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1.1 Modulárńı aritmetika . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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2.2.3 Definujte největš́ı společný dělitel dvou prvk̊u na oboru. Co je gcd(a, 1) a gcd(a, 0) pro
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1 Teorie č́ısel

1.1 Modulárńı aritmetika

1.1.1 Zformulujte a dokažte Základńı větu aritmetiky.

Věta 1. (Základńı věta aritmetiky): ∀a ∈ N, kde a ̸= 1, existuj́ı po dvou r̊uzná prvoč́ısla p1, . . . , pn a k1, . . . , kn ∈ N
splňuj́ıćı:

a = pk1
1 pk2

2 · . . . · pkn
n

D̊ukaz: Dokážeme zvášť existenci a jednoznačnost:

(i) Existence: Nechť a ∈ N je nejmenš́ı č́ıslo, pro nějž neexistuje prvoč́ıselný rozklad. To nemůže být prvoč́ıslem,
jinak bychom měli rozklad a = a1, takže a je složené a můžeme ho pro nějaká 1 < b, c < a rozložit na a = b ·c.
Podle indukčńıho předpokladu ale existuje prvoč́ıselný rozklad jak pro b, tak pro c a jejich složeńım źıskáme
rozklad a.

(ii) Jednoznačnost: Nechť a ∈ N je nejmenš́ı č́ıslo s nejednoznačným prvoč́ıselným rozkladem. A nechť máme
dva r̊uzné rozklady a:

a = pk1
1 · . . . · pkm

m = ql11 · . . . · qlnn .

Jelikož p1 | a = ql11 · . . . · qlnn , muśı existovat i takové, že p1 | qi.
Protože je ale qi prvoč́ıslo, muśı tak platit p1 = qi.

Nyńı uvažme č́ıslo b = a
p1

opět s dvěma r̊uznými rozklady:

b = pk1−1
1 · pk2

2 · . . . · pkm
m = ql11 · . . . · qli−1

i · . . . · qlnn .

T́ım bychom ale dostali, že b < a, což je spor s minimalitou.

1.1.2 Co jsou Bézoutovy koeficienty? Napǐste Eukleid̊uv algoritmus pro gcd a vysvětlete jak
spoč́ıtat Bézoutovy koeficienty

Definice 1. (Bézoutovy koeficienty u, v): Pro každou dvojici č́ısel a, b ∈ Z existuj́ı u, v ∈ Z splňuj́ıćı:

gcd(a, b) = u · a+ v · b.

Algoritmus 1. (Eukleid̊uv):
VSTUP: a, b ∈ N, a ≥ b
VÝSTUP: gcd(a, b) ∈ Z a Bézoutovy koeficienty u, v ∈ Z

1. i := 0, (a0, a1) := (a, b); (u0, u1) = (1, 0); (v0, v1) = (0, 1)

2. while ai > 0 do {
3. ai+1 := ai−1 mod ai; qi :=

ai−1

ai
; ui+1 := ui−1 − ui · qi; vi+1 := vi−1 − vi · qi; i := i+ 1

4. }
5. return ai−1, ui−1, vi−1

1.1.3 Co je to konkgruence? Definujte Eulerovu funkci. Zformulujte a dokažte Eulerovu větu

Definice 2. (Konkgruence): Nechť a, b,m ∈ Z a m ̸= 0, potom a je kongruentńı s b modulo m, tedy

a ≡ b (mod m), pokud m | a− b.

Definice 3. (Eulerova funkce): Zobrazeńı φ : N → N znač́ı pro n ∈ N počet č́ısel k ∈ {1, . . . , n− 1} nesoudělných
s č́ıslem n. Tedy jinak φ(n) = |{k ∈ {1, . . . , n− 1} | gcd(k, n) = 1}|.
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Věta 2. (Eulerova): Nechť ∀a,m ∈ N : gcd(a,m) = 1, potom aφ(m) ≡ 1 mod m.

Lemma 1. Nechť a, x,m ∈ N a gcd(a,m) = 1 = gcd(x,m) ⇐⇒ gcd(ax,m) = 1, potom zobrazeńı

fa : Φm → Φm je bijekce a plat́ı fa(x) = ax mod m.

D̊ukaz: Nejprve dokážeme platnost ekvivalence gcd(a,m) = 1 = gcd(x,m) ⇐⇒ gcd(ax,m) = 1:

=⇒ Kdyby gcd(ax,m) ̸= 1, tak by podle Euklidova algoritmu ∃p : p | ax,m. Dı́ky ZVA v́ıme, že pokud
∃p : p | ax,m, pak p | a ∨ p | x, což je spor s nesoudělnost́ı, protože by pak gcd(x,m) ̸= 1.

⇐= Kdyby gcd(a,m) ̸= 1 nebo gcd(x,m) ̸= 1, tak ∃p : p | a nebo p | x =⇒ p | ax,m =⇒ gcd(ax,m) ̸= 1

Dále dokážeme, že zobrazeńı fa je bijektivńı.
Nejdř́ıve nechť x, y ∈ Φm : fa(x) = fa(y), neboli ax ≡ ay mod m. A protože gcd(a,m) = 1, uvažme

x ≡ y mod m =⇒ x < m ∧ y < m =⇒ x = y =⇒ fa je injektivńı.

A protože množiny jsou stejně velké a plat́ı injektivita, dostaneme i potřebnou surjektivitu =⇒ bijekce fa.

D̊ukaz: ∏
b∈Φm

b
Lemma
=

∏
b∈Φm

fa(b) =
∏

b∈Φm

ab mod m ≡
∏

b∈Φm

ab = aφ(m) ·
∏

b∈Φm

b mod m.

Rovnici můžeme přepsat jen jako
∏

b∈Φm

b ≡ aφ(m) ·
∏

b∈Φm

b mod m. A protože gcd

( ∏
b∈Φm

b, m

)
= 1, dostáváme

potřebné:
1 ≡ aφ(m) mod m.

1.1.4 Zformulujte a dokažte Č́ınskou větu o zbytku.

Věta 3. (Čı́nská o zbytćıch): Nechť m1, . . . ,mn ∈ N jsou po dvou nesoudělná č́ısla, označme M :=

n∏
i=1

mi. Dále

nechť u1, . . . , un ∈ Z. Potom ∃!x ∈ Zm takové, že řeš́ı soustavu ∀i ∈ {1, . . . , n− 1} : x ≡ ui mod mi.

D̊ukaz: Nejprve ukážeme jednoznačnost.
Pro spor předpokládejme, že má soustava dvě řešeńı x, y ∈ {0, . . . , n− 1}, tedy plat́ı:

∀i : x ≡ y ≡ ui (mod mi) =⇒ mi | x− y

a protože všechna mi jsou navzájem nesoudělná, tak dostáváme M =

n∏
i=1

| x − y. Ovšem obě č́ısla x, y, a tedy i

jejich rozd́ıl, jsou menš́ı než M , takže nutně x− y = 0 =⇒ x = y.

Nyńı ukážeme existenci. Uvažme zobrazeńı

f : {0, . . . , n− 1} → {0, . . . ,m1 − 1} × · · · × {0, . . . ,mn − 1}
x → (x mod m1, . . . , x mod mn).

