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1 Teorie cisel

1.1 Modularni aritmetika
1.1.1 Najdéte u,v € Z, pro ktera 103u + 77v = 1.

Hleddme Bézoutovy koeficienty pro ged(77,103) = 1 podle vzorce (wit1,viy1) = (Ui—1,vi—1) + qi(us, v;).
Proi € {0,...,4} : a; = (103,77,26,25,1), wu; =(1,0,1,-2,3), wv; =(0,1,—1,3,—4), takze:

103-3—-77-4=1.

1.1.2 Vypoéitejte posledni é&islici 33°%°.

Pocitame posledni cifru, tedy 33°?° mod 10. Pouzijeme Eulerovu vétu: ¢(10) = 4 a ged(33,10) = 1 plati. A také
vyuzijeme faktu, ze 33 mod 10 = 3.

33999 =331000. 371 = 33*20 .37t =1.371=7
(334)250:1250

22021

1.1.3 Vypoéitejte 2023202 mod 101.

Nejprve zmodulime 2023 (mod 101) = 3 a dosadfme do ptivodni{ rovnice: 32022°”" (mod 101).
Déle si mizeme uvédomit, diky Eulerové véts, ze: 32022°"" modn (1164 101), kde n = ¢(101) = 100 (protoze 101
je prvoéislo). Tedy spoéitame a := 202229%! (mod 100) a dosadime do 3% (mod 101).

2022%°21 (mod 100) = 222°2'  (mod 100), spoéitdme Eulerovu funkci pro p(100) :
©(100) = (4 -25) =2-4-5 = 40, dostaneme tak: 22'° =1 (mod 40) a upravime piivodni vijraz:
(2240)50. 2221 (mod 100) = 1°° - 222! (mod 100) = 22*'  (mod 100)

Nyni tedy hleddme feseni pro 2221 (mod 100), a protoze 100 miizeme rozepsat jako 100 = 25-4 = ged(25,4) = 1,
muzeme k tomu pouzit Cinskou zbytkovou vétu:

x = 222" (mod 25) = 22
=221 (mod 4) = 222°.22' (mod 4)=0-22 (mod 4) =0

Vime, 7e vysledek by mél byt ve formdtu 222! (mod 100) = (ay - by - m1) + (ag - by - m2) mod 100, kde uz tedy
mame a; = 22 a as = 0. Ostatni ¢leny s indexem 1 dopoc¢itame, s indexem 2 nemusime diky as = 0:
by=4 a my=>b;" (mod 25) =41 (mod 25) = 19
A dostavame tak:
2221 (mod 100) =22-4-19 (mod 100) = 1672 (mod 100) = 72

Nyni dosadime do pivodni rovnice 37 (mod 101) a podle tabulky uz uréime mocninu:

’ 3" \ Uprava \ mod 101 ‘
3! 3 3
32 3-3 9
33 3:9 27
30 [ (3%)2 =27 =729 22

Dostavame 372 = (3%)12 = 2212 (mod 101) a opét podle tabulky:

’ 22" \ lprava \ mod 101 ‘
221 22 22
222 22.22 = 484 80
223 2280 = 1760 43
224 22 - 43 = 946 37
225 2237 =814 6
226 22-6 =132 31
2212 [ (226)2 = 317 = 961 52

22021

Takze 2023202 (mod 101) = 37 = 2212 = 52.



Vyfreste systém kongruenci:

=1 (mod 3)
=2 (mod5) ~ z=>5k+2
=1 (mod7)
5k+2=1 (mod7), (ke€Z)
5k=-1=6 (mod7)
k=4 —
= x=5-44+2=22¢€7Zs;5
22435l=1 (mod3), (l€7Z)
35l =-21=0 (mod 3)
350 =0 (mod 3)
=0 =
s 2 =922435-0=22¢€ Zgs

Celkové je feSenfm mnozina {x = 22 4+ 35] | z < 105,1 € Z}, tedy = € {22,57,92}.



2 Polynomy

2.1 Télesa, okruhy, obory
2.1.1 Vypoéitejte 337! v télese (Zz7,+,—,0).

Méame téleso Zz7 a hceme vypoéitat inverz 3371, Ovéifme nejprve, ze ged(33,37) = 1. Dale hleddme Bézoutovy
koeficienty u a v takové, ze 33u + 37v = 1:

Proie{0,...3}: a; =(37,33,4,1), w; =(1,0,1,8), wv; =(0,1,1,9)
—33.9-37-8=1

Takze 337! v télese Zs7 je 9.

