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1 Teorie cisel

1.1 Modularni aritmetika
1.1.1 Zformulujte a dokazte Zakladni vétu aritmetiky.

Véta 1. (Zdkladni véta aritmetiky): Va € N, kde a # 1, existuji po dvou rtiznd prvocisla py, ..., p, a k1,..., k, € N
splnujici:
k1, k
a=pi'ps>-... -pﬁ"
Drikaz: Dokézeme zvast existenci a jednoznacnost:

(i) Existence: Necht a € N je nejmensi &fslo, pro néjz neexistuje prvoéiselny rozklad. To nemtize byt prvoéislem,
jinak bychom méli rozklad a = a', takze a je slozené a mizeme ho pro néjaka 1 < b, c < a rozlozit na a = b-c.
Podle indukéniho predpokladu ale existuje prvociselny rozklad jak pro b, tak pro c a jejich slozenim ziskdme
rozklad a.

(ii) Jednoznaénost: Necht a € N je nejmens{ éfslo s nejednoznaénym prvoéiselnym rozkladem. A necht méame

dva ruzné rozklady a:
_ k km — 1 ln
a=pt .. Dy =qr

Jelikoz py | a=g¢!' - ... - ¢lr, musi existovat 7 takové, ze p; | g.
Protoze je ale ¢; prvocislo, musi tak platit p; = g;.

Nyni uvazme ¢islo b = 1%1 opét s dvéma ruznymi rozklady:

k-1 k [ I;—1 !
b=pi" Py =41 g gy

Tim bychom ale dostali, ze b < a, coz je spor s minimalitou.

O

1.1.2 Co jsou Bézoutovy koeficienty? Napiste Eukleidtiv algoritmus pro gcd a vysvétlete jak
spocitat Bézoutovy koeficienty

Definice 1. (Bézoutovy koeficienty u,v): Pro kazdou dvojici ¢isel a, b € Z existuji u, v € Z spliujici:
ged(a,b) =u-a+v-b.

Algoritmus 1. (Eukleidiv):
VSTUP: a,b € N,a > b
VYSTUP: gcd(a,b) € Z a Bézoutovy koeficienty u,v € Z

1. i:=0, (ap,a1):=(a,b); (ug,u1)=(1,0); (vg,v1)=1(0,1)

2. while a; >0 do{

3. Qi1 i= @iy mod @z G = T Ui T U1 — Wi @5 Vil S= V1 — vy =+ ]
4. }

5. return a;_1,U;—1,Vi—1

1.1.3 Co je to konkgruence? Definujte Eulerovu funkci. Zformulujte a dokazte Eulerovu vétu

Definice 2. (Konkgruence): Necht a,b,m € Z a m # 0, potom a je kongruentni s b modulo m, tedy
a=b (modm), pokudm|a—0.

Definice 3. (Eulerova funkce): Zobrazeni ¢ : N — N znaé¢i pro n € N pocet ¢isel k € {1,...,n — 1} nesoudélnych
s ¢islem n. Tedy jinak (n) = |{k € {1,...,n — 1} | ged(k,n) = 1}|.



Véta 2. (Eulerova): Necht Ya,m € N : ged(a, m) = 1, potom a?™) =1 mod m.

Lemma 1. Necht a,z,m € N a ged(a,m) = 1 = ged(x,m) <= ged(ax,m) = 1, potom zobrazen{
fa:®m — ®,,  je bijekce a plati  f,(z) =ax mod m.
Diikaz: Nejprve dokdzeme platnost ekvivalence ged(a,m) = 1 = ged(z, m) < ged(az,m) = 1:

= Kdyby ged(az,m) # 1, tak by podle Euklidova algoritmu Jp : p | az,m. Diky ZVA vime, ze pokud
Jp:plax,m,pak p|a V p|z, cozje spor s nesoudélnosti, protoze by pak ged(z,m) # 1.

<= Kdyby gcd(a,m) # 1 nebo ged(z,m) # 1, tak Ip:p| anebop |z = p|azx,m = ged(az,m) #1

Daéle dokazeme, ze zobrazeni f, je bijektivni.
Nejdifve necht x,y € ®,, : f.(z) = fa(y), neboli ax = ay mod m. A protoze ged(a,m) = 1, uvazme

r=y modm = zx<mAy<m = x=y = f, je injektivni.
A protoze mnoziny jsou stejné velké a plati injektivita, dostaneme i potfebnou surjektivitu = bijekce f,. O

H bLergma H fa(b): H ab mod m= H ab:aw(m). H b mod m.

beD,, bEP, bEP, bED, beED,

Dikaz:

Rovnici muzeme piepsat jen jako H b=a?™ . H b mod m. A protoze gcd ( H b, m) = 1, dostavame
beD,, bE®D,, beD,,
potfebné:
1=a%*" mod m.

1.1.4 Zformulujte a dokazte Cinskou vétu o zbytku.
n

Véta 3. (Cinskd o zbytcich): Necht my,...,m, € N jsou po dvou nesoudélna ¢isla, ozna¢me M := Hmi. Déle
i=1

necht uy,...,u, € Z. Potom 3z € Z,, takové, ze fesi soustavu Vi € {1,...,n—1} : z = u; mod m;.

Diikaz: Nejprve ukdzeme jednoznacnost.
Pro spor predpokladejme, ze mé soustava dvé feseni x,y € {0,...,n — 1}, tedy plati:
Vi:ie=y=u; (modm;) = m;|z—y

n

a protoze vSechna m; jsou navzijem nesoudélnd, tak dostdvidme M = H | £ —y. OvSem obeé ¢isla z,y, a tedy i
i=1

jejich rozdil, jsou mensi nez M, takze nutné z —y =0 — = =y.

Nyni ukdzeme existenci. Uvazme zobrazeni

f:40,....n—=1}—={0,...,my — 1} x --- x {0,...,m,, — 1}

z— (x mod my,...,z mod my).