Ukázali jsme tak, že f je prostá. Přitom definičńı obor i obor hodnot této funkce maj́ı stejnou velikost M (velikost
kartézského součinu je součin velikost́ı činitel̊u):

M = |Zm| =

∣∣∣∣∣
n∏

i=1

Zmi

∣∣∣∣∣ =
n∏

i=1

|Zmi |

Takže zobrazeńı f muśı být i na a je proto f bijekce, neboli ∀i : x ≡ ui mod mi ⇐⇒ f(x) = u1, . . . , un.
Tedy ∃!x ke každé n-tici (u1, . . . , un), které se na něj zobrazuje, a to je hledaným řešeńım soustavy.
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1.1.5 Popǐste jak spoč́ıtat hodnotu Eulerovy funke když známe faktorizaci prvoč́ısla. Dokažte to.

Tvrzeńı 1. Nechť p je prvoč́ıslo, kde p1 < · · · < pn a k1, . . . , kn ∈ N, potom φ

(
n∏
i

pki
i

)
=

n∏
i

(pi − 1)pki−1
i .

D̊ukaz: Nechť mi = pki
i , použijeme zobrazeńı f : Zn →

∏
Zmi

z Č́ınské věty o zbytku.

f(Φm) =

Kartézský součin︷ ︸︸ ︷∏
i

Φmi
⊆
∏

Zmi
, proto : a ∈ Φm ⇐⇒ gcd(a,m) = 1

Lemma⇐⇒ gcd(a mod mi, mi) = gcd(a,mi) = 1

⇐⇒ ∀i : a mod mi ∈ Φmi

⇐⇒ f(a) ∈
n∏

i=1

Φmi
.

Dostáváme tak φ(m) = |Φm| = |f(Φm)| =
n∏

i=1

|Φmi
|︸ ︷︷ ︸

= př́ıklad (pi−1)p
ki−1

i

.
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2 Polynomy

2.1 Tělesa, okruhy, obory

2.1.1 Co je to obor integrity? Napǐstě alespoň dva př́ıklady, kdy obor neńı těleso.

Definice 4. (Ring/ okruh): Pětice R = (R,+,−, ·, 0) se nazývá okruh, pokud R je množina s binárńımi operacemi
+, · : R×R → R, unárńı operaćı − : R → R, prvkem 0 ∈ R a operacemi ∀a, b, c ∈ R:

a+ (b+ c) = (a+ b) + c, a+ b = b+ a, a+ 0 = 0,

a+ (−a) = 0, a · 1 = 1 · a = a (okruh s jednotkou 1 ∈ R)

a · (b · c) = (a · b) · c,
a · (b+ c) = (a · b) + (a · c) & (a+ b) · c = (a · c) + (b · c)

Definice 5. (Komutativńı okruh R): ≡ pokud je komutativńı také operace násobeńı, tedy ∀a, b ∈ R : a · b = b · a.

Definice 6. (Obor integrity): ≡ komutativńı okruh s jendnotkou, pokud plat́ı: ∀a, b ∈ R \ {0} : a · b ̸= 0.

Př́ıklad 1. Př́ıklady, kdy obor neńı tělesem.

(i) Obor celých č́ısel Z neńı těleso (nemá inverzńı prvek)

(ii) Matice s nulovým determinantem, tedy pro těleso F a Mn(F) = {čtvercová matice n× n nad F} definujemeMn(F),+,−, ◦,

0 . . . 0
...

. . .
...

0 . . . 0


 je okruh s jednotkou In. Neńı ale tělesem (nemá multiplikativńı inverz).

(iii) Boolovský okruh (Z2,⊕,∧, 0, 1) neńı tělesem (nemá aditivńı inverz).

2.1.2 Pro která přirozená č́ısla je okruh ’Zn’ oborem? Zd̊uvodněte svou odpověď.

Lemma 2. Pro ∀n > 1 ∈ N, je komutativńı okruh Zn = (Zn,+,−, ·, 0) s jednotkou 1 okruh ⇐⇒ n je prvoč́ıslo.

D̊ukaz: Z následuj́ıćı věty v́ıme, že každé těleso je obor, dokážeme tedy, že Zn je obor ⇐⇒ n je prvoč́ıslo.
Kdyby n = k · l bylo složené č́ıslo, kde k, l > 1, tak by v Zn platilo k · l = n (mod n) = 0 =⇒ neńı obor.
A je-li n prvoč́ıslo, pak je an−2 (mod n) inverzńım prvkem pro a ̸= 0, což plyne z malé Fermatovy věty.

2.1.3 Popǐstě nosnou množinu a operace pod́ılového tělesa oboru. Co je pod́ılové těleso celých
č́ısel? Co je pod́ılové těleso tělesa R?

Definice 7. (Pod́ılové těleso): Definujme nejprve relaci ∼ vztahem (a, b) ∼ (c, d) ⇐⇒ ad = bc na množině
R×M , kde M = R \ {0}. Jedná se o relaci ekvivalence. Struktura Q = (Q,+,−, ·, 0) je tzv. pod́ılové těleso oboru
R, kde Q je nosná množina všech zlomk̊u Q = {a

b | (a, b) ∈ R×M}, pro kterou plat́ı operace:

a

b
+

c

d
=

ad+ bc

bd
; −a

b
=

−a

b
;

a

b
· c
d
=

ac

bd
, 0 =

0

1
, 1 =

1

1
.

Nejedná se konkrétně o dvojice (a, b), ale o tř́ıdy ekvivalence a
b = [(a, b)]∼. (Aby platilo a

b = ax
bx ).

Př́ıklad 2. (Pod́ılové těleso Z): {a
b | (a, b) ∈ Z} je těleso racionálńıch č́ısel Q.

Př́ıklad 3. (Pod́ılové těleso tělesa): je opět p̊uvodńı těleso {a
b | (a, b) ∈ R×M}.
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2.1.4 Popǐstě nosnou množinu a operace komutativńıho okruhu R[x] nad okruhem R.

Definice 8. (Komutativńı okruh): R je komutativńı okruh, pokud je komutativńı také operace násobeńı, tedy

∀a, b ∈ R : a · b = b · a.

Definice 9. (Polynom proměnné x): nad komutativńım okruhem R rozumı́me výraz

a0 + a1x+ a2x
2 + . . .+ anx

n =

n∑
i=0

aix
i,

kde a0, . . . , an ∈ R, an ̸= 0.
Nosná množina všech polynomů na komutativńım okruhu R[x] je definována předpisy:

m∑
i=0

aix
i +

n∑
i=0

bix
i =

max(m,n)∑
i=0

(ai + bi)x
i, −

m∑
i=0

aix
i =

m∑
i=0

(−ai)x
i,

(
m∑
i=0

aix
i

)
·

(
n∑

i=0

bix
i

)
=

m+n∑
i=0

 ∑
j+k=i

ajbk

xi

2.1.5 Dokažte, že komutativńı okruh R[x] nad oborem R je obor. Existuje těleso F takové, že F[x]
je těleso?

Věta 4. Nechť R = (R[x],+,−, ·, 0) je komutativńı okruh s jednotkou, potom

(i) R[x] je komutativńı okruh,

(ii) pokud R je obor, potom R[x] je také obor a plat́ı ∀f, g ∈ R[x] \ {0} : deg(fg) = deg(f) + deg(g).

D̊ukaz: Označme f =
∑m

i=0 aix
i, g =

∑n
i=0 bix

i, h =
∑p

i=0 cix
i.

(i) Dokážeme postupně všechny axiomy.