2.1.2 Zkostruujte téleso o 125 prvcich.

Potfebujeme najit prvoéislo p a k € N tak, aby platil vztah p¥ = 125.
Jednou moznosti je vzit p = 5 a k = 3, protoze 5% = 125. Timto zpisobem ziskdme téleso se 125 prvky.

2.2 Deélitelnost, UFD
2.2.1 Dokazte, Ze 423 — 1522 + 60z + 180 je ireducibilni v Q[z] (Eisensteinovo kritérium)

Pokud Jp € Q ireducibiln{ prvek spliiujici p | ag, plai, - ..,plan—1 a p* { agp , pak je polynom ireducibilnf v Q[z].
Hledédme proto p, které déli prvni az predposledni koeficient. V nasem piipadé je to p = 5.

Plati, 7ze 5 je ireducibilni, zaroven plati 5 | 180, 5 | 60, 5 | 15 a dokonce i 52 1 180 = 25 { 180.

Eisensteinovym kritériem jsme uréili, ze polynom 4z — 1522 + 60z + 180 je ireducibilni.

2.2.2 'V Zs[z] najdéte vSechny ireducibilni polynomy stupné nejvyse 4.

Budeme postupné zkouset vSechny moznosti s tim, ze pfedem néjaké vyloucime.

Napiiklad vylou¢ime moznosti bez x° - napifklad: z? + x = z(z + 1), protoze pak bychom mohli vytknout z.

Ze stejného divodu vyfadime vSechny z* a 2% + 1 pro i = 2,3,4. Obecné feéeno odstranime vsechny polynomy,
které jsou néjakym nasobkem naseho polynomu.

deg0: Nic.

deg1: Pouze x a x + 1 jsou ireducibilni.

deg?2: Pouze 22 + x + 1 je ireducibilni.

deg3: Pouze 23 4+ 22 + 1 a 23 + x + 1 jsou ireducibilni.

deg4: Pouze z + 23 + 22+ +1, z*+23+1, 28 +2+1

2.2.3 Napisté 222 — 6 jako ndsobek ireducibilnich polynomiu v (a) Z[z], (b) Q[z], (c) C[z]
(a) Z[z] : Vytkneme 2 a dostaneme vysledny polynom f(x) = 2(z% — 3), musifme ovéfit ireducibilu.

Cislo 2 je ireducibilni, protoze je prvoéislo. Polynom (22 —3) je také ireducibilni, protoze miize byt rozlozeno
pouze na (z + v/3)(z — v/3), coz oviem nem4 celociselny koien v/3 ¢ Z[z].

(b) Q[z] : 2 jako polynom stupné nula nad télesem je invertibilni, jinak také /3 ¢ Q[x], takze 222 — 6

(¢) Clx] : Podobné jako v Q[z], akorat v/3 € Clz] = f(z) = (22 + 2v3)(z — V/3).

Staéf urcit ireducibilitu (x 4 v/3). Jsou ireducibilni, protoze jsou stupné 1.

2.3 GCD a Modulo polynom

2.3.1 Show that m(a) = a® + a+1 is irreducible in the domain Z7[a]. Solve the equation (a? + 3)x +
a+4=a? in the feld Z;[a]/(m(a)).

2.3.2 Vypoéitejte ged(x® + 22 + 2+ 1, 2° + 2+ 1 € Zy[z]) a uréete Bézoutovy koeficienty.
2.3.3 Vypocitejte ged(5 — 3i, 7+ i) v oboru Zl[]

Budeme fesit za pomoci Eukleidova algoritmu v oboru Z[i]| = {a + bi | a,b € Z}.



Abychom védéli, co ¢im deélit, musime uréit normy: V(a) = ||7 4 i|| = 50 > 34 = ||5 — 3i|| = V(b). Délime:

T+i  (T+49)(5+3) 35+2li+5 -3 16 13,

5-3  (5-30)(5+3i) 25 +9 BETANTA
Nyni zvolim vhodné ¢,r takové, aby V(r) < V(5 — 3i). Protoze 2 + 12i = (16 + 13i) = 12 (=~ 1 + i), zvolime
jako ¢ = 1 41 a dopocitame r.
(T+i1)—(5-3)(144i)=T+i—5-5i+3i—3=—1—i=r
Vidime, ze zjevné plat{ V(-1 —i) = || — 1 —i|| = 2 < 34 = V(5 — 37). Budeme proto pokracovat v algoritmu:

5-3i  —5+3i (—5+3i)(1—i) —5+5i+3i+3 —2+8i

—1—d  1+i  (1—d)(1+i) 2 2
Vidime, ze zbytek po déleni je 0, proto ged(5 — 3i,7+14) = —1 —i.