Ukézali jsme tak, ze f je prostd. Pfitom definién{ obor i obor hodnot této funkce maji stejnou velikost M (velikost
kartézského soucinu je soucin velikosti ¢initelu):

n n
M = |Zn| = Hqu‘, = H |Zin,
i=1 i=1
Takze zobrazen{ f musi byt i na a je proto f bijekce, neboli Vi : = u; mod m; <= f(z) =u1,...,up.
Tedy 3!z ke kazdé n-tici (u1,...,u,), které se na néj zobrazuje, a to je hledanym feSenim soustavy. O



1.1.5 Popiste jak spocitat hodnotu Eulerovy funke kdyz zname faktorizaci prvocisla. Dokazte to.

n

n
Tvrzeni 1. Necht p je prvoéislo, kde p; < --- < p, a kq,...,k, € N, potom ¢ (pr) = H(pi — l)pfﬁl.
i

i

Diikaz: Necht m; = pfi, pouzijeme zobrazeni f : Z, — [[ Zm, z Cinské véty o zbytku.

Kartézsky soucin

f(@m) = H(I)mi - Hqu‘, ; proto : a € ®p, < ged(a,m) =1

Lemma

< ged(a mod m;, m;) = ged(a,m;) =1
< Vi:a modm; € Py,

<~ f(a) € ﬁfbmi.
i=1

Dostévame tak o(m) = |®n| = |f(®m)| = I11®m.
=1

———

= priklad (pi—1)p)i "



2 Polynomy

2.1 Télesa, okruhy, obory
2.1.1 Co je to obor integrity? Napisté alespon dva priklady, kdy obor neni téleso.
Definice 4. (Ring/ okruh): Pétice R = (R, +, —, -,0) se nazyvd okruh, pokud R je mnozina s bindrnimi operacemi

+,-: R X R — R, unarni operaci — : R — R, prvkem 0 € R a operacemi Va,b,c € R:

a+(b+c)=(a+b)+c, a+b=>b+a, a+0=0,
a+ (—a) =0, a-1=1-a=a (okruh s jednotkou 1 € R)
a-(b-c)=(a-b)-c,
a-(b+c)=(a-b)+(a-c) & (a+b)-c=(a-c)+(b-¢)

Definice 5. (Komutativni okruh R ): = pokud je komutativni také operace ndsobeni, tedy Va,b € R:a-b="0-a.
Definice 6. (Obor integrity): = komutativni okruh s jendnotkou, pokud plati: Va,b € R\ {0} : a-b#0.
Priklad 1. Pfiklady, kdy obor neni télesem.

(i) Obor celych ¢isel Z neni téleso (nemd inverzni prvek)

(ii) Matice s nulovym determinantem, tedy pro téleso F a M, (F) = {¢tvercovd matice n X n nad F} definujeme
0 ... 0

My, (F),+,—,0, [+ .. je okruh s jednotkou I,,. Neni ale télesem (nemd multiplikativni inverz).
0 ... 0

(iii) Boolovsky okruh (Za,®, A, 0,1) neni télesem (nemd aditivni inverz).

2.1.2 Pro ktera piirozena &isla je okruh *Zn’ oborem? Zduavodnéte svou odpovéd.
Lemma 2. ProVn > 1 €N, je komutationi okruh Z,, = (Zy,+,—,+,0) s jednotkou 1 okruh <= n je prvodcislo.

Diikaz: 7 nésledujici véty vime, ze kazdé téleso je obor, dokazeme tedy, ze Z,, je obor <= n je prvocislo.
Kdyby n = k - I bylo slozené ¢&islo, kde k,1 > 1, tak by v Z,, platilo k-l =n (mod n) =0 = neni obor.
A je-li n prvoéislo, pak je a”~2 (mod n) inverznim prvkem pro a # 0, coz plyne z malé Fermatovy véty. O

2.1.3 Popisté nosnou mnozinu a operace podilového télesa oboru. Co je podilové téleso celych
¢isel? Co je podilové téleso télesa R?

Definice 7. (Podilové téleso): Definujme nejprve relaci ~ vztahem (a,b) ~ (¢,d) <= ad = bc na mnoziné
R x M, kde M = R\ {0}. Jednd se o relaci ekvivalence. Struktura Q = (Q,+, —,-,0) je tzv. podilové téleso oboru
R, kde @ je nosnd mnozina vsech zlomki Q = {% | (a,b) € R x M}, pro kterou plati operace:

a ¢ ad + be a —a a c ac 0 1
b + d bd b b’ b d bd’ 0 1’ 1

Nejednd se konkrétné o dvojice (a,b), ale o t¥idy ekvivalence ¢ = [(a,b)]~. (Aby platilo § = %7 ).

Priklad 2. (Podilové téleso Z.): {§ | (a,b) € Z} je téleso raciondlnich cisel Q.

Priklad 3. (Podilové téleso telesa): je opét puvodni téleso {¢ | (a,b) € R x M}.



2.1.4 Popisté nosnou mnozinu a operace komutativniho okruhu R[x] nad okruhem R.

Definice 8. (Komutationi okruh): R je komutativnd okruh, pokud je komutativni také operace ndsobeni, tedy
Va,be R:a-b=b-a.

Definice 9. (Polynom proménné x): nad komutativnim okruhem R rozumime vyraz
n
2 n o__ i
ag+a1x +ax” 4+ ... +a,x” = a; T,
i=0

kde ag,...,an € R, a, # 0.
Nosnd mnozina vSech polynomu na komutativnim okruhu R[z] je definovdna predpisy:

m n max(m,n) m m
E a;xt + g bzt = E (a; + b))z’ - E a;x" = E (—a;)x",
=0 =0 =0 =0 i=0

(i W&) . (2: bx> = min > agby | 2

=0 \j+k=i
2.1.5 Dokazte, ze komutativni okruh R[x] nad oborem R je obor. Existuje téleso F takové, ze F[x]
je téleso?

Véta 4. Necht R = (R[z],+, —, -, 0) je komutativni okruh s jednotkou, potom

(i) Rlx] je komutativni okruh,

(ii) pokud R je obor, potom R[z] je také obor a plati Vf,g € R[z]\ {0} : deg(fg) = deg(f) + deg(g).
Diikaz: Oznagme f =3 " ja;z’, g = o bix’, h=3"_ cia’.

(i) Dokdzeme postupné vsechny axiomy.

e Scitani trividlné. Scitaji se nezavisle koeficienty u jednotlivych mocnin, ¢ili rovnosti pro polynomy ihned
plynou z rovnosti v R.

o Komutativita ndsobeni plyne z toho, Zze vzorec je symetricky vzhledem k prohozeni pismen a a b.

o Jednotka z definice soucinu: f-1 = (Z aixl) (14+040+...) = Z Z ajby | 2

=0 =0 \j+k=t

e Asociativita ndsobeni: z jedné strany, f - (g - h) je rovno:

(S () (5] = (o) ((32))

m-+n+p

Z Z a;brc "

i=0 jtk+l=i

e Distributivita analogicky

(ii) deg(fg), kde f,g >0 = deg f > 0Adegg > 0 a zdroven deg(f) = m a deg(g) = n.

