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1.4 Ramseyovy věty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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2.8 Samoopravné kódy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



1 Definice

1.1 Vytvořuj́ıćı funkce

Definice 1. (Vytvořuj́ıćı funkce): Vytvořuj́ıćı funkce posloupnosti a0, a1, . . . = (an)
∞
n=0 ∈ R je funkce proměnné

x definována jako součet f(x) =

∞∑
n=0

anx
n.

Definice 2. (Catalanova č́ısla): (Cn)
∞
n=0 udáváj́ı počet binárńıch stromů s n vnitřńımi vrcholy.

1.2 Projektivńı roviny

Definice 3. (Hypergraf): je dvojice (V,H), kde H je množina podmnožin V , tedy H ⊆ P(V ). Prvky V jsou
vrcholy a prvky H jsou hyperhrany.

Definice 4. (Graf incidence): hypergrafu (V,H) je bipartitńı graf s partitami V a H, kde mezi x ∈ V a h ∈ H
vede hrana ⇐⇒ x ∈ h.

Definice 5. (Projektivńı rovina): je hypergraf (X,P), kde prvky X jsou body a prvky P jsou př́ımky, t.ž.:

(i) Každé dva r̊uzné body určuj́ı právě jednu př́ımku.
∀x, y ∈ X,x ̸= y, ∃!p ∈ P : {x, y} ⊆ p

(ii) Každé dvě r̊uzné př́ımky se prot́ınaj́ı v právě jednom bodě.
∀p, q ∈ P, p ̸= q : |p ∩ q| = 1

(iii) Existuje čtveřice bod̊u taková, že žádné tři body nelež́ı na stejné př́ımce.
∃C ∈ X, |C| = 4, ∀p ∈ P : |p ∩ C| ≤ 2

Definice 6. (Řád projektivńı roviny): KPR (X,P) má řád n ∈ N, pokud každá jej́ı př́ımka má n+ 1 bod̊u.

Definice 7. (Duálńı projektivńı rovina): k projektivńı rovině (X,P) je hypergraf (X∗,P∗), kde:

(i) X∗ = P,

(ii) pro x ∈ X definujeme x∗ := {x ∈ p | p ∈ P},

(iii) P∗ = {x∗ | x ∈ X}.

1.3 Toky v śıt́ıch

Definice 8. (Toková śıť): Je pětice (V,E, z, s, c):

� V ≡ množina vrchol̊u

� E ≡ množina orientovaných hran E ⊆ V × V

� z ∈ V ≡ zdroj

� s ∈ V \ {z} ≡ stok/ spotřebič

� c : E → [0,+∞) ≡ c(e) je kapacita hrany e

Definice 9. (Tok): V śıti (V,E, z, s, c) je funkce f : E → [0,+∞) splňuj́ıćı:

(i) ∀e ∈ E : 0 ≤ f(e) ≤ c(e)

(ii) ∀x ∈ V \ {z, s} :
∑
y∈V

(x,y)∈E

f(x, y) =
∑
y∈V

(x,y)∈E

f(x, y), respektive ∀x ∈ V \ {z, s} : f [In(x)] = f [Out(x)].

Definice 10. (Velikost toku): Velikost toku f v śıti (V,E, z, s, c) je w(f) := f [Out(z)]− f [In(z)].

Definice 11. (Maximálńı tok): je takový tok, který má největš́ı velikost.

Definice 12. (Řez): v śıti (V,E, z, s, c) je množiana hran R ⊆ E, t.ž.: každá orientovaná cesta ze z do s má
neprázdný pr̊unik s R.

� Kapacita řezu R ≡ c(R) =
∑
e∈R

c(e)

� Minimálńı řez je řez, který má ze všech řez̊u nejmenš́ı kapacitu.
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Definice 13. (Elementárńı řez): Nechť A ⊆ V je množina vrchol̊u, t.ž. z ∈ A a s /∈ A. Potom zjevně Out(A)
tvoř́ı řez. Každý takový řez je elementárńı řez.

