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1.1.1 Najděte u, v ∈ Z, pro která 103u+ 77v = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1.1.3 Vypoč́ıtejte 20232022

2021

mod 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Polynomy 4
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1 Teorie č́ısel

1.1 Modulárńı aritmetika

1.1.1 Najděte u, v ∈ Z, pro která 103u+ 77v = 1.

Hledáme Bézoutovy koeficienty pro gcd(77, 103) = 1 podle vzorce (ui+1, vi+1) = (ui−1, vi−1) + qi(ui, vi).
Pro i ∈ {0, . . . , 4} : ai = (103, 77, 26, 25, 1), ui = (1, 0, 1,−2, 3), vi = (0, 1,−1, 3,−4), takže:

103 · 3− 77 · 4 = 1.

1.1.2 Vypoč́ıtejte posledńı č́ıslici 33999.

Poč́ıtáme posledńı cifru, tedy 33999 mod 10. Použijeme Eulerovu větu: φ(10) = 4 a gcd(33, 10) = 1 plat́ı. A také
využijeme faktu, že 33 mod 10 = 3.

33999 ≡ 331000 · 3−1 ≡ 334·250︸ ︷︷ ︸
(334)250=1250

· 3−1 = 1 · 3−1 ≡ 7

1.1.3 Vypoč́ıtejte 20232022
2021

mod 101.

Nejprve zmoduĺıme 2023 (mod 101) = 3 a dosad́ıme do p̊uvodńı rovnice: 32022
2021

(mod 101).

Dále si můžeme uvědomit, d́ıky Eulerově větě, že: 32022
2021 mod n (mod 101), kde n = φ(101) = 100 (protože 101

je prvoč́ıslo). Tedy spoč́ıtáme a := 20222021 (mod 100) a dosad́ıme do 3a (mod 101).

20222021 (mod 100) ≡ 222021 (mod 100), spoč́ıtáme Eulerovu funkci pro φ(100) :

φ(100) = φ(4 · 25) = 2 · 4 · 5 = 40, dostaneme tak: 2240 ≡ 1 (mod 40) a uprav́ıme p̊uvodńı výraz:

(2240)50 · 2221 (mod 100) ≡ 150 · 2221 (mod 100) = 2221 (mod 100)

Nyńı tedy hledáme řešeńı pro 2221 (mod 100), a protože 100 můžeme rozepsat jako 100 = 25·4 =⇒ gcd(25, 4) = 1,
můžeme k tomu použ́ıt Č́ınskou zbytkovou větu:

x = 2221 (mod 25) = 22

x = 2221 (mod 4) = 2220 · 221 (mod 4) ≡ 0 · 22 (mod 4) = 0

Vı́me, že výsledek by měl být ve formátu 2221 (mod 100) = (a1 · b1 · m1) + (a2 · b2 · m2) mod 100, kde už tedy
máme a1 = 22 a a2 = 0. Ostatńı členy s indexem 1 dopoč́ıtáme, s indexem 2 nemuśıme d́ıky a2 = 0:
b1 = 4 a m1 = b−1

1 (mod 25) = 4−1 (mod 25) = 19
A dostáváme tak:

2221 (mod 100) = 22 · 4 · 19 (mod 100) = 1672 (mod 100) ≡ 72

Nyńı dosad́ıme do p̊uvodńı rovnice 372 (mod 101) a podle tabulky už urč́ıme mocninu:

3n úprava mod 101

31 3 3
32 3 · 3 9
33 3 · 9 27
36 (33)2 = 272 = 729 22

Dostáváme 372 = (36)12 = 2212 (mod 101) a opět podle tabulky:

22n úprava mod 101

221 22 22
222 22 · 22 = 484 80
223 22 · 80 = 1760 43
224 22 · 43 = 946 37
225 22 · 37 = 814 6
226 22 · 6 = 132 31
2212 (226)2 = 312 = 961 52

Takže 20232022
2021

(mod 101) ≡ 372 ≡ 2212 ≡ 52.
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Vyřešte systém kongruenćı:

x ≡ 1 (mod 3)

x ≡ 2 (mod 5) ⇝ x = 5k + 2

x ≡ 1 (mod 7)