� Sč́ıtáńı triviálně. Sč́ıtaj́ı se nezávisle koeficienty u jednotlivých mocnin, čili rovnosti pro polynomy ihned
plynou z rovnost́ı v R.

� Komutativita násobeńı plyne z toho, že vzorec je symetrický vzhledem k prohozeńı ṕısmen a a b.

� Jednotka z definice součinu: f · 1 =

(
n∑

i=0

aix
i

)
· (1 + 0 + 0 + . . .) =

n∑
i=0

 ∑
j+k=i

ajbk

xi

� Asociativita násobeńı: z jedné strany, f · (g · h) je rovno:(
m∑
i=0

aix
i

)
·

((
n∑

i=0

bix
i

)
·

(
p∑

i=0

cix
i

))
=

(
m∑
i=0

aix
i

)
·

(
n+p∑
i=0

( ∑
k+l=i

bkcl

)
xi

)

=

m+n+p∑
i=0

 ∑
j+k+l=i

ajbkcl

xi

� Distributivita analogicky

(ii) deg(fg), kde f, g ≥ 0 =⇒ deg f ≥ 0 ∧ deg g ≥ 0 a zároveň deg(f) = m a deg(g) = n.

Proto koeficient f · g : a0bk + a1bk−1 + · · · =
=0︷ ︸︸ ︷

a0 · 0 + · · ·+ an · 0+ ̸=0
am

̸=0

bn +

=0︷ ︸︸ ︷
am−1bn−1 = ambn ̸= 0.

Vedoućım koeficientem f · g je ambn, který je nenulový d́ıky tomu, že R je obor

Těleso F takové, že F [x] je tělesem neexistuje, protože nesplňuje existenci inverzńıho prvku vzhledem k násobeńı.
Předpokládejme pro spor, že existuje. Vezměme x ∈ F [x], kde zřejmě x ̸= 0 (protože předpokládáme polynom).
Pokud ale vynásob́ımě x jakýmkoliv polynomem ̸= 0, tak výsledek bude vždy obsahovat x a jeho vyš́ı mocniny,
takže nemá inverz.
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2.1.6 Co je to kořen polynomu? Zformulujte a dokažte předpoklady o počtu kořen̊u polynomu nad
oborem.

Definice 10. (Kořen polynomu): Nechť R ≤ S jsou obory, f ∈ R[x] a a ∈ S. Řekneme, že a je kořen polynomu
f , pokud f(a) = 0.

Věta 5. (Počet kořen̊u): Nechť R je obor, f ∈ R[x], kde deg f = n ≥ 0, potom f má nejvýše n kořen̊u v R.

D̊ukaz: (Indukćı podle n).

(i) Pro n = 0 : f ∈ R \ {0}, je nenulový konstantńı polynom, nemá kořeny, tedy ∀α ∈ R : f(α) ̸= f ̸= 0

(ii) Pokud deg f = n+ 1, pak buď polynom f nemá žádný kořen, v tom př́ıpadě tvrzeńı plat́ı a nebo ∃α kořen:

∃α ∈ R : f(α) = 0 =⇒ ∃g ∈ R[x] : f = (x− α) · g =⇒ deg g = n

Pokud existuje nějaký druhý kořen β ̸= α, tak plat́ı:

∃β ∈ R : f(β) = 0 =⇒ 0 = f(β) = (β − α)︸ ︷︷ ︸
0

·g(β) je obor
=⇒ α = β ∨ g(β) = 0

A protože má g nejvýše n polynomů, tak má f nejvýše n+ 1 kořen̊u.

2.2 Dělitelnost, UFD

2.2.1 Definujte prvoč́ıslo a ireducibilńı prvek. Je každý prvek ireducibilńı? Je každý ireducibilńı
prvek prvoč́ıslo?

Definice 11. (Prvoč́ıslo): Nechť a, b, c ∈ R, potom a je prvoč́ıslo, pokud:

∀b, c : a | b · c =⇒ a | b ∨ a | c & a /∈ R∗ ∪ {0}.

Definice 12. (Triviálńı dělitel): Nechť a, b ∈ R, potom a je triviálńı dělitel b, pokud a || b nebo a || 1.

Definice 13. (Ireducibilńı prvek a): Prvek 0 ̸= a ∈ R je ireducibilńı, pokud a ��|| 1 a a nemá triviálńı dělitele.
Jinými slovy, pokud pro každý rozklad a = bc plat́ı b || 1 nebo c || 1.

Pozorováńı 1. Všechna prvoč́ısla jsou ireducibilńı.

D̊ukaz: Nechť rozklad a = bc je prvoč́ıselný prvek. Z toho můžeme odvodit, že a | bc, tedy a | b nebo a | c, z čehož
plyne a || b nebo a || c, čili jde o triviálńı rozklad.

Opačná implikace obecně neplat́ı (jen pro některé obory, např. pro Z, pro UFD). Konkrétně pro obor Z[
√
5] je

prvek 2 ireducibilńı, protože 2 | (
√
5− 1)(

√
5 + 1), ale neńı prvoč́ıslem, protože 2 ∤ (

√
5 + 1) ani 2 ∤ (

√
5− 1).

2.2.2 Co znamená, že dva prvky oboru jsou asociované? Popǐste tuto relaci na oboru pomoćı
inverzńıch prvk̊u.

Definice 14. (Asociovanost): Nechť a, b ∈ R, kde R je obor. Potom a a b jsou navzájem asociované, tedy a || b,
pokud a | b a b | a. Zároveň plat́ı, že prvek a je invertibilńı ⇐⇒ a || 1 a prvek b splňuj́ıćı ab = 1 znač́ıme a−1.

Pozorováńı 2. Relace dělitelnosti je reflexivńı i tranzitivńı. Pokud a | b a b | c, tedy pokud b = ax a c = by pro
nějaká x, y, pak c = axy, tedy a | c. Z toho ihned plyne, že relace || je ekvivalenćı.

Tvrzeńı 2. (Asociovanost vs. invertibilńı prvky): Nechť R je obor a a, b ∈ R. Pak a || b ⇐⇒ existuje invertibilńı
prvek q ∈ R takový, že a = bq.

D̊ukaz: Dokazujeme dvě implikace.

⇐= Protože a = bq, tak plat́ı b | a. Protože b = aq−1, tak plat́ı i a | b.

=⇒ Pokud a = 0, pak i b = 0 a tvrzeńı plat́ı. Uvažujme proto, že a ̸= 0. Protože b | a, tak a = bu, a protože
a | b, tak b = av pro nějaká u, v. Tedy a = bu = avu a kráceńım dostáváme uv = 1, čili u, v || 1.
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2.2.3 Definujte největš́ı společný dělitel dvou prvk̊u na oboru. Co je gcd(a, 1) a gcd(a, 0) pro
prvek na nějakém oboru?

Definice 15. (Nejvěťśı společný dělitel): Nechť a, b, c, d ∈ R, potom c je gcd(a, b), pokud :

c | a ∧ c | b a d | a ∧ d | b =⇒ d | c.

Pro ∀a ∈ R : gcd(a, 1) = 1 =⇒ pouze 1 | a ∧ 1 | 1. Pro ∀a ∈ R : gcd(a, 0) = gcd(0, a) = |a| =⇒ pouze a | a.

