny a(z) € S jim délime se zbytkem:

kde b(x),c(x) € Rlx] a deg(c(z)) < deg(t(z)) nebo c(z) = 0.

Protoze ale ¢(z) = a(z) — b(x) - t(z) € S, platl c(x) =0 a a(zx) = b(x)t(z), takze t(x) déli kazdy prvek v S.

Ale p(x),q(z) € S a t(x) je oba déli.

Protoze p(z) a g(x) nemaji spoleény kofen, tak podle Zvalgovy véty * je t(x) nenulovy konstantni polynom.
B.U.N.O. je t(z) = 1. Tedy 1 € S a mame uvedenou identitu. |

* Zvalgova véta: Vp(x) € Clz] \ C,3d € C: p(a) = 0.
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3.6.3 Neomezené funkce jsou Spatné a Baireova véta

Tvrzeni (Neomezené funkce jsou Spatné): Pokud funkce f : [a,b] — R neomezend, pak f ¢ R(a,b).
(Pokud je neomezend, pak neni riemannovsky integrovatelnd.)

Dukaz. Predpokldddme, ze f : [a,b] — R je neomezend. Ukdzeme, Ze:
S 1 <
vn,3@7) < [all < - A IR@T, )] > n.

To je vsak v rozporu s Cauchyho podminkou pro riemannovskou integrovatelnost funkce f.

Z neomezenosti f a z kompaktnosti [a,b] vyplyvd, ze existuje konvergentni posloupnost (b,) C [a,b] s limitou
limb, = « € [a,b] a s lim|f(b,)| = +o0.

Necht je ddno n € N.

Jako @ vezmeme libovolné délenf @ = (ao, . .., ax) intervalu [a,b] s |[a]| < L, ale t.z.: 3j € [k] : a € [aj_1,a;].

Pak vybereme libovolné body Vi # j : t; € [a;—1, a;] a uvdzime netplny Riemanniv soucet

Z — Q;— 1 (tl)
i=1,i#j
Nyni vybereme zbyvajici bod ¢; € [a;_1,a;] tak, ze:
(a; — aj—1) f(t;)| > |s| +n.

To lze, protoze b,, € [a;_1,a;] pro kazdé dostatecné velké n.
Pak definujeme  jako sestdvajici ze vsech téchto bodu a pomoci trojihelnikové nerovnosti dostaneme pozadované:

|R@,t, ) = [(a; —a;—1)f(t;)| = |s| > n.

|
Véta (Baireova): Pokud a <b€eR a [a,b] = U M,,, pak nékterd mnozina M, neni F{dk4.
n=1
Diikaz. Necht v [a,b] = U M, je kazda mnozina M, Fidka, odvodime spor.
M je fidkd — E[al,bl] C [a,b], t.7.: a1 < by afa,b1]NM; =0.
M> _]e fidkd — 3[(12,[)2] - [al,bl], t.Z.: ag < by a [ag,bg] N My = (Z), atd.
Takto ziskdme posloupnost vnorenych intervalu:
[a,b] 2 [a1,a2] 2 [az,as] 2 - D [an,by] 2 ..., t.2.
Yn € N:a, <b,Alan,by] N M, = 0.
Necht « := lima, € [a,b].
(Limita existuje, protoZe a € [a,b], protoZe (ay) je neklesajici a je zdola omezend ¢islem a a shora éislem b.)
Dokonce Vm,n : ap, < by, takze Vn : « € [ay, by].
Potom ale Vn : « ¢ M,, d4vd spor, protoze « € [a, b]. |
3.6.4 Dolni soucet je mensi nez horni a ZVA 1
Véta ([ < [): Nechf f: [a,b] = R. Pro kazd4 dvé délenf a,b € D(a, b) plati, ze
b ) B
san< [ 1< [ 1<s@.
Ja_ a
Diikaz. Necht @ a b jsou délenf intervalu [a, b].
Vime, ze ¢ :=a U b. Pak totiz @, b C ¢ a podle tvrzeni O monotonii dolniho a horniho souctu je
s(@,f) < (e, f) < S f) < S(b, f) a dostavame s(@, f) < S(b, f).
|

Dolni soucet: s(a, f)
Horni souéet: S(a, f)

18



Véta (ZVA 1): Necht f:[a,b] = R a f € R(a,b). Potom Vz € (a,b] je f € R(a,z) a F : [a,b] — R, kde
F(z):= / f, je lipschitzovsky spojité.

t.g.: spojitd v x € [a,b] = F'(z) = f(z).

Diikaz. Necht f € R(a,b). Podle turzeni o restrikcich je f € R(a’,V’) pro kazdé a < a’ < b < b.

Tedy F je spravné definovéno a F'(a) = 0.

Protoze f je omezend (tvrzeni, Ze neomezené funkce jsou $patné), vezmeme omezujici konstantu d > 0.

Necht ¢ :=1+d, necht x < y € [a,b] a podle definice Riemannova integrdlu necht (a,t) je takové s body intervalu

y
[z, 9], ze ‘/ f—R(a,t,f)’ <y-—zx.

x
Podle tvrzeni o restrikcich a definice funkce F plati, Ze:

/:f

atak |F(y) — F(z)| <c-ly — x| a F je lipschitzovsky spojita.

|[F(y) — F(z)| = <y—z+|R@tf)| <y—z+c-(y—2),

Necht f je v zo € [a,b] spojitd a Je. Vezmeme &islo 6, t.2.:
x € U(zg,d) N[a,b] = f(z) € U(f(xg),¢).

Necht 2 € P(x9,d) N [a,b] je libovolné, feknéme, Ze x > xo (pro < obdobné).

/1 f — R(a,t, f)' < g(z — mp). Potom:

@) = Fleo) gy ! -/ﬁf—f(xo)

Vezmeme déleni s body (@, ¢) intervalu [zg, x], t.Z.:

T — X9 T — X9

je mensi, nez:

R@bf)+ew—w) o M%ﬂm — flagT = 2.
0

r — X

Podobné se dokdze, ze je i vétsi, nez —2¢ a dostaneme tak F'(xo) = f(zo).

3.6.5 Abelova sumace

Véta (Abelova sumace): Nechf a <be€Z a f, f' € R(a,b) a f je spojitd v b. Potom

> fn) =/abf+/ab{a:}f’(:c) = /abT, je identita.

a<n<b

Diikaz. Dokazme, ze b = a + 1 (elmentarni identita).
Identitu s mezemi a < b pak dostaneme jako soucet elem. identit s mezemi aaa+1,a+1aa+2..b—1ab.
Dokazme tedy elementarni identitu. Podle integrace per partes pro b =a + 1 je

a+1

T= /aaﬂ(fv —a)f'(z) = [(z — a) f(2)]5 - /a f

takze opravdu: Z f(n) =[xz —a)f(@)]*" = fla+1). [ |

a<n<b
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