−−−−−−−−−−−−−−−−−
5k + 2 ≡ 1 (mod 7), (k ∈ Z)

5k ≡ −1 ≡ 6 (mod 7)

k = 4 =⇒
=⇒ x = 5 · 4 + 2 = 22 ∈ Z35

−−−−−−−−−−−−−−−−−−
22 + 35l ≡ 1 (mod 3), (l ∈ Z)

35l ≡ −21 ≡ 0 (mod 3)

35l ≡ 0 (mod 3)

l = 0 =⇒
=⇒ x = 22 + 35 · 0 = 22 ∈ Z105

Celkově je řešeńım množina {x = 22 + 35l | x < 105, l ∈ Z}, tedy x ∈ {22, 57, 92}.
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2 Polynomy

2.1 Tělesa, okruhy, obory

2.1.1 Vypoč́ıtejte 33−1 v tělese (Z37,+, ·−, 0).

Máme těleso Z37 a hceme vypoč́ıtat inverz 33−1. Ověř́ıme nejprve, že gcd(33, 37) = 1. Dále hledáme Bézoutovy
koeficienty u a v takové, že 33u+ 37v = 1:

Pro i ∈ {0, . . . 3} : ai = (37, 33, 4, 1), ui = (1, 0, 1, 8), vi = (0, 1, 1, 9)

=⇒ 33 · 9− 37 · 8 = 1

Takže 33−1 v tělese Z37 je 9.

2.1.2 Zkostruujte těleso o 125 prvćıch.

Potřebujeme naj́ıt prvoč́ıslo p a k ∈ N tak, aby platil vztah pk = 125.
Jednou možnost́ı je vźıt p = 5 a k = 3, protože 53 = 125. T́ımto zp̊usobem źıskáme těleso se 125 prvky.

2.2 Dělitelnost, UFD

2.2.1 Dokažte, že 4x3 − 15x2 + 60x+ 180 je ireducibilńı v Q[x] (Eisensteinovo kritérium)

Pokud ∃p ∈ Q ireducibilńı prvek splňuj́ıćı p | a0, p|a1, . . . , p|an−1 a p2 ∤ a0 , pak je polynom ireducibilńı v Q[x].
Hledáme proto p, které děĺı prvńı až předposledńı koeficient. V našem př́ıpadě je to p = 5.
Plat́ı, že 5 je ireducibilńı, zároveň plat́ı 5 | 180, 5 | 60, 5 | 15 a dokonce i 52 ∤ 180 ≡ 25 ∤ 180.
Eisensteinovým kritériem jsme určili, že polynom 4x3 − 15x2 + 60x+ 180 je ireducibilńı.

2.2.2 V Z2[x] najděte všechny ireducibilńı polynomy stupně nejvýše 4.

Budeme postupně zkoušet všechny možnosti s t́ım, že předem nějaké vylouč́ıme.
Např́ıklad vylouč́ıme možnosti bez x0 - např́ıklad: x2 + x = x(x+ 1), protože pak bychom mohli vytknout x.
Ze stejného d̊uvodu vyřad́ıme všechny xi a xi + 1 pro i = 2, 3, 4. Obecně řečeno odstrańıme všechny polynomy,
které jsou nějakým násobkem našeho polynomu.

deg 0: Nic.

deg 1: Pouze x a x+ 1 jsou ireducibilńı.

deg 2: Pouze x2 + x+ 1 je ireducibilńı.

deg 3: Pouze x3 + x2 + 1 a x3 + x+ 1 jsou ireducibilńı.

deg 4: Pouze x4 + x3 + x2 + x+ 1, x4 + x3 + 1, x4 + x+ 1

2.2.3 Napǐstě 2x2 − 6 jako násobek ireducibilńıch polynomů v (a) Z[x], (b) Q[x], (c) C[x]

(a) Z[x] : Vytkneme 2 a dostaneme výsledný polynom f(x) = 2(x2 − 3), muśıme ověřit ireducibilu.

Č́ıslo 2 je ireducibilńı, protože je prvoč́ıslo. Polynom (x2−3) je také ireducibilńı, protože může být rozloženo
pouze na (x+

√
3)(x−

√
3), což ovšem nemá celoč́ıselný kořen

√
3 /∈ Z[x].