= 144

2.4 Aplikace
2.4.1 Reed-Solomonovy kédy
Méjme téleso T := Fg = Zs[a]/(a® + a + 1) a Reed-Solomoniiv (2,4)—kéd nad abecedou T' pro

u =1, uy = aq, U3:a2 a ug=oa+1.

Tento k6d muze opravit jednu chybu.
(a) Zakéduyj (0, ).
(b) Obdrzeli jsme kéd (o, a?, o+ 1,a2). Co bylo piivodni slovo?

(c) Obdrzeli jsme slovo w = (0,0, 1,1), ale kandl byl nespolehlivy.
Ukazte, ze toto slovo nelze dekédovat. Explicitné se po vés chce, abyste:
- ukdzali, Ze neexistuje kéd ¢ s Hammingovou vzdédlenost{ é(c, w) < 1.
- nalezli dva kédy ¢q, co takové, ze d(ci,w) = 0(co, w) = 2.

(a) Zpravu (0, ) rozepieme jako polynom f(z) =z’ = f(x) = 02° + az! = f(2) = az.
A dopocitéme kéd (f(u1), f(uz), f(us), f(ua)):

e fluy)=a-uy=1-a=a

o flug) =a-uy=a-a=a?

e flus3) =a-uz3=a? - a=at=-a—-1l=a+1
e fluy) =a-us=(a+1)-a=a’+a

Takze po zakédovan{ dostaneme vysledny kéd: (o, a?, a + 1,02 + «).

(b) Mdme kéd ¢ = (e, c2,c3,¢4) = (o, %, o+ 1,02) s maximdlné jednou chybou a vime, 7e ¢; = f(u;), pro i €
{1,2,3,4}. Potfebujeme ur¢it polynom, z kterého odvodime puvodni zprévu, coz je zjevné opét f(x) = ax.
Nase obdrzend zprava spliiuje podminku jedné chyby se zpravou z (a), protoZe nesedi pouze c4.

Puvodnf{ slovo tak je opét (0, «).
(c¢) Slovo nejde dekédovat, protoze Hammingova vzdalenost pro w je nejméné 2. Vime, Ze lze opravit nejvyse

|95 chyb = d>n—k+1 = d>4-2+1 = d>3.

Celkem proto plati, ze muzeme opravit nejvyse L?’—glj = 1 chybu, takze 3 vystupy musi byt spravné:

e Bud dvé 0 a jedna 1 = f(z) =0 = (0,0,0,0), takze §(c,w) > 1, protoze us, us neodpovida
e Nebodvé1lajedna 0 = f(z)=1 = (1,1,1,1), takze d(c, w) > 1, protoze u, us neodpovidd

Slovo proto nelze dekédovat, protoZe v ném mdme vice nez 2 chyby, tedy d(c, w) > 2

Dva kédy ¢1, ¢ s §(c1,w) = 6(ca, w) = 2:

e (0,0) ~ f(x) =0~ ¢; =(0,0,0,0) a tedy 6((0,0,0,0),(0,0,1,1))

=2.
o (1,0) ~ f(z) =1~ ¢z = (1,1,1,1) a tedy 6((1,1,1,1),(0,0,1,1)) = 2.



2.4.2 Sdileni klica

Navrhnéte schéma sdileni tajemstvi pro sedm tucastniki - dva kralové a pét eforu tak, Ze tajemstvi mohou
rekonstruovat bud oba kralové, nebo jeden kral a vSech pét eforu.

(a) Tajemstvim je konkrétni prvek télesa T. Volba télesa je na vds a vybér tajemstvi je na vds.

(b) Pravdépodobnost, ze nékdo ndhodné uhodne tajemstvi, je mensi nez 2%.

1. Inspiroval jsem se uc¢ebnicovym piikladem, konkrétné Shamirovym protokolem a zvolil jsem téleso T' = Zgm

s pravdépodobnosti ﬁ = (1)™. Aby pravdépodobnost byla < 2%, musime volit m > 6. J4 jsem se rozhodl

2
pro Zgzss. Tajemstvi je schovdno v absolutnim ¢lenu polynomu, ¢t = f(0).