=0 =0
. #0770
Proto koeficient f - g: apby + a1bp_1+---=ag- 0+ -+ an - 0+ @by +am_1bn_1 = apmby # 0.

Vedoucim koeficientem f - g je an,by, ktery je nenulovy diky tomu, ze R je obor
O

Téeleso F takové, ze F[x] je télesem neexistuje, protoze nesplituje existenci inverzniho prvku vzhledem k ndsobeni.
Predpoklddejme pro spor, Ze existuje. Vezméme = € F[z], kde zfejmé x # 0 (protoZze predpokldddme polynom).
Pokud ale vynasobimé z jakymkoliv polynomem=# 0, tak vysledek bude vzdy obsahovat x a jeho vys{ mocniny,
takze nema inverz. O



2.1.6 Co je to kofen polynomu? Zformulujte a dokazte predpoklady o poctu korentu polynomu nad
oborem.

Definice 10. (Koren polynomu): Necht R < S jsou obory, f € R[z] a a € S. Rekneme, ze a je kofen polynomu
f, pokud f(a) = 0.

Véta 5. (Pocet korenii): Necht R je obor, f € R[], kde deg f = n > 0, potom f m& nejvyse n kofeni v R.
Dikaz: (Indukct podle n).
(i) Pron=0: f € R\ {0}, je nenulovy konstantni polynom, nemd kofeny, tedy Voo € R : f(a) # f #0
(ii) Pokud deg f = n + 1, pak bud polynom f neméd zidny kofen, v tom piipadé tvrzeni plati a nebo Jov kofen:
Jo€eR: fla)=0 = JgeR[z]: f=(r—a)-g = degg=n

Pokud existuje néjaky druhy kofen 8 # «, tak plati:

IBER: F(B)=0 — 0=F(B)=(B-0a)9(8) "L a=8 Vv ¢(8)=0

A protoze méa g nejvyse n polynomu, tak ma f nejvyse n 4+ 1 kofenu.

2.2 Deélitelnost, UFD

2.2.1 Definujte prvocislo a ireducibilni prvek. Je kazdy prvek ireducibilni? Je kazdy ireducibilni
prvek prvocislo?

Definice 11. (Prvocislo): Necht a,b,c € R, potom a je prvoéislo, pokud:
Vb,c: alb-c = a|b V a|lc & a¢ R"U{0}.
Definice 12. (Trividlni délitel): Necht a,b € R, potom a je trividlni délitel b, pokud a || b nebo a || 1.

Definice 13. (Ireducibilnd prvek a): Prvek 0 # a € R je ireducibilng, pokud a M 1 a a nema trividlni délitele.
Jinymi slovy, pokud pro kazdy rozklad a = be plati b || 1 nebo ¢ || 1.

Pozorovani 1. Vsechna prvocisla jsou ireducibilni.

Diikaz: Necht rozklad a = be je prvoéiselny prvek. Z toho mizeme odvodit, Ze a | be, tedy a | b nebo a | ¢, z éehoz
plyne a || b nebo a || ¢, ¢ili jde o trividlni rozklad.

Opacnd implikace obecné neplati (jen pro nékteré obory, napi. pro Z, pro UFD). Konkrétné pro obor Z[v/5] je
prvek 2 ireducibilni, protoze 2 | (v/5 — 1)(v/5 + 1), ale nenf prvoéislem, protoze 21 (v/5+ 1) ani 24 (v5—1). O

2.2.2 Co znamend, ze dva prvky oboru jsou asociované? PopiSte tuto relaci na oboru pomoci
inverznich prvku.

Definice 14. (Asociovanost): Necht a,b € R, kde R je obor. Potom a a b jsou navzajem asociované, tedy a || b,

pokud a | b a b | a. Zaroven plati, Ze prvek a je invertibilni <= a || 1 a prvek b splitujici ab = 1 znac¢ime a 1.

Pozorovani 2. Relace délitelnosti je reflexivnd i tranzitivnd. Pokud a | b a b | ¢, tedy pokud b = ax a ¢ = by pro
néjaka x,y, pak ¢ = axy, tedy a | ¢. Z toho ihned plyne, Ze relace || je ekvivalenci.

Tvrzeni 2. (Asociovanost vs. invertibilni pruky): Necht R je obor a a,b € R. Pak a || b <= existuje invertibiln{
prvek ¢ € R takovy, ze a = bq.

Drikaz: Dokazujeme dvé implikace.
<= Protoze a = bq, tak plat{ b | a. Protoze b = ag~!, tak platii a | b.

= Pokud a = 0, pak i b = 0 a tvrzeni plati. Uvazujme proto, ze a # 0. Protoze b | a, tak a = bu, a protoze
a | b, tak b = av pro né&jakd u,v. Tedy a = bu = avu a krdcenim dostdvame uv = 1, ¢ili u,v || 1.
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2.2.3 Definujte nejvétsi spoleény délitel dvou prvka na oboru. Co je ged(a, 1) a ged(a, 0) pro
prvek na néjakém oboru?

Definice 15. (Nejuétsi spolecny délitel): Necht a,b,c,d € R, potom ¢ je ged(a,b), pokud :
cla ANelb a d|laANd|b= d|ec
ProVa € R: ged(a,1) =1 = pouze l|aAl|l. ProVa € R: ged(a,0) =ged(0,a) =|a] = pouze a | a.
2.2.4 Definujte ireducibilni rozklad. Definujte Gaussiuv obor (UFD). Dokazte, Zze existuje gcd(a,
b) pro kazdou dvojici prvka a,b z UFD.

Definice 16. (Ireducibilnd rozklad): prvku a je zapis a || p’fl -...-pkn kde py, ..., pn jsou ireducibilni prvky, p; J/rpj
proi#jaky,....k, € N.

Definice 17. (Gaussiv obor (UFD)): Obor R je UFD, pokud m4 kazdy nenulovy neinvertibilni prvek unikatn{
rozklad na ireducibilni ¢initele.