(b) Q[x] : 2 jako polynom stupně nula nad tělesem je invertibilńı, jinak také
√
3 /∈ Q[x], takže 2x2 − 6

(c) C[x] : Podobně jako v Q[x], akorát
√
3 ∈ C[x] =⇒ f(x) = (2x+ 2

√
3)(x−

√
3).

Stač́ı určit ireducibilitu (x±
√
3). Jsou ireducibilńı, protože jsou stupně 1.

2.3 GCD a Modulo polynom

2.3.1 Show that m(α) = α3 +α+1 is irreducible in the domain Z7[α]. Solve the equation (α2 +3)x+
α+ 4 = α2 in the feld Z7[α]/(m(α)).

2.3.2 Vypoč́ıtejte gcd(x5 + x2 + x+ 1, x3 + x+ 1 ∈ Z2[x]) a určete Bézoutovy koeficienty.

2.3.3 Vypoč́ıtejte gcd(5− 3i, 7 + i) v oboru Z[i]

Budeme řešit za pomoci Eukleidova algoritmu v oboru Z[i] = {a+ bi | a, b ∈ Z}.
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Abychom věděli, co č́ım dělit, muśıme určit normy: V(a) = ||7 + i|| = 50 > 34 = ||5− 3i|| = V(b). Děĺıme:

7 + i

5− 3i
=

(7 + i)(5 + 3i)

(5− 3i)(5 + 3i)
=

35 + 21i+ 5i− 3

25 + 9
=

16

17
+

13

17
i

Nyńı zvoĺım vhodné q, r takové, aby V(r) < V(5 − 3i). Protože 16
17 + 13

17 i =
1
17 (16 + 13i) = 13

17 (≈ 1 + i), zvoĺıme
jako q = 1 + i a dopoč́ıtáme r.

(7 + i)− (5− 3i)(1 + i) = 7 + i− 5− 5i+ 3i− 3 = −1− i = r

Vid́ıme, že zjevně plat́ı V(−1− i) = || − 1− i|| = 2 < 34 = V(5− 3i). Budeme proto pokračovat v algoritmu:

5− 3i

−1− i
=

−5 + 3i

1 + i
=

(−5 + 3i)(1− i)

(1− i)(1 + i)
=

−5 + 5i+ 3i+ 3

2
=

−2 + 8i

2
= −1 + 4i

Vid́ıme, že zbytek po děleńı je 0, proto gcd(5− 3i, 7 + i) = −1− i.

2.4 Aplikace

2.4.1 Reed-Solomonovy kódy

Mějme těleso T := F8 = Z2[α]/(α
3 + α+ 1) a Reed-Solomon̊uv (2, 4)−kód nad abecedou T pro

u1 = 1, u2 = α, u3 = α2 a u4 = α+ 1.

Tento kód může opravit jednu chybu.

(a) Zakóduj (0, α).

(b) Obdrželi jsme kód (α, α2, α+ 1, α2). Co bylo p̊uvodńı slovo?

(c) Obdrželi jsme slovo w = (0, 0, 1, 1), ale kanál byl nespolehlivý.
Ukažte, že toto slovo nelze dekódovat. Explicitně se po vás chce, abyste:
- ukázali, že neexistuje kód c s Hammingovou vzdálenost́ı δ(c, w) ≤ 1.
- nalezli dva kódy c1, c2 takové, že δ(c1, w) = δ(c2, w) = 2.

(a) Zprávu (0, α) rozeṕı̌seme jako polynom f(x) =
∑

αix
i =⇒ f(x) = 0x0 + αx1 =⇒ f(x) = αx.

A dopoč́ıtáme kód (f(u1), f(u2), f(u3), f(u4)):

� f(u1) = α · u1 = 1 · α = α

� f(u2) = α · u2 = α · α = α2

� f(u3) = α · u3 = α2 · α = α3 = −α− 1 = α+ 1

� f(u4) = α · u4 = (α+ 1) · α = α2 + α

Takže po zakódováńı dostaneme výsledný kód: (α, α2, α+ 1, α2 + α).