2. Pocet klica pro 2 krale musi byt stejny jako pocet klicu pro 1 krale a 5 efort.
2k=k+5 = k=5

Coz by znamenalo 5 klict pro kréle a 1 kli¢ pro kazdého z 5 eforu, tedy celkem 10/15 kli¢i pro odhalen{
tajemstvi. Vytvarime proto (10, 15)—schéma a volime tak polynom stupné < 10:

f(z) =t 4 a1z + agx® + azz® + gz + as2® + agz® + arz” + agz® + agr®

3. Vygenerujeme 15 ndhodnych hodnot «; ...a15 € Zos a ty rozddme po 5 kralim a po 1 eforum.

e Prvn{ krél dostane vygenerované klice f(«;), kde i € {1,...,5}
e Druhy krél dostane vygenerované klice f(a;), kde ¢ € {6,...,10}
e Kazdy efor e; dostane vygenerované klice: f(w;), kde j € {1,...,5}ai=10+j

Jakmile se sejdou 2 kralové, nebo 1 krél a 5 efort, interpoluji dokud jim nevyjde polynom < 10. Ve chvili
kdy se tak stane, vezmou absolutni ¢len, coz je tajemstvi.

Pokud se sejdou v jiném poc¢tu a daji dohromady < 10 kli¢t, vyjde jim polynomu stupné < 10 mnoho a
pravdépodobnost, ze kli¢ uhodnou bude 2% = 0.4%.
2.4.3 RSA
Meéjme systém RSA s vefejnym klicem (N, e) = (91, 5).
(a) Zasifrujte zpravu x = 4 za pomoci klice (91, 5).

(b) Protoze jsme si vybrali malé N, je mozné desifrovat zpravu bez vefejného klice. Desifrujte zpravu y = 61.
Co bylo pavodni zpravou?

(¢) Méjme jiny vetejny klic (N, e) = (169, 5). Najdéte d a ¢islo 0 < 2 < 169 takové, ze po desifrovani vefejnym
klicem (169, 5) vrati RSA hodnotu ruznou od .

(a) Zasifrovani probiha zpusobem y = (z¢) mod N. V nasem piipadé pro z =4, e=5, N =91:

y = (45) mod 91
y=1024 (mod 91)
y =23 (mod 91)

(b) Pokud chceme zpravu desifrovat, musime pouzit x = y¢ (mod N), kde d je tajny klic.
Ten sice nezndme, muzeme ho ale ziskat vztahem de =1 (mod ¢(N)), kde o(N) = (p — 1)(¢ — 1).
Méme N = 91, tedy jedind varianta pro prvoéisla jsou p = 7,¢ = 13 (a naopak). Proto o(N) =12-6 = 72

Dosadime do de =1 (mod ¢(NN)) a dostdvadme 5d = 1 (mod 72). A protoze ged(5,72) = 1, muzeme d uréit
za pomoci euklidova algoritmu:
5d=1 (mod72) // 5-29=145=1
145d =29 (mod 72)
d=29 (mod72) = d =29+ 72k (Vk € Z)



Staéf ndm uz jen dopocitat x, to udélame za pomoci z = (y?) mod N:

(y¥) mod N // y=61, N=91, d=29
(61%)  mod 91
3

8 8 8
I

(c) Mdme zaddno N = 169 a e = 5. A lehce si odvodime p=q =13 = p(N) = (p — 1)? = 122 = 144.

Hleddme d a ¢islo € (0,169) takové, ze po desifrovdni dostaneme hodnotu ruznou od z.

Nejprve si uréime d a to opét za pomoci d-e =1 (mod ¢(N)), kde e =5 a p(N) = 144:

5d=1 (mod144) // 5.29=145=1
145d =29 (mod 144)
d=29 (mod 144) = d =29+ 144k (Vk € Z)

Nyni uz staci jen najit = € (0,169) takové, ze x # dec(enc(z)):

(z°) mod N // z=2,e=5 N=169
(2°) mod 169
32 (mod 169)

Y
)
Y

z=(y?) mod N // y=32, N=169, d=29
r = (32%°) mod 169
=93 (mod 169) # 2

Takovych ¢éisel najdeme hodné, protoze RSA nefunguje - kvuli $patné vypocitanému @(N):

Z Eulerovy funkce ¢(pq) pro prvocisla p # ¢ se dd jednoduse odvodit, ze p(pg) = (p — 1)(¢ — 1).

Pokud ale p = ¢, tak uréujeme ¢(p?), coz neni (p — 1)2, ale p(p?) = p(p — 1).

Aby RSA fungovalo pro p = ¢, museli bychom pfepoéitat o(N) = 13 - 12 = 156 a tim pddem i pfepocitat d.

3 Grupy

3.1 Grupy a podgrupy
3.1.1

3.1.2

3.2 Cyklické grupy a
3.2.1

3.2.2
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