2.2.4 Definujte ireducibilńı rozklad. Definujte Gauss̊uv obor (UFD). Dokažte, že existuje gcd(a,
b) pro každou dvojici prvk̊u a,b z UFD.

Definice 16. (Ireducibilńı rozklad): prvku a je zápis a || pk1
1 · . . . ·pkn

n , kde p1, . . . , pn jsou ireducibilńı prvky, pi ��|| pj
pro i ̸= j a k1, . . . , kn ∈ N.

Definice 17. (Gauss̊uv obor (UFD)): Obor R je UFD, pokud má každý nenulový neinvertibilńı prvek unikátńı
rozklad na ireducibilńı činitele.

Důsledek 1. Nechť R je UFD, potom ∀a, b ∈ R existuje gcd(a, b).

D̊ukaz: Uvažujme ireducibilńı prvky p1, . . . , pn, pi ��|| pj , pro i ̸= j, a ki, li ≥ 0 takové, že:

a || pk1
1 · . . . · pkn

n , b || pl11 · . . . · plnn

(Libovolné ireducibilńı rozklady prvk̊u a, b m̊užeme přepsat do této formy tak, že ze dvou asociovaných činitel̊u
vybereme jeden a do rozkladu př́ıpadně doplńıme činitele v nulté mocnině.)
Nyńı c | a, b ⇐⇒ c || pm1

1 · . . . · pmn
n , kde 0 ≤ mi ≤ ki a 0 ≤ mi ≤ li, čili ⇐⇒ 0 ≤ mi ≤ min(ki, li), pro všechna i.

Největš́ım z těchto společných dělitel̊u tedy bude ten, kde mi = min(ki, li).

2.2.5 Formulujte charakteristiku (nutnou a postačuj́ıćı podmı́nku) UFD za pomoci gcd a řetězce
dělitel̊u. Dokažte to.

Věta 6. (Zobecněná základńı věta aritmetiky):Nechť R je obor, potom R je UFD právě tehdy, když:

(i) existuje gcd všech dvojic prvk̊u

(ii) neexistuje poslopunost a1, a2, a3, · · · ∈ R taková, že ai+1 | ai a ai+1 ��|| ai.

D̊ukaz: Budeme dokazovat dvě implikace.

=⇒ Dokázali jsme v Důsledku 5.3.

⇐= Nejprve dokážeme existenci rozklad̊u:

Pro spor uvažujme prvek a, který nemá ireducibilńı rozklad, 0 ̸= a ��|| 1. Rekurźı zkonstruujeme spornou
posloupnost s bodem (ii).

– Nechť a1 = 1. Tedy a1 ��|| 1 a nemá ireducibilńı rozklad.

– Předpokládejme, že ai ��|| 1 a nemá ireducibilńı rozklad. Speciálně, prvek ai neńı sám ireducibilńı, a tedy
ai = b · c pro nějaká b, c ��|| 1. Kdyby b i c měly ireducibilńı rozklad, pak by ho měl i ai, takže aspoň
jedno z nich ireducibilńı rozklad nemá, označme jej ai+1. Je tedy vlastńı dělitel ai a nemá ireducibilńı
rozklad. Tato posloupnost a1, a2, . . . je ve sporu s (ii)

Nyńı dokážeme jednoznačnost : (Ve skriptech je, že se na to u zkoušky nebude ptát, takže nezbývá než doufat)
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2.3 GCD a Modulo polynom

2.3.1 Definujte Eukleidovskou normu a obor. Napǐste dva př́ıklady Eukleidovského oboru, které
nejsou tělesa.

Definice 18. (Eukleidovská norma): je zobrazeńı V : R → N0 takové, že

(i) V(0) = 0,

(ii) pokud ∀a, b ∈ R, a | b ̸= 0, pak V(a) ≤ V(b),

(iii) ∀a, b ∈ R, b ̸= 0, ∃q, r ∈ R taková, že a = bq + r a V(r) < V(b).

Definice 19. (Eukleidovský obor): Obor R se nazývá eukleidovský, pokud na něm existuje eukleidovská norma

Př́ıklad 4. (Eukleidovského oboru, které nená těleso)

� Obor Z[x] neńı eukleidovský pro libovolné těleso Z, protože nemá Eukleidovskou normu:

Jeho normou je V(f) = 1 + deg f . Pro např́ıklad polynomy 3x a 2x máme 3x = q · 2x + r a deg r = 0 =⇒
r = 0 =⇒ 3x = 2qx /∈ Z[x].

� Obor Z[i] neńı eukleidovský. Jeho norma je V(a+ bi) = a2 + b2

2.3.2 Co znamená primitivńı polynom? Zformulujte Gaussovo lemma a Gaussovu větu. Pokud R
je UFD s pod́ılovým tělesem Q, vysvětlete jak spoč́ıtat gcd v R[x] pomoćı gcd v Q[x] a v R

Definice 20. (Primitivńı polynom f): ≡ jeho koeficienty jsou nesoudělné. (c děĺı všechny koeficienty =⇒ c || 1).

Lemma 3. (Gaussovo): Nechť R je UFD a f, g primitivńı polynomy z R[x]. Potom fg je také primitivńı polynom.

Věta 7. (Gaussova): Pokud R je UFD, pak R[x] je také UFD.

Věta 8. (gcd a UFD vs. pod́ılové těleso) Nechť R je UFD, Q jeho pod́ılové těleso a f, g polynomy z R[x]. Potom

(1) existuje gcdR[x](f, g) = c · h, kde c = gcdR(cf , cg) a kde h = gcdQ[x](
f
cf
, g
cg
) je primitivńı polynom z R[x].

GCD koeficient̊u polynomu f znač́ıme cf a GCD koeficient̊u polynomu g znač́ıme cg.

(2) f je ireducibilńı v R[x] ⇐⇒

{
deg f = 0 f je ireducibilńı v R,

deg f > 0 f je primitivńı a ireducibilńı v Q[x].

Př́ıklad 5. Pro obor Z[x] a polynomy f = 4x2 + 8x+ 4 a g = −6x2 + 6 poč́ıtáme:
c = gcdZ(4, 6) = 2, h = gcdQ[x](x

2 + 2x+ 1, x2 − 1) = x+ 1. A celkem tak máme gcdR[x](f, g) = 2 · (x+ 1)

2.3.3 Napǐste zobecněný Eukleid̊uv algoritmus pro Eukleidovský obor a Eukleidovskou normu

Algoritmus 2. (Zobecněný Eukleid̊uv): Nechť R je eukleidovský obor:
VSTUP: a, b ∈ R,V(a) ≥ V(b)
VÝSTUP: gcd(a, b) ∈ R a Bézoutovy koeficienty u, v ∈ R

1. (a0, a1) := (a, b); (u0, u1) = (1, 0); (v0, v1) = (0, 1)

2. for i = 2, 3, . . . do :

3. zvol q, r tak, aby ai−1 = aiq + r a V(r) < V(ai)
4. definuj ai+1 = r; ui+1 := ui−1 − uiq; vi+1 := vi−1 − viq; i := i+ 1

5. if ai+1 = 0:

6. return ai, ui, vi
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2.3.4 Dokažte, že každý Eukleidovský obor je UFD.

Věta 9. Eukleidovské obory jsou UFD.

D̊ukaz: Použijeme zobecněnou základńı větu aritmetiky a ověř́ıme body (1) a (2).