(b) Máme kód c = (c1, c2, c3, c4) = (α, α2, α + 1, α2) s maximálně jednou chybou a v́ıme, že ci = f(ui), pro i ∈
{1, 2, 3, 4}. Potřebujeme určit polynom, z kterého odvod́ıme p̊uvodńı zprávu, což je zjevně opět f(x) = αx.

Naše obdržená zpráva splňuje podmı́nku jedné chyby se zprávou z (a), protože nesed́ı pouze c4.

Původńı slovo tak je opět (0, α).

(c) Slovo nejde dekódovat, protože Hammingova vzdálenost pro w je nejméně 2. Vı́me, že lze opravit nejvýše
⌊d−1

2 ⌋ chyb =⇒ d ≥ n− k + 1 =⇒ d ≥ 4− 2 + 1 =⇒ d ≥ 3.

Celkem proto plat́ı, že můžeme opravit nejvýše ⌊ 3−1
2 ⌋ = 1 chybu, takže 3 výstupy muśı být správné:

� Buď dvě 0 a jedna 1 =⇒ f(x) = 0 =⇒ (0, 0, 0, 0), takže δ(c, w) > 1, protože u3, u4 neodpov́ıdá

� Nebo dvě 1 a jedna 0 =⇒ f(x) = 1 =⇒ (1, 1, 1, 1), takže δ(c, w) > 1, protože u1, u2 neodpov́ıdá

Slovo proto nelze dekódovat, protože v něm máme v́ıce než 2 chyby, tedy δ(c, w) ≥ 2

Dva kódy c1, c2 s δ(c1, w) = δ(c2, w) = 2:

� (0, 0)⇝ f(x) = 0⇝ c1 = (0, 0, 0, 0) a tedy δ((0, 0, 0, 0), (0, 0, 1, 1)) = 2.

� (1, 0)⇝ f(x) = 1⇝ c2 = (1, 1, 1, 1) a tedy δ((1, 1, 1, 1), (0, 0, 1, 1)) = 2.
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2.4.2 Sd́ıleńı kĺıč̊u

Navrhněte schéma sd́ıleńı tajemstv́ı pro sedm účastńık̊u - dva králové a pět efor̊u tak, že tajemstv́ı mohou
rekonstruovat buď oba králové, nebo jeden král a všech pět efor̊u.

(a) Tajemstv́ım je konkrétńı prvek tělesa T . Volba tělesa je na vás a výběr tajemstv́ı je na vás.

(b) Pravděpodobnost, že někdo náhodně uhodne tajemstv́ı, je menš́ı než 2%.

1. Inspiroval jsem se učebnicovým př́ıkladem, konkrétně Shamirovým protokolem a zvolil jsem těleso T = Z2m

s pravděpodobnost́ı 1
|T | = ( 12 )

m. Aby pravděpodobnost byla < 2%, muśıme volit m ≥ 6. Já jsem se rozhodl

pro Z2256 . Tajemstv́ı je schováno v absolutńım členu polynomu, t = f(0).

2. Počet kĺıč̊u pro 2 krále muśı být stejný jako počet kĺıč̊u pro 1 krále a 5 efor̊u.

2k = k + 5 =⇒ k = 5

Což by znamenalo 5 kĺıč̊u pro krále a 1 kĺıč pro každého z 5 efor̊u, tedy celkem 10/15 kĺıč̊u pro odhaleńı
tajemstv́ı. Vytvář́ıme proto (10, 15)−schéma a voĺıme tak polynom stupně < 10:

f(x) = t+ a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
5 + a7x

7 + a8x
8 + a9x

9

3. Vygenerujeme 15 náhodných hodnot α1 . . . α15 ∈ Z28 a ty rozdáme po 5 král̊um a po 1 efor̊um.

� Prvńı král dostane vygenerované kĺıče f(αi), kde i ∈ {1, . . . , 5}
� Druhý král dostane vygenerované kĺıče f(αi), kde i ∈ {6, . . . , 10}
� Každý efor ej dostane vygenerované kĺıče: f(αi), kde j ∈ {1, . . . , 5} a i = 10 + j

Jakmile se sejdou 2 králové, nebo 1 král a 5 efor̊u, interpoluj́ı dokud jim nevyjde polynom < 10. Ve chv́ıli
kdy se tak stane, vezmou absolutńı člen, což je tajemstv́ı.