Dusledek 1. Necht R je UFD, potom Va,b € R existuje ged(a,b).

Diikaz: Uvazujme ireducibilni prvky p1,...,pn, i M pj, Pro i # j, a k;, l; > 0 takové, Ze:

allpt .ok bl Pl

(Libovolné ireducibilng rozklady prvki a,b miZeme prepsat do této formy tak, Ze ze dvou asociovangch ciniteli
vybereme jeden a do rozkladu pripadné doplnime cinitele v nulté mocniné.)

Nynic|a,b < cl|pi™-...-ppn, kde 0 <m; < k; a0 <m; <l ¢li <= 0<m; <min(k;,!;), pro viechna 1.
Nejvétsim z téchto spoleénych délitela tedy bude ten, kde m; = min(k;, ;). O

2.2.5 Formulujte charakteristiku (nutnou a postaéujici podminku) UFD za pomoci gcd a fetézce
délitelt. Dokazte to.
Véta 6. (Zobecnénd zdkladni véta aritmetiky):Necht R je obor, potom R je UFD préavé tehdy, kdyz:
(i) existuje ged vsech dvojic prvku
(ii) neexistuje poslopunost a1, as,as, -+ € R takovd, ze a;4+1 | a; a a;11 J/f a;.
Drikaz: Budeme dokazovat dvé implikace.
= Dokézali jsme v Dusledku 5.3.

<= Nejprve dokazeme existenci rozklad:
Pro spor uvazujme prvek a, ktery nema ireducibilni rozklad, 0 # a J/( 1. Rekurzi zkonstruujeme spornou
posloupnost s bodem (i7).
— Necht a; = 1. Tedy a, M 1 a nem4 ireducibilni rozklad.

— Predpoklddejme, ze a; J/( 1 a nema ireducibilni rozklad. Specialng, prvek a; neni sém ireducibilni, a tedy
a; = b-c pro néjaka b, c J/( 1. Kdyby b i ¢ mély ireducibilni rozklad, pak by ho mél i a;, takze aspon
jedno z nich ireducibilni rozklad nemd, oznac¢me jej a;11. Je tedy vlastni délitel a; a nemd ireducibiln{
rozklad. Tato posloupnost ay, as,...je ve sporu s (i7)

Nyni{ dokézeme jednoznacénost: (Ve skriptech je, Ze se na to u zkousky nebude ptat, takze nezbyva nez doufat)

O



2.3 GCD a Modulo polynom

2.3.1 Definujte Eukleidovskou normu a obor. NapisSte dva priklady Eukleidovského oboru, které
nejsou télesa.

Definice 18. (Eukleidovskd norma): je zobrazeni V : R — Ny takové, ze
(i) v(0) =0,
(ii) pokud Va,b € R, a|b# 0, pak V(a) < V(b),
(iii) Va,b € R, b#0, J¢,r € R takovd, ze a=bg+r a V(r)<V(b).
Definice 19. (Eukleidovsky obor): Obor R se nazyva eukleidovsky, pokud na ném existuje eukleidovskd norma
Priklad 4. (Eukleidovského oboru, které nend téleso)

e Obor Z[z] neni eukleidovsky pro libovolné téleso Z, protoze nemd Eukleidovskou normu:

Jeho normou je V(f) = 1 + deg f. Pro napiiklad polynomy 3z a 2z mdme 3z = ¢- 2z +r a degr =0 =
r=0 = 3z =2qx ¢ Z[z].

e Obor Z[i] nenf eukleidovsky. Jeho norma je V(a + bi) = a? + b?
2.3.2 Co znamena primitivni polynom? Zformulujte Gaussovo lemma a Gaussovu vétu. Pokud R
je UFD s podilovym télesem Q, vysvétlete jak spocitat ged v R[x] pomoci ged v Q[x] a v R
Definice 20. (Primitivni polynom f): = jeho koeficienty jsou nesoudélné. (c déli vsechny koeficienty —> c|| 1).
Lemma 3. (Gaussovo): Necht R je UFD a f, g primitivn{ polynomy z R[z]. Potom fg je také primitivn{ polynom.
Véta 7. (Gaussova): Pokud R je UFD, pak R[] je také UFD.
Véta 8. (ged a UFD vs. podilové téleso) Necht R je UFD, Q jeho podilové téleso a f, g polynomy z R[z]. Potom

(1) existuje gedpy,)(f,9) = ¢+ h, kde ¢ = gedg(cr,cy) a kde h = ngQ[az]<£’ %

GCD koeficientt polynomu f znatime ¢y a GCD koeficientit polynomu ¢ zna¢ime c,.

) je primitivn{ polynom z R[x].
d _ ‘o iveducibilng
(2) f je ireducibilni v Rz] «= {468 =0 JieireducibilnfvR,
deg f >0 f je primitivn{ a ireducibiln{ v Q[z].

Piiklad 5. Pro obor Z[x] a polynomy f = 422 + 8x + 4 a g = —622 + 6 pocitdme:
c=gedy(4,6) =2,  h=gedgy, (x2 4+ 22+ 1,22 — 1) =z + 1. A celkem tak mdme gedpp,(fi9) =2 (z+1)

2.3.3 Napiste zobecnény Eukleidav algoritmus pro Eukleidovsky obor a Eukleidovskou normu

Algoritmus 2. (Zobecnény Eukleidiv): Necht R je eukleidovsky obor:
VSTUP: a,b € R,V(a) > V()
VYSTUP: gcd(a,b) € R a Bézoutovy koeficienty u,v € R
(ao,a1) == (a,b); (ug,w1) = (1,0); (vo,v1) = (0,1)
for 1 =2,3,... do:
zvol ¢,r tak, aby a;—1 = a;q+r aV(r) < V(a;)
definuj a; 41 =7; Ujp1 = Uim1 — UQ; Vg1 = V-1 —Uiq; =1+ 1

if A1 = 0:

A

return a;, U;, V;
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2.3.4 Dokazte, ze kazdy Eukleidovsky obor je UFD.
Véta 9. Fukleidovské obory jsou UFD.
Dukaz: Pouzijeme zobecnénou zdkladni vétu aritmetiky a ovéfime body (1) a (2).
(1) Va,b € R:3gcd(a,b) € R
(2) Za pomoci nésledujiciho lemma. Takové posloupnost by totiz méla ostie klesajici normu, coz nelze.
Lemma 4. Necht R je Eukleidovskij obor, a,b € R, kde a,b# 0 a V je Eukleidovskd norma. Potom:
albAajfb = V(a) <V(b).
Diikaz: Necht b = au pro n&jaké u € R a necht a = bg + r pro néjakd ¢,r € R, kde V(r) < V(b).
Vzhledem k tomu, ze bt a, tak plati r # 0. Dosazenim dostanem r = a — bqg = a — auq = a(1l — uq), z ¢ehoz
plyne, ze a | r.
A protoze r # 0, tak dostavame V(a) < V(r) < V(b).