(1) ∀a, b ∈ R : ∃ gcd(a, b) ∈ R

(2) Za pomoci následuj́ıćıho lemma. Taková posloupnost by totiž měla ostře klesaj́ıćı normu, což nelze.

Lemma 4. Nechť R je Eukleidovský obor, a, b ∈ R, kde a, b ̸= 0 a V je Eukleidovská norma. Potom:

a | b ∧ a ��|| b =⇒ V(a) < V(b).

D̊ukaz: Nechť b = au pro nějaké u ∈ R a nechť a = bq + r pro nějaká q, r ∈ R, kde V(r) < V(b).
Vzhledem k tomu, že b ∤ a, tak plat́ı r ̸= 0. Dosazeńım dostanem r = a− bq = a− auq = a(1− uq), z čehož
plyne, že a | r.
A protože r ̸= 0, tak dostáváme V(a) ≤ V(r) < V(b).

2.3.5 Zformulujte a dokažte Gaussovu větu.

Věta 10. (Gaussova): Pokud R je UFD, pak R[x] je také UFD.

D̊ukaz: Použijeme ”Zobecněnou základńı větu aritmetiky” a dokážeme oba body.

(1) ∀a, b ∈ R[x] : ∃ gcd(a, b). Platnost vycháźı z věty ”gcd a UFD vs. pod́ılové těleso”.

(2) Předpokládejme nekonečnou posloupnost vlastńıch dělitel̊u {ai}i≥1 ∈ R[x] \ {0}, tedy t.ž: ai+1 | ai.
Potom ∀i : −1 < deg(ai+1) ≤ deg(ai) a muśı tak ∃n takové, že ∀i > n :

deg(ai) = deg(an), tedy deg(an) = deg(an+1) = . . . .

Nakonec pokud si zadefinujeme ui jakožto vedoućı koeficient ai, tak un, un+1, un+2, . . . tvoř́ı nekonečnou
posloupnost vlastńıch dělitel̊u v R, což je spor.

2.3.6 Popǐste konstrukci faktorokruhu F[a]/m(a) modulo polynom m(a) nad tělesem F. Zformulujte
a dokažte charakteristiku těchto polynomů m(a) tak, že faktor je těleso.

Definice 21. (Faktorokruh): Nechť F je těleso a nechť máme polynom m ∈ F [α], stupně n = deg(m) ≥ 1.
Potom Faktorokruh F[α]/(m) je množina všech polynomů stupně < n se standardńımi oparacemi sč́ıtáńı, odč́ıtáńı
a opercaćı násobeńı modulo m. Tedy:

F[α]/(m) = ({f ∈ F [α] | deg(f) < n},+,−,⊙, 0, 1),

kde f ⊙ g = f · g mod m.

Platnost definice Je třeba dokázat, že se jedná o komutativńı okruh. Axiomy pro +,− jsou totožné s F[x],
dokážeme proto jen axiomy s ⊙.
Připomeňme si, že f ≡ g (mod m) ⇐⇒ f mod m = g mod m a že tak f ≡ f (mod m (mod m)). Konkrétně
využijeme vztahu (f · g mod m) · h mod m = f · (g · h mod m) mod m a dokážeme za pomoci něj asociativitu:

∀a, b, c ∈ F [α]/(m) : a⊙ (b⊙ c) ≡ a⊙ (b · c) ≡ a · (b · c) ≡ (a · b) · c ≡ (a⊙ b)⊙ c (mod m)

2.3.7 Pro prvoč́ıslo p, přirozené k a ireducibilńı celoč́ıselný polynom m stupně k popǐste konstrukci
konečného tělesa s p na n prvky. Jak můžeme poč́ıtat inverz prvk̊u v tomto tělese?

Tvrzeńı 3. Nechť p je prvoč́ıslo a F je konečné těleso, potom:

(1) pokud p je charakteristikou F, pak ∃k ∈ N : |F | = pk

(2) pokud k ∈ N a F je rozkladové nadtěleso xpk − x ∈ Zp[x], pak |F | = pk

(3) ∀k ∈ N,∃m ∈ Zp[x], kde m je ireducibilńı se stupněm deg(m) = k, pak Zp[α]/m(α) je těleso pk prvk̊u.

D̊ukaz: (1): F je vektorový prostor nad Zp, takže k = dimZp
F =⇒ |F | = pk.

Inverz a−1a ≡ 1 (mod b) se poč́ıtá za pomoci Bézoutovy rovnosti a Euklidova algoritmu, tedy

1 = gcd(b, a) = ub+ va , kde va ≡ 1 (mod b).
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2.3.8 Dokažte, že pro libovolný polynom f nad tělesem existuje těleso obsahuj́ıćı kořen f.

Věta 11. Nechť F je těleso, f ∈ F[x] je polynom a n = deg(f) ≥ 1. Potom existuje těleso S ≥ F, kde f má kořen.

D̊ukaz: Pokud má f kořen v F, vezmeme S = F.
V opačném př́ıpadě má f nějaký ireducibilńı dělitel m =

∑n
i=0 aix

i stupně alespoň 2 a stač́ı naj́ıt nadtěleso, kde
má kořen polynom m.
Uvažujme faktorokruh S = F[α]/(m(α)). Vı́me, že S je těleso. Vyhodnot́ıme-li v S polynom m na prvku α,
dostaneme:

m(α) =

n∑
i=0

ai(α
i mod m(α)) =

n−1∑
i=0

aiα
i + an(α

n mod m(α)),

ovšem anα
n mod m(α) = −

∑n−1
i=0 aiα

i, takže se to odečte na nulu.
Prvek α je tedy kořenem obou polynomů m, f v nadtělese S.

2.3.9 Zformulujte a dokažte Č́ınskou větu o zbytćıch pro polynomy.

Věta 12. (Čı́nská o zbytćıch pro polynomy): Nechť F je těleso a k, n ∈ N. Nechť m1,m2, . . . ,mn ∈ F [x] jsou po
dvou nesoudělné polynomy a nechť d =

∑
deg(mi). Dále nechť u1, . . . , un ∈ F [x] jsou libovolné polynomy. Potom

∃!f ∈ F [x] polynom stupně deg(f) < d, který řeš́ı soustavu kongruenćı:

f ≡ u1 (mod m1) , . . . , f ≡ un (mod mn).

D̊ukaz: Dokážeme zvlášť jednoznačnost a existenci.

� Jednoznačnost : Pro spor předpokládejme, že má soustava dvě řešeńı f, g stupně < d, tedy

∀i : f ≡ g ≡ ui (mod mi).

Z toho plyne, že f − g ≡ 0 (mod mi), tedy že mi | f − g. Zároveň v́ıme, že deg(f − g) < d.

A protože jsou všechny polynomy mi navzájem nesoudělné, tak dostaneme:

n∏
i=1

mi︸ ︷︷ ︸
deg=d

| f − g︸ ︷︷ ︸
deg<d

.

Tedy polynom stupně d děĺı polynom stupně < d, což je možné pouze v př́ıpadě f − g = 0 =⇒ f = g.

� Existence: Nechť m =
∏k

i=1 mi a nechť Ψ : F [x]/(m) →
k∏

i=1

F [x]/(mi), tedy:

f → (f (mod m1), f (mod m2), . . . , f (mod mn)).