Pokud se sejdou v jiném počtu a daj́ı dohromady < 10 kĺıč̊u, vyjde jim polynomů stupně < 10 mnoho a
pravděpodobnost, že kĺıč uhodnou bude 1

28 = 0.4%.

2.4.3 RSA

Mějme systém RSA s veřejným kĺıčem (N, e) = (91, 5).

(a) Zašifrujte zprávu x = 4 za pomoci kĺıče (91, 5).

(b) Protože jsme si vybrali malé N , je možné dešifrovat zprávu bez veřejného kĺıče. Dešifrujte zprávu y = 61.
Co bylo p̊uvodńı zprávou?

(c) Mějme jiný veřejný kĺıč (N, e) = (169, 5). Najděte d a č́ıslo 0 < x < 169 takové, že po dešifrováńı veřejným
kĺıčem (169, 5) vrát́ı RSA hodnotu r̊uznou od x.

(a) Zašifrováńı prob́ıhá zp̊usobem y = (xe) mod N . V našem př́ıpadě pro x = 4, e = 5, N = 91:

y = (45) mod 91

y = 1024 (mod 91)

y = 23 (mod 91)

(b) Pokud chceme zprávu dešifrovat, muśıme použ́ıt x = yd (mod N), kde d je tajný kĺıč.

Ten sice neznáme, můžeme ho ale źıskat vztahem de ≡ 1 (mod φ(N)), kde φ(N) = (p− 1)(q − 1).

Máme N = 91, tedy jediná varianta pro prvoč́ısla jsou p = 7, q = 13 (a naopak). Proto φ(N) = 12 · 6 = 72

Dosad́ıme do de ≡ 1 (mod φ(N)) a dostáváme 5d ≡ 1 (mod 72). A protože gcd(5, 72) = 1, můžeme d určit
za pomoci euklidova algoritmu:

5d ≡ 1 (mod 72) // 5 · 29 = 145 ≡ 1

145d ≡ 29 (mod 72)

d ≡ 29 (mod 72) =⇒ d = 29 + 72k (∀k ∈ Z)

6



Stač́ı nám už jen dopoč́ıtat x, to uděláme za pomoci x = (yd) mod N :

x = (yd) mod N // y = 61, N = 91, d = 29

x = (6129) mod 91

x = 3

(c) Máme zadáno N = 169 a e = 5. A lehce si odvod́ıme p = q = 13 =⇒ φ(N) = (p− 1)2 = 122 = 144.

Hledáme d a č́ıslo x ∈ (0, 169) takové, že po dešifrováńı dostaneme hodnotu r̊uznou od x.

Nejprve si urč́ıme d a to opět za pomoci d · e ≡ 1 (mod φ(N)), kde e = 5 a φ(N) = 144:

5d ≡ 1 (mod 144) // 5 · 29 = 145 ≡ 1

145d ≡ 29 (mod 144)

d ≡ 29 (mod 144) =⇒ d = 29 + 144k (∀k ∈ Z)

Nyńı už stač́ı jen naj́ıt x ∈ (0, 169) takové, že x ̸= dec(enc(x)):

y = (xe) mod N // x = 2, e = 5, N = 169

y = (25) mod 169

y = 32 (mod 169)

———————————–

x = (yd) mod N // y = 32, N = 169, d = 29

x = (3229) mod 169

x = 93 (mod 169) ̸= 2

Takových č́ısel najdeme hodně, protože RSA nefunguje - kv̊uli špatně vypoč́ıtanému φ(N):

Z Eulerovy funkce φ(pq) pro prvoč́ısla p ̸= q se dá jednoduše odvodit, že φ(pq) = (p− 1)(q − 1).

Pokud ale p = q, tak určujeme φ(p2), což neńı (p− 1)2, ale φ(p2) = p(p− 1).

Aby RSA fungovalo pro p = q, museli bychom přepoč́ıtat φ(N) = 13 · 12 = 156 a t́ım pádem i přepoč́ıtat d.

3 Grupy

3.1 Grupy a podgrupy

3.1.1 .

3.1.2 .

3.2 Cyklické grupy a

3.2.1 .

3.2.2 .
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