2.3.5 Zformulujte a dokazte Gaussovu vétu.
Véta 10. (Gaussova): Pokud R je UFD, pak R[x] je také UFD.
Duikaz: Pouzijeme ”Zobecnénou zdkladni vétu aritmetiky” a dokézeme oba body.
(1) Ya,b € R[z] : Fged(a,b). Platnost vychdzi z véty “ged a UFD vs. podilové téleso”.
(2) Predpoklddejme nekonecnou posloupnost vlastnich deélitelu {a;};>1 € R[z] \ {0}, tedy t.z: a;1+1 | a;.
Potom Vi : —1 < deg(a;+1) < deg(a;) a musi tak In takové, ze Vi > n :
deg(a;) = deg(a,), tedy deg(a,)=deg(ant1)=....

Nakonec pokud si zadefinujeme u; jakozto vedouci koeficient a;, tak ., un11, Unto,... tvoil nekoneénou
posloupnost vlastnich délitelu v R, coz je spor.

O
2.3.6 Popiste konstrukci faktorokruhu F[a]/m(a) modulo polynom m(a) nad télesem F. Zformulujte
a dokazte charakteristiku téchto polynomu m(a) tak, ze faktor je téleso.

Definice 21. (Faktorokruh): Necht F je téleso a necht mame polynom m € Fla], stupné n = deg(m) > 1.
Potom Faktorokruh Fla]/(m) je mnozina vSech polynomu stupné < n se standardnimi oparacemi s¢itdni, odéitdni
a opercaci ndsobeni modulo m. Tedy:

Flo]/(m) = ({f € Flo] | deg(f) <n},+ - ©,0,1),
kde f©g= f-g mod m.
Platnost definice Je tieba dokdzat, ze se jednd o komutativn{ okruh. Axiomy pro +,— jsou totozné s F|z],
dokazeme proto jen axiomy s ©.

Piipomenime si, ze f = g (mod m) <= f mod m =g mod m a ze tak f = f (mod m (mod m)). Konkrétné
vyuzijeme vztahu (f - g mod m)-h mod m = f-(g-h mod m) mod m a dokdzeme za pomoci néj asociativitu:

VYa,b,ce Fla]/(m): a®(boc)=a®(b-c)=a-(b-c)=(a-b)-c=(a®b)®c (modm)
2.3.7 Pro prvoéislo p, prirozené k a ireducibilni celoc¢iselny polynom m stupné k popiste konstrukci
koneéného télesa s p na n prvky. Jak mtizeme pocitat inverz prvka v tomto télese?
Tvrzeni 3. Necht p je prvoéislo a IF je konetné téleso, potom:
(1) pokud p je charakteristikou F, pak 3k € N : |F| = p*
(2) pokud k € N a F je rozkladové nadtéleso a?" — z € Zyz], pak |F| = p*
(3) Vk € N,3Im € Zy[z], kde m je ireducibilni se stupném deg(m) = k, pak Z,[a]/m(a) je téleso p* prvki.
Diikaz: (1): F je vektorovy prostor nad Z,, takze k = dimz F = |F| = p*. O
Inverz a=*a =1 (mod b) se poéitd za pomoci Bézoutovy rovnosti a Euklidova algoritmu, tedy

1=gcd(b,a) =ub+va ,kde wva=1 (modb).
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2.3.8 Dokazte, ze pro libovolny polynom f nad télesem existuje téleso obsahujici koten f.
Véta 11. Necht F je téleso, f € F[z] je polynom a n = deg(f) > 1. Potom existuje téleso S > T, kde f m4 kofen.

Diikaz: Pokud mé f kofen v F, vezmeme S = F.

V opacném pifpadé mé f néjaky ireducibilni délitel m = Y"1 a;2" stupné alespon 2 a stacf najit nadtéleso, kde
ma kofen polynom m.

Uvazujme faktorokruh & = Fla]/(m(«)). Vime, ze S je téleso. Vyhodnotime-li v S polynom m na prvku e,
dostaneme:

m(a) = Zai(o/ mod m(a)) = Z a;’ 4 ap (@™ mod m(a)),
i=0 i=0

< -1 . .
oviem a,a” mod m(a) = — Y1 a;a, takze se to odete na nulu.

Prvek «a je tedy kofenem obou polynomu m, f v nadtélese S. O

2.3.9 Zformulujte a dokazte Cinskou vétu o zbytcich pro polynomy.
Véta 12. (Cinskd o zbytcich pro polynomy): Necht T je téleso a k,n € N. Necht my,mo, ..., m, € F[z] jsou po
dvou nesoudélné polynomy a necht d = 3 deg(m;). Déle necht uy, ..., u, € F[z] jsou libovolné polynomy. Potom
3lf € F[z] polynom stupné deg(f) < d, ktery Fesi soustavu kongruenci:
f=u1 (modmy), ... , f=u, (modm,).
Diikaz: Dokdzeme zv1ast jednoznaénost a existenci.
e Jednoznacnost: Pro spor predpokladejme, ze ma soustava dvé feSeni f, g stupné < d, tedy

Vi:f=g=u; (modm;).

Z toho plyne, ze f — g =0 (mod m;), tedy ze m; | f — g. Zéroven vime, ze deg(f — g) < d.

A protoze jsou vsechny polynomy m; navzajem nesoudélné, tak dostaneme:

n
Hmi | f—9.
=1
N ,  deg<d
deg=d

Tedy polynom stupné d déli polynom stupné < d, coz je mozné pouze v piipadé f —g=0 = f =g.

k
o Euxistence: Nechi m = [['_, m; a nechi ¥ : Fz]/(m) — HF[x]/(ml), tedy:

i=1
f—=(f (modmi),f (modms),...,f (modmy,)).