Jedná se o lineárńı zobrazeńı Ψ mezi vektorovými prostory. Zároveň v́ıme d́ıky jedinečnosti, že Ψ je injektivńı.
Urč́ıme si dimenze, tedy:

F [x]/(m) =

k∏
i=1

F [x]/(mi)

d = dimF (F [x]/(m)) = dimF

(
k∏

i=1

F [x]/(mi)

)
=

k∑
i

deg(mi) = d

Mezi vektorovými prostory je stejná dimenze =⇒ je i surjektivńı =⇒ je bijektivńı =⇒ má právě jedno
řešeńı soustavy f = Ψ−1(u1 mod m1, . . . , un mod mn).

12



2.4 Aplikace

2.4.1 Popǐste (k, n)-schéma pro sd́ıleńı tajemstv́ı založený na CRT pro polynomy.

Máme (k, n)-schéma pro sd́ıleńı tajemstv́ı, kde n účastńık̊u se děĺı o tajemstv́ı t a k jich je potřeba k jeho odhaleńı.
Obecně pracujeme v tělese Fm

2 ∼ F2m , kde t ∈ F2m je tajemstv́ı.

Zvoĺıme si polynom f ∈ F2m [x], kde deg(f) < k a kde f(0) = t. Dále vybereme n po dvou r̊uzných hodnot
a1, . . . , an ∈ F2m , tedy ∀i ̸= j : ai ̸= aj .
Následně každému účastńıkovi přǐrad́ıme právě jednu konkrétńı hodnotu f(a1), . . . , f(an).

� Pokud se sejde ≥ k účastńık̊u, vezmou své hodnoty, provedou interpolaci ve svých bodech a spočtou ten
jeden jediný polynom stupně < k a vezmou jeho absolutńı člen, což je výsledné tajemstv́ı

� Pokud se sejde < k účastńık̊u, také vezmou své hodnoty, také provedou interpolaci ve svých bodech, ale
polynomů stupně < k je mnoho a nezjist́ı tak nic o absolutńım členu, který hledaj́ı. Museli by polynom
uhádnout, což je proveditelné s pravděpodobnost́ı 1

|F| =
1
2m .

2.4.2 Popǐste protokol RSA s veřejným kĺıčem a vysvětlete proč dešifrováńı funguje.

Notace: Zadefinujeme si:
p, q ∈ N . . . . . . . . . . . . . . . . . . .. . . velká prvoč́ısla, t.ž.: p ̸= q
(N, e) . . . . . . . . . . . . . . . . . . . . . . . . dvojice, veřejný kĺıč, kde N = p · q
φ(N) = (p− 1)(q − 1) . . . . . . . . Eulerova funkce
e ∈ N, 0 < e < φ(N) . . . . . . . . . šifrovaćı exponent
d ∈ N . . . . . . . . . . . . . . . . . . . . . . . . . dešifrovaćı exponent

Zároveň muśı plati platit gcd(e, φ(N)) = 1 a dále se hod́ı k výpočt̊um následuj́ıćı vztahy:
y = xe (mod N) . . . . . . . . . . . . . . . zašifrováńı plaintextu, výsledkem je ciphertext
x = yd (mod N) . . . . . . . . . . . . . . . dešifrováńı ciphertextu, výsledkem je plaintext
d · e ≡ 1 (mod φ(N)) . . . . . . . . . .. źıskáńı d (Euklidovým algoritmem)

Dešifrováńı se dá lehce odvodit: yd ≡ xe·d ≡ x1+uφ(N) ≡ x(

≡1︷ ︸︸ ︷
xφ(N))N ≡ x (mod N)

Popis algoritmu: Bob si vygeneruje nahodná velká prvoč́ısla p, q ∈ N, p ̸= q a vypoč́ıtá z nich N = p · q. Dále
vypoč́ıtá Eulerovu funkci φ(N) = (p− 1)(q− 1) a následně vygeneruje č́ıslo e ∈ N , t.ž.: 0 < e < φ(N) a pro které
plat́ı, že φ(N), tedy gcd(e, φ(N)) = 1. T́ımto č́ıslem zašifruje plaintext x vztahem y = xe (mod N).
Pak už jen nalezne č́ıslo d ∈ N euklidovým algoritmem d · e ≡ 1 (mod φ(N)).
Veřejný kĺıč, neboli dvojici (N, e) pošle Alici spolu s ciphertextem y.

Alice přijme veřejný kĺıč (N, e) - dvojici, i ciphertext y. Pouze Alici je znám soukromý kĺıč (N, d), využije ho k
dešifrováńı y. To udělá vztahem x = yd (mod N).

Eva nemá možnost si zprávu přeč́ıst, protože nezná dešifrovaćı exponent d. Musela by ho uhádnout, což neńı
pravděpodobné, nebo by musela znát prvoč́ısla p, q. Kdyby znala p, q mohla by si jednoduše dopoč́ıtat φ(N) a
následně d tak, jak jsme to udělali my.
Bezpečnost RSA tedy stoj́ı na tom, že útočńık neńı schopen rozložit N = p · q na p, q, proto je potřeba je volit
dostatečně velká.

2.4.3 Popǐste schéma Reed-Solomonových kód̊u. Je zakódováńı F-lineárńı zobrazeńı? Dokažte.

Rood-Solomonovým (k, n)-kódem je zobrazeńı φ : Fk → Fn, f =
∑

aix
i → (f(α1), . . . , f(αn)).

Inverzńım zobrazeńım je interpolace v daných bodech.
Různé polynomy f, g maj́ı < k stejných hodnot, čili > n − k r̊uzných hodnot, takže jde o kód typu (k, n; d) pro
d ≥ n− k + 1 a opravuje tak ⌊n−k

2 ⌋ chyb.
Zakódováńı můžeme převést na lineárńı zobrazeńı následovně:

(a0, . . . , ak−1) → (f(α1), . . . , f(αn)) = (a0, . . . , ak−1) ·

 α0
1 . . . α0

n
...

. . .
...

αk−1
1 . . . αk−1

n


Plat́ı, že každé kódové slovo je lineárńı kombinaćı vstupńıch dat a že kódová slova lze zapsat ve formě lineárńıho
zobrazeńı.
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3 Grupy

3.1 Grupy a podgrupy

3.1.1 Definujte pojem grupy a jej́ı podgrupy. Co je to řád grupy a prvku? Uveďte př́ıklad grupy
řádu 99.

Definice 22. (Grupa) : Grupa je čtveřice G = (G, ·,−1 , 1), kde G je množina, na které jsou definovány binárńı
operace · : G×G → G, unárńı operace −1 : G → G a konstanta 1 ∈ G, splňuj́ıćı ∀a, b, c ∈ G :

(i) a · (b · c) = (a · b) · c (asociativita),

(ii) a · 1 = 1 · a = a (neutrálńı prvek),

(iii) a · a−1 = a−1 · a = 1 (inverzńı prvek).

Definice 23. (Podgrupa) : Nechť G = (G, ·,−1 , 1) a H = (H, ·̃, −̃1, 1̃) jsou grupy, potom H je podgrupa grupy G,
značeno H ≤ G, pokud:

1 = 1̃, ∀a, b ∈ H : a ·̃ b = a · b, a−̃1 = a−1.

Definice 24. (Řád grupy G): je počet prvk̊u jej́ı nosné množiny, znač́ıme jej |G|.
Definice 25. (Řád prvku v grupě G): je nejmenš́ı n ∈ N takové, že an = 1 pokud takové n existuje, resp. ∞ v
opačném př́ıpadě. Znač́ıme jej ord(a).

Př́ıklad 6. (Grupa řádu 99.) Muśı mı́t 99 prvk̊u. Třeba direktńı součin grup G a H, kde |G| = 3 a |H| = 11,
dostaneme 3× 3× 9 = 99, tedy G3 ×H9 → F99. (Bude Abelovská).

3.1.2 Definujte mocninu grupy. Maj́ı všechny prvky konečné grupy konečný řád?

Definice 26. (Mocnina): Nechť G je grupa, a ∈ G,n ∈ Z. Potom mocnina je an =


1 n = 0

a · a · . . . · a︸ ︷︷ ︸
n

n > 0

a−1 · a−1 · . . . · a−1︸ ︷︷ ︸
−n

n < 0.

Tvrzeńı 4. (Mocniny): Nechť G je grupa, a, b ∈ G, k, l ∈ Z, potom: ak+l = ak · al, akl = (ak)l = (al)k.
A pokud je abelovská, tak ještě (ab)k = akbk.

Konečnost grupy a řádu: Všechny prvky konečné grupy maj́ı konečný řád, protože v konečné grupě existuje
pouze konečný počet r̊uzných mocnin prvku. Proto se v určitém okamžiku muśı opakovat hodnota an a nejmenš́ı
takové kladné n je řád prvku.
Kdyby řád byl nekonečný, pak žádné n ̸= 0 s vlastnost́ı an = 1 neexistuje, mocniny a jsou tak po dvou r̊uzné a
podgrupa je nekonečná.

3.1.3 Jak spolu souviśı řád prvku a řád př́ıslušné cyklické podgrupy?

Nechť G je konečná grupa a g ∈ G.
Z Lagrangeovy věty plyne, že řád prvku je dělitelem řádu grupy. Tedy ord(g) | |G|.
Pokud je řád prvku roven řádu grupy, pak je tento prvek jej́ım generátorem, tedy ord(g) = |G| =⇒ G = ⟨g⟩ a
tato grupa G je tak cyklická.

3.1.4 Definujte, formulujte a dokažte ekvivalentńı popis podgrupy generované množinou.

Definice 27. (Generovaná množina): Uvažujme podmnožinu X ⊆ G grupy G. Podgrupou generovanou množinou
X rozumı́me nejmenš́ı podgrupu (vzhledem k inkluzi) grupy G obsahuj́ıćı podmnožinu X, znač́ıme ji ⟨X⟩G .
Tvrzeńı 5. (Podgrupa generovaná množinou): Nechť G je grupa a ∅ ≠ X ⊆ G, potom:

⟨X⟩G = {ak1
1 · . . . · akn

n | n ∈ N; a1, . . . , an ∈ X; k1, . . . , kn ∈ Z}.

D̊ukaz: Označme nejprve M mnořinu na pravé straně rovnosti. Muśıme dokázat, že:

� tvoř́ı podgrupu. Součin dvou prvk̊u z M jistě ∈ M , jednotka 1 = a0 ∈ M , inverzy plynou ze vztahu
(ak1

1 · . . . · akn
n )−1 = a−k1

1 · . . . · a−kn
n ∈ M .

� obsahuje X. Volbou n = 1, k1 = 1 dostaneme libovolný prvek X.

� je nejmenš́ı podmnožinou grupy G splňuj́ıćı tyto podmı́nky. Uvažujme libovolnou podgrupu H obsahuj́ıćı X.
Tato podgrupa muśı obsahovat všechny mocniny ai, a ∈ X i jejich libovolné násobky, tedy celé M .

, .

14



3.1.5 Zformulujte a dokažte Langrangeovu větu. Co je levá rozkladová tř́ıda podgrupy?

Věta 13. (Langrangeova): Pokud H ≤ G, pak |G| = [G : H] · |H|.

D̊ukaz: Zvolme transverzálu T z H a zapǐsme ji jako G =
⋃
a∈T

aH.

Z lemmatu ”aH ∩ bH = ∅ nebo aH = bH” v́ıme, že se jedná o disjunktńı sjednoceńı a plat́ı T = [G : H], takže
počet prvk̊u lze spoč́ıtat jako součet velikost́ı jednotlivých podmnožin:

|G| =
∑
a∈T

|aH| =
∑
a∈T

|H| = |T | · |H| = [G : H] · |H|

Rovnost
∑
a∈T

|aH| =
∑
a∈T

|H| plat́ı, protože plat́ı lemma ”|aH| = |H|”.

Definice 28. (Levá rozkladová tř́ıda): Nechť G je grupa a H jej́ı podgrupa, potom množiny aH = {ah | h ∈ H},
kde a ∈ G, se nazývaj́ı levé rozkladové tř́ıdy podgrupy H.

3.2 Cyklické grupy a p̊usobeńı grup

3.2.1 Definujte p̊usobeńı grupy na množině X a relace tranzitivity na X. Co je stabilizátor prvku?

Definice 29. (P̊usobeńı grupy G na množině X): je libovolné zobrazeńı π : G → SX = {f : x → x | f bijektivńı}
splňuj́ıćı ∀g, h ∈ G:

π(gh) = π(g) ◦ π(h), π(g)−1 = π(g)−1 a π(1) = id

Hodnotu permutace π(g) na prvku x ∈ X budeme značit π(g)(x) = g(x).

Definice 30. (Relace tranzitivity ∼ na množině X): definujeme x ∼ y, pokud ∃g ∈ G takové, že y = g(x).
(x ∼ y, pokud nějaká permutace přesouvá prvek x na prvek y.)

Definice 31. (Stabilizátor prvku x ∈ X) je množina Gx = {g ∈ G | g(x) = x}.

3.2.2 Zformulujte a dokažte tvrzeńı o velikosti orbity a indexu stabilizátoru.

Tvrzeńı 6. (Velikost orbity VS index stabilizátoru): Nechť grupa G p̊usob́ı na množině X, potom:

∀x ∈ X : |[x]| = [G : Gx].

D̊ukaz: Index [G : Gx] znač́ı počet rozkladových tř́ıd podgrupy Gx , stač́ı tedy naj́ıt bijekci mezi prvky orbity a
množinou rozkladových tř́ıd. Uvažujme zobrazeńı

φ : {gGx | g ∈ G} → {x}, gGx → g(x).

Dokážeme, že to je bijekce.
Nejprve ověř́ıme, že jsme dobře definovali zobrazeńı. Mohlo by se jinak stát, že tutéž rozkladovou tř́ıdu máme
označenu dvěma r̊uznými zp̊usoby, tj. že gGx = hGx, a přitom se j́ı snaž́ıme přǐradit r̊uzné hodnoty g(x) ̸= g(x).
Z tvrzeńı o ”rovnosti rozkladových tř́ıdách, tedy pro aH = bH ⇐⇒ a−1b ∈ H” v́ıme, že plat́ı

gGx = hGx ⇐⇒ h−1g ∈ Gx ⇐⇒ h−1g(x) = x ⇐⇒ g(x) = h(x).

A tedy φ je dobře definováno a zároveň je i prosté. Nav́ıc ∀y ∈ [x],∃g ∈ G : g(x) = y, takže φ je i bijekce.
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3.2.3 Zformulujte a dokažte Burnsideovo lemma.