Jedna se o linedrni zobrazeni ¥ mezi vektorovymi prostory. Zaroven vime diky jedinecnosti, ze ¥ je injektivni.
Uréime si dimenze, tedy:

k
Fla]/(m) = HF[w]/(mz’)

k k
d = dimp (F[z]/(m)) = dimp (H F[x]/(mi)> = deg(m;) =d
i=1 7

Mezi vektorovymi prostory je stejnd dimenze = je i surjektivni = je bijektivni = m4 pravé jedno
feseni soustavy f = ¥~1(u; mod my,...,u, mod m,).

O
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2.4 Aplikace
2.4.1 Popiste (k, n)-schéma pro sdileni tajemstvi zalozeny na CRT pro polynomy.

Méme (k, n)-schéma pro sdileni tajemstvi, kde n tcastniku se déli o tajemstvi ¢ a k jich je potfeba k jeho odhaleni.
Obecné pracujeme v télese Fy' ~ Fom, kde t € Fam je tajemstvi.

Zvolime si polynom f € Fom[z], kde deg(f) < k a kde f(0) = t. Dale vybereme n po dvou ruznych hodnot
ai,...,an € Fom, tedy Vi # j : a; # a; .
Nésledné kazdému ucastnikovi pfifadime préavé jednu konkrétni hodnotu f(aq),..., f(an).

e Pokud se sejde > k 1ucastniku, vezmou své hodnoty, provedou interpolaci ve svych bodech a spoctou ten
jeden jediny polynom stupné < k a vezmou jeho absolutni ¢len, coz je vysledné tajemstvi

e Pokud se sejde < k ucastniku, také vezmou své hodnoty, také provedou interpolaci ve svych bodech, ale

polynomu stupné < k je mnoho a nezjisti tak nic o absolutnim ¢lenu, ktery hledaji. Museli by polynom

uhadnout, coz je proveditelné s pravdépodobnosti ITl\ = 2}n.

2.4.2 Popiste protokol RSA s vefejnym klicem a vysvétlete proc¢ desifrovani funguje.

Notace: Zadefinujeme si:

p,geEN oo velkd prvodisla, t.z.: p # ¢
(Ny€) oo dvojice, verejny klic, kde N =p-q
o(N)=p@E-1(@—-1) ....... . Eulerova funkce
eeN, 0<e<p(N) ......... sifrovaci exponent
deN ... desifrovaci exponent

Zaroven musi plati platit ged(e, ¢(N)) = 1 a déle se hodi k vypoctum nésledujici vztahy:
y=z¢ (mod N) ............... zaSifrovani plaintextu, vysledkem je ciphertext
r=y% (mod N) ............... desifrovani ciphertextu, vysledkem je plaintext
d-e=1 (mod (N)) ........... ziskéni d (Euklidovym algoritmem)

=1

Desifrovani se dé lehce odvodit: y? = z¢4 = g1 T4 (N) = z(2*N)N = g (mod N)

Popis algoritmu: Bob si vygeneruje nahodna velkd prvocisla p,q € N, p # g a vypocita z nich N = p-q. Déle
vypocitd Eulerovu funkei ¢(N) = (p — 1)(¢ — 1) a nésledné vygeneruje ¢islo e € N, t.z.: 0 < e < ¢(N) a pro které
plati, ze p(N), tedy ged(e, o(N)) = 1. Timto &islem zasifruje plaintext x vztahem y = x¢ (mod N).

Pak uz jen nalezne ¢islo d € N euklidovym algoritmem d-e =1 (mod ¢(N)).

Verejny kli¢, neboli dvojici (IV, e) posle Alici spolu s ciphertextem y.

Alice pfijme vefejny kli¢ (N, e) - dvojici, i ciphertext y. Pouze Alici je zndm soukromy kli¢c (N, d), vyuzije ho k
desifrovan{ y. To udéla vztahem = = y¢ (mod N).

Eva nema moznost si zpravu piecist, protoze nezna desifrovaci exponent d. Musela by ho uhadnout, coz neni
pravdépodobné, nebo by musela znit prvoéisla p,q. Kdyby znala p,q mohla by si jednoduse dopocitat ¢(N) a
nasledné d tak, jak jsme to udélali my.

Bezpecnost RSA tedy stoji na tom, ze tutoénik neni schopen rozlozit N = p - ¢ na p, q, proto je potieba je volit
dostatecné velka.

2.4.3 Popiste schéma Reed-Solomonovych kéda. Je zakdédovani F-linearni zobrazeni? Dokazte.

Rood-Solomonovym (k,n)-kédem je zobrazeni ¢ : F¥ — F", f =" a;a" — (f(aa),. .., flan)).

Inverznim zobrazenim je interpolace v danych bodech.

Ruzné polynomy f, g maji < k stejnych hodnot, ¢ili > n — k ruznych hodnot, takze jde o kéd typu (k,n;d) pro
d>n—k+1 aopravuje tak |25% | chyb.

Zakédovani muzeme prevést na linedrni zobrazeni nésledovné:

Al
(ao, ... ak—1) = (f(a1),..., f(an)) = (ao,...,ap—1) - [ :
allc—l OéfL71

Plati, ze kazdé kodové slovo je linearni kombinaci vstupnich dat a ze kédova slova lze zapsat ve formé linedarniho
zobrazeni.
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3 Grupy

3.1 Grupy a podgrupy

3.1.1 Definujte pojem grupy a jeji podgrupy. Co je to ¥4ad grupy a prvku? Uvedte pfiklad grupy
radu 99.

Definice 22. (Grupa) : Grupa je ¢tvefice G = (G,-,71,1), kde G je mnozina, na které jsou definovdny bindrn{
operace - : G x G — G, unérni operace ~! : G — G a konstanta 1 € G, spliujici Va,b,c € G :

(i) a-(b-¢)=(a-b)-c (asociativita),

(ii) a-1=1-a=a (neutrdlni prvek),

1 1

(iii) ara='=a"t-a=1 (inverzni prvek).
Definice 23. (Podgrupa) : Necht G = (G,-,71,1) a H = (H,", -1, 1) jsou grupy, potom H je podgrupa grupy G,
znaceno H < G, pokud:

1=1, VYa,be H:a-b=a-b, at=a"t
Definice 24. (Rdd grupy G): je pocet prvkii jeji nosné mnoziny, znacime jej |G|.