Věta 14. (Burnsideova): Nechť G je konečná grupa, která p̊usob́ı na konečnou množinu X.
Dále označme X/ ∼ jako množinu všech orbit ∼ na |X/ ∼ | jako počet orbit daného p̊usobeńı. Potom:

|X/ ∼ | = 1

|G|
·
∑
g∈G

|Xg| = |{[x]∼ | x ∈ X}|.

(M̊užeme interpretovat jako ”počet orbit je roven pr̊uměrnému počtu pevných bod̊u”).

D̊ukaz: Nechť M = {(g, x) ∈ G×X | g(x) = x} a poč́ıtáme prvky dvěma zp̊usoby: buď ke každému x spoč́ıtáme
počet g splňuj́ıćıch (g, x) ∈ M , nebo ke kadému g spoč́ıtáme počet x splňuj́ıćıch (g, x) ∈ M . Dostaneme rovnost:

|M | =
∑
g∈G

|Xg|︸ ︷︷ ︸
pevné body

=
∑
x∈X

|Gx|︸ ︷︷ ︸
stabilizátor

1

|G|
·
∑
g∈G

|Xg| =
|M |
|G|

=
1

|G|
·
∑
x∈X

|Gx| =
�
��
1

|G|
·
∑
x∈X

��|G|
|[x]|

=
∑
x∈X

1

|[x]|
=

=
∑

O∈(X/∼)

∑
x∈O

1

|[x]|
=

∑
O∈(X/∼)

∑
x∈O

1

|O|
=

∑
O∈(X/∼)

|O| · 1

|O|
=

=
∑

O∈(X/∼)

1 =⇒ je rovno velikosti množiny X/ ∼ .

3.2.4 Popǐste řády a počet prvk̊u daného řádu v konečných cyklických grupách.

Tvrzeńı 7. (Řády prvk̊u cyklických grup): Nechť G = ⟨a⟩ je cyklická grupa konečného řádu n = |G|, potom pokud
∀k | n, tak |{b ∈ G | ord(b) = k}| = φ(k), neboli obsahuje právě φ(n) prvk̊u řádu k pro každé k | n.

D̊ukaz: Nechť G = ⟨a⟩ je cyklická grupa konečného řádu n = |G|.
Každý prvek řádu k | n je generátorem nějaké cyklické podgrupy řádu k. Taková podgrupa však v G existuje pouze
jedna. Podle Lemmatu, které ř́ıká ”|G| = n =⇒ ⟨ak⟩ = ⟨agcd(k,n)⟩”, jsou všechny podgrupy v G tvaru ⟨ak⟩, k | n.
Přitom |⟨ak⟩| = n

k , tedy ⟨an
k ⟩ je jediná podgrupa řádu d.

Tato podgrupa má podle Tvrzeńı ř́ıkaj́ıćı ”konečná |G| = n =⇒ generátorem jsou prvky ak, kde k ∈ {1, . . . , n−1}
nesoudělné s n”, právě |{l ∈ Zk | gcd(l, k)}| = φ(k) generátor̊u.

3.2.5 Je-li G = [a] konečná cyklická grupa řádu n, rozhodněte, které prvky a na n jsou generátory.

Tvrzeńı 8. (Generátory cyklických grup): Nechť G = ⟨a⟩ je cyklická grupa, potom:

(1) pokud je G nekonečná, generátorem jsou pouze prvky a, a−1

(2) pokud je G konečná řádu n, tak generátorem jsou takové prvky ak, kde k ∈ {1, . . . , n−1} je nesoudeělné s n.

D̊ukaz: Dokážeme zvlášť oba body:

(1) Oba prvky a, a−1 grupu G generuj́ı, protože {ak | k ∈ Z} = {a−k | k ∈ Z}. Žádný jiný generátor G nemá:

Kdyby G = ⟨an⟩ pro nějaké n, pak by ∃m ∈ Z takové, že a = (an)m, a dostali bychom

1 = (an)m · a−1 = amn−1.

Řád a je ovšem nekonečný, a tedy mn = 1, čili n = ±1.

(2) Z Lemmatu o ”podgrupách cyklických grup” v́ıme, že plat́ı ⟨ak⟩ = ⟨agcd(k,n)⟩.

Uvažme dvě možnosti. Pokud

{
gcd(k, n) = 1 ⟨ak⟩ = ⟨a⟩ = G
gcd(k, n) = d ̸= 1 ⟨ak⟩ = ⟨ad⟩ = {ad, a2d, . . . , an

d d} je vlastńı podgrupa
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3.2.6 Dokažte, že konečná podgrupa multiplikativńı grupy tělesa je cyklická.

Věta 15. Nechť F je těleso a G je konečná podgrupa grupy F∗. Potom G je cyklická.

D̊ukaz: Nechť k ∈ N a n = |G|. Definujme si počet ptvk̊u k v grupě G, tedy uk = {a ∈ G | ord(a) = k}.
Uvažujme nějaký prvek a řádu k v G, tedy a ∈ uk : k = ord(a).
Zároveň plat́ı, že grupa ⟨a⟩ je cyklická řádu k a proto ∀b ∈ ⟨a⟩ : bk = 1 a tedy |⟨a⟩| = k.
Žádné jiné prvky s touto vlastnost́ı v G nejsou, takže ⟨a⟩ je jediná cyklická podgrupa řádu k v G.
Dostáváme tak, že b je kořenem xk − 1 a má proto ≤ k kořen̊u (v tělese F). Takže ⟨a⟩ je množina všech kořen̊u
xk − 1 =⇒ uk ⊆ ⟨a⟩ =⇒ uk jsou všichni generátoři ⟨a⟩ =⇒ ∀k | n : |uk| = φ(k) =⇒ uk ≤ k =⇒ je
cyklická.

(Aplikovali jsme lemma ř́ıkaj́ıćı, že ”pokud ∀k grupa obsajuje ≤ k prvk̊u a splňuj́ıćıch ak = 1, je potom cyklická”).

3.2.7 Co je to diskrétńı logaritmus? Popǐste Diffie-Hellman̊uv protokol pro výměnu kĺıč̊u.

Definice 32. (Diskrétńı logaritmus): je inverzńı zobrazeńı k tzv. diskrétńı exponenciále, tedy k zobrazeńı

exp : Zn → G, k → ak,

kde G = ⟨a⟩ je cyklická grupa řádu n,

Diffie-Hellman̊uv protokol Alice a Bob se potřebuj́ı dohodnout na nějakém společném kĺıči, přičemž k dispozici
maj́ı pouze veřejný kanál.
Nejprve se Alice a Bob dohodnou na nějaké cyklické grupě a generátoru G = ⟨a⟩. Dále si Alice zvoĺı č́ıslo m a Bob
č́ıslo n z intervalu 2, . . . , |G| − 1, přičemž každý bude svoje č́ıslo držet v tajnosti.

� Alice spočte u = am a pošle u Bobovi.

� Bob spočte v = an a pošle v Alici.

Poté Alice spočte vm = (an)m = amn a Bob spočte un = (am)n = amn. Oba tak źıskali stejný prvek amn, což je
společný kĺıč.

Kdyby je poslouchala Eva, bude znát pouze grupu G, generátor a a hodnoty u, v.
Prvek amn ale neńı schopná dopoč́ıtat, musela by provést diskrétńı logaritmus, určit mn a dopoč́ıtat amn. Dodnes
pro to ale neńı znám efektivńı zp̊usob.
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