Definice 25. (Rdd proku v grupé G): je nejmensi n € N takové, ze a™ = 1 pokud takové n existuje, resp. 0o v
opacném piipadé. Znacéime jej ord(a).

Piiklad 6. (Grupa 7ddu 99.) Musi mit 99 prvku. Tteba direktni sou¢in grup G a H, kde |G| = 3 a [H| = 11,
dostaneme 3 x 3 x 9 =99, tedy G5 x Hg — Fyg. (Bude Abelovskd).

3.1.2 Definujte mocninu grupy. Maji vSechny prvky koneéné grupy konecny fad?

1 n=>0
a-a-...-a n>0
Definice 26. (Mocnina): Necht G je grupa, a € G,n € Z. Potom mocnina je a™ = T
atoat. a”! n<o
—n
Tvrzeni 4. (Mocniny): Necht G je grupa, a,b € G, k,l € Z, potom: a**! = a* . al, akl = (a*)! = (ah)*.

A pokud je abelovska, tak jesté (ab)® = a*b*.

Koneénost grupy a rfddu: Vsechny prvky konecné grupy maji konecny rad, protoze v koneéné grupé existuje
pouze koneény pocet ruznych mocnin prvku. Proto se v ur¢itém okamziku musi opakovat hodnota a™ a nejmensi
takové kladné n je fad prvku.

Kdyby fad byl nekoneény, pak zaddné n # 0 s vlastnosti ™ = 1 neexistuje, mocniny «a jsou tak po dvou ruzné a
podgrupa je nekonecna.

3.1.3 Jak spolu souvisi fad prvku a fad pfislusné cyklické podgrupy?

Necht G je koneénd grupa a g € G.

Z Lagrangeovy véty plyne, ze Fad prvku je délitelem fdadu grupy. Tedy ord(g) | |G|.

Pokud je ad prvku roven fddu grupy, pak je tento prvek jejim generdtorem, tedy ord(g) = |G| = G = (g) a
tato grupa G je tak cyklicka.

3.1.4 Definujte, formulujte a dokazte ekvivalentni popis podgrupy generované mnozinou.

Definice 27. (Generovand mnozina): Uvazujme podmnozinu X C G grupy G. Podgrupou generovanou mnozinou
X rozumime nejmens{ podgrupu (vzhledem k inkluzi) grupy G obsahujici podmnozinu X, zna¢ime ji (X)g.

Tvrzeni 5. (Podgrupa generovand mnoZinou): Necht G je grupa a ) # X C G, potom:
(X)g :{a’fl cocadf neN; ay,. . a0 € X5 K,k € 7).
Diikaz: Ozna¢me nejprve M mnofinu na pravé strané rovnosti. Musime dokazat, ze:

e tvori podgrupu. Souéin dvou prvki z M jisté € M, jednotka 1 = a°

k - —k _
(aj* - ...-ak )yt =a™ . a k€ M.

€ M, inverzy plynou ze vztahu

e obsahuje X. Volbou n =1, k; = 1 dostaneme libovolny prvek X.

e je nejmensi podmnozinou grupy G spliiugici tyto podminky. Uvazujme libovolnou podgrupu H obsahujici X.
Tato podgrupa musi obsahovat vSechny mocniny a’,a € X i jejich libovolné nésobky, tedy celé M.

) O
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3.1.5 Zformulujte a dokazte Langrangeovu vétu. Co je leva rozkladova tiida podgrupy?

Véta 13. (Langrangeova): Pokud H < G, pak |G| =[G : H] - |H|.

Drikaz: Zvolme transverzalu T z H a zapisme ji jako G = U aH.

acT
Z lemmatu "aH NbH = () nebo aH = bH” vime, 7e se jedna o disjunktni sjednoceni a plati T = [G : H], takze

pocet prvku lze spocitat jako soucet velikosti jednotlivych podmnozin:

Gl=> laH|=) |H|=|T|-|H|=[G: H]-|H|

acT a€T

Rovnost Z laH| = Z |H| plati, protoze plati lemma ”|aH| = |H|”. O
a€T acT

Definice 28. (Levd rozkladovd trida): Necht G je grupa a H jeji podgrupa, potom mnoziny aH = {ah | h € H},

kde a € G, se nazyvaji levé rozkladové tridy podgrupy H.

3.2 Cyklické grupy a pisobeni grup

3.2.1 Definujte pusobeni grupy na mnoziné X a relace tranzitivity na X. Co je stabilizator prvku?

Definice 29. (Pusobend grupy G na mnoziné X ): je libovolné zobrazeni 7 : G — Sx = {f : © — = | f bijektivni}
spliujici Vg, h € G:
w(gh) = w(g) om(h), w(9)-1=m(9)”" a =(1)=1id

Hodnotu permutace w(g) na prvku 2 € X budeme znacit 7(g)(z) = g(x).

Definice 30. (Relace tranzitivity ~ na mnoziné X ): definujeme x ~ gy, pokud Jg € G takové, ze y = g(x).
(x ~ vy, pokud néjakd permutace presouvd prvek x na prvek y.)

Definice 31. (Stabilizdtor proku = € X ) je mnozina G, = {g € G | g(x) = z}.

3.2.2 Zformulujte a dokazte tvrzeni o velikosti orbity a indexu stabilizatoru.

Tvrzeni 6. (Velikost orbity VS index stabilizdtoru): Necht grupa G ptisobi na mnoziné X, potom:
Vee X: |[z]] =[G : G

Dikaz: Index [G : G,] znac¢i pocet rozkladovych tiid podgrupy G, , staci tedy najit bijekci mezi prvky orbity a
mnozinou rozkladovych tiid. Uvazujme zobrazeni

v:{9G: | g € G} = {z}, ¢gGx — g(x).
Dokazeme, ze to je bijekce.
Nejprve ovéiime, ze jsme dobfe definovali zobrazeni. Mohlo by se jinak stat, ze tutéz rozkladovou tfidu mame
oznaCenu dvéma ruznymi zpusoby, tj. ze ¢G, = hG,,, a pritom se ji snazime prifadit ruzné hodnoty g(z) # g(x).
Z tvrzeni o "rovnosti rozkladovych tiidach, tedy pro aH = bH <= a~'b € H” vime, ze plati
9G. =hG, < h™lgc G, < hlg(x) =r < g(v) = h(z).

A tedy ¢ je dobfe definovano a zéroven je i prosté. Navic Vy € [z],3g € G : g(x) = y, takZe ¢ je i bijekce. O

15



3.2.3 Zformulujte a dokazte Burnsideovo lemma.

Véta 14. (Burnsideova): Necht G je koneéna grupa, kterd pisobi na koneénou mnozinu X.
Dale ozna¢me X/ ~ jako mnozinu vsech orbit ~ na | X/ ~ | jako pocet orbit daného pusobeni. Potom:

[ X/ ~| :@~gEZG\Xg|: {[z]~ [z € X}.

(Muzeme interpretovat jako “pocet orbit je roven prumérnému poctu pevnich bodi”).

Diikaz: Necht M = {(g,2) € G x X | g(z) = x} a po&itdme prvky dvéma zptisoby: bud ke kazdému = spocitame
pocet g splaujicich (g,x) € M, nebo ke kadému ¢ spocitdme pocet x splitujicich (g, 2) € M. Dostaneme rovnost:

M| =) [1X,| = > |Gl

geG zeX
——

pevné body stabilizdtor

= Z 1 = je rovno velikosti mnoziny X/ ~ .
Oe(X/~)

I
M
5|~
I
]
M &
[S)
SE
|

O€(X/~) z€0 0e(X/~)

3.2.4 Popiste fady a pocet prvkia daného faddu v konecénych cyklickych grupach.
Tvrzeni 7. (Rddy proki cyklickyjch grup): Necht G = (a) je cyklickd grupa koneéného fadu n = |G|, potom pokud
VE | n, tak [{b € G | ord(b) = k}| = ¢(k), neboli obsahuje pravé p(n) prvku fddu k pro kazdé k | n.

Diikaz: Necht G = (a) je cyklickd grupa koneéného fddu n = |G|.

Kazdy prvek faddu k | n je generdtorem néjaké cyklické podgrupy fadu k. Takovd podgrupa vsak v G existuje pouze
jedna. Podle Lemmatu, které ifka ”|G| = n = (a*) = (a8°*™))” jsou viechny podgrupy v G tvaru (a*), k | n.
Pritom [(a*)] = %, tedy (a*) je jedind podgrupa fadu d.

Tato podgrupa mé podle Tvrzeni fikajici "koneén4 |G| = n == generdtorem jsou prvky a*, kde k € {1,...,n—1}
nesoudélné s n”, prave [{l € Zy, | ged(l, k)}| = p(k) generdtoru. O

3.2.5 Je-li G = [a] koneén4 cyklickd grupa fadu n, rozhodnéte, které prvky a na n jsou generatory.
Tvrzeni 8. (Generdtory cyklickych grup): Necht G = (a) je cyklickd grupa, potom:
(1) pokud je G nekoneénd, generatorem jsou pouze prvky a,a !
(2) pokud je G koneénd fadu n, tak generdtorem jsou takové prvky a¥, kde k € {1,...,n—1} je nesoudeélné s n.
Diikaz: Dokézeme zvlast oba body:
(1) Oba prvky a, a~! grupu G generuji, protoze {a* | k € Z} = {a=* | k € Z}. Zadny jiny generdtor G nemé:
Kdyby G = (a™) pro négjaké n, pak by Im € Z takové, ze a = (a™)™, a dostali bychom
1= )" at=am"".
RA4d a je ovem nekoneény, a tedy mn = 1, éili n = +1.

(2) Z Lemmatu o ”podgrupach cyklickych grup” vime, ze plati (a*) = (a8°d(k:m)),
ged(k,n) =1 (a*y ={a) =G
d d

Uvazme dvé moznosti. Poku ”
ged(k,n) =d # 1 (a¥) = (a?) = {a?,a??, ..., a1} je vlastni podgrupa
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3.2.6 Dokazte, ze konetna podgrupa multiplikativni grupy télesa je cyklicka.
Véta 15. Necht I je téleso a G je koneénd podgrupa grupy F*. Potom G je cyklickd.

Diikaz: Necht k € N a n = |G|. Definujme si pocet ptvki k v grupé G, tedy ux = {a € G | ord(a) = k}.
Uvazujme néjaky prvek a tddu k v G, tedy a € ug : k = ord(a).

Zéarovei plati, ze grupa (a) je cyklickd fddu k a proto Vb € (a) : b¥ =1 a tedy |(a)| = k.

Z4dné jiné prvky s touto vlastnosti v G nejsou, takze (a) je jedind cyklickd podgrupa fadu k v G.

Dostévame tak, ze b je kofenem 2% — 1 a m4 proto < k kotenit (v télese F). Takze (a) je mnozina vsech kofenii
¥ —1 = wup C (a) = wuy jsou vdichni generdtoii (a) = Vk |n: |ux| = p(k) = up <k = je
cyklicka. O

(Aplikovali jsme lemma 7ikagici, e "pokud Vk grupa obsajuje < k prvki a spliujicich a* = 1, je potom cyklickd”).

3.2.7 Co je to diskrétni logaritmus? Popiste Diffie-Hellmanuv protokol pro vyménu klic¢i.
Definice 32. (Diskrétni logaritmus): je inverzni zobrazeni k tzv. diskrétni exponencidle, tedy k zobrazeni

exp:Zn, — G, k—a",

kde G = (a) je cyklickd grupa fadu n,

Diffie-Hellmantuv protokol Alice a Bob se potfebuji dohodnout na néjakém spoleéném klici, pficemz k dispozici
maji pouze vefejny kanal.

Nejprve se Alice a Bob dohodnou na néjaké cyklické grupé a generdtoru G = (a). Déle si Alice zvoli ¢islo m a Bob
¢islo n z intervalu 2, ..., |G| — 1, pficemz kazdy bude svoje ¢islo drzet v tajnosti.

e Alice spocte u = a™ a posle u Bobovi.
e Bob spocte v = a™ a posle v Alici.

Poté Alice spocte v"™ = (a™)™ = a™" a Bob spocte u™ = (a™)™ = a™". Oba tak ziskali stejny prvek a™", coz je
spole¢ny klic.

Kdyby je poslouchala Eva, bude zndt pouze grupu G, generator a a hodnoty u, v.

Prvek a™" ale neni schopnd dopocitat, musela by provést diskrétni logaritmus, urcit mn a dopocitat a™™. Dodnes
pro to ale neni znam efektivni zpusob.
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