Definice 14. (Nenasycená cesta): Nechť f je tok v śıti (V,E, z, s, c). Nenasycená cesta pro f je neoreintovaná
cesta x1e1x2e2 . . . xk−1ek−1xkekxk+1, kde ∀i = 1, . . . , k :

� ei je buď dopředná hrana, tedy ei = (xi, xi+1), nebo

� ei je zpětná hrana, tedy ei(xi+1, xi).

Zároveň plat́ı f(ei) < c(ei) pro každou dopřednou hranu a f(ei) > 0 pro každou zpětnou hranu.

Definice 15. (Zlepšuj́ıćı cesta): Zlepšuj́ıćı cesta pro f je nenasycená cesta ze z do s.

Definice 16. (Párováńı): v grafu G = (V,E) je množina hran M ⊆ E, t.ž. každý vrchol patř́ı do nejvýše jedné
hrany z M .

Definice 17. (Vrcholové pokryt́ı): v grafu G = (V,E) je množina vrchol̊u C ⊆ V , t.ž. každá hrana obsahuje
alespoň jeden vrchol z C.

Definice 18. (Syst́ım r̊uzných reprezentant̊u - SRR): v hypergrafu H = (V,E) je funkce r : E → V , t.ž.:

1. ∀e ∈ E : r(e) ∈ e, kde r(e) je reprezentant hyperhrany e

2. ∀e, f ∈ E : e ̸= f =⇒ r(e) ̸= r(f), tedy funkce r je prostá

Definice 19. (Hranový řez): F ⊆ E je hranový řez v G pokud G \ F je nesouvislý.

Definice 20. (Hranová k−souvislost): G je hranově k−souvislý, pokud neobsahuje žádný hranový řez velikosti
menš́ı než k.

Definice 21. (Vrcholová k-souvislost): GrafG je vrcholově k-souvislý, pokud má alespoň k+1 vrchol̊u a neobsahuje
žádný vrcholový řez velikosti < k.

Definice 22. (Vrcholová souvislost): grafu G, značeno Kv(G), je největš́ı k, t.ž.: G je vrcholově k-souvislý.

1.4 Ramseyovy věty

Definice 23. (Klika): v grafu G = (V,E) je množina vrchol̊u, t.ž. každé dva jsou spojené hranou.

Definice 24. (Nezávislá množina): v grafu G = (V,E) je množina vrchol̊u, t.ž. žádné dva nejsou spojené hranou.

1.5 Samoopravné kódy

Definice 25. (Hammingova vzdálenost): Pro x, y ∈ Zn
2 je Hammingova vzdálenost d(x, y) := počet i, t.ž. xi ̸= yi.

Definice 26. (Hammingova váha): ||x|| := počet i, t.ž. xi ̸= 0.

Definice 27. (Minimálńı vzdálenost): pro kód C ∈ Zn
2 je ∆(C) := min

x,y∈C

x ̸=y

d(x, y).

Definice 28. ((n, k, d)-kód): je množina C ∈ Zn
2 taková, že |C| = 2k a ∆(C) = d.

Definice 29. (Lineárńı kód): je kód C ∈ Zn
2 , který je vektorový podprostor Zn

2 .

Definice 30. (Generuj́ıćı matice kódu C): pro lineárńı (n, k, d)-kód je matice G ∈ Zk×n
2 , jej́ıž řádky tvoř́ı bázi C.

Definice 31. (Kódováńı): Nechť C je (n, k, d)-kód pro k ∈ N, tak kódováńı pro C je bijekce Zk
2 → C.

Definice 32. (Dekódováńı): (n, k, d)-kódu C je funkce g : Zn
2 → C taková, že ∀x ∈ Zn

2 : d(x, g(x)) = min
y∈C

d(x, y).

(Přiřazujeme nejblǐzš́ı slovo; slovo s nejmenš́ı vzdálenost́ı.)

Definice 33. (Duálńı kód k C ”orotgonálńı doplněk”): C⊥ := {⟨x, y⟩ = 0 | y ∈ Zn
2 ,∀x ∈ C}

Definice 34. (Kontrolńı matice): Nechť C je lineárńı (n, k, d)-kód. Kontrolńı matice kódu C je matice, jej́ıž řádky
tvoř́ı bázi C⊥.

Definice 35. (Hammingovy kódy): Nechť r ∈ N, r ≥ 2, nechť Kr je matice s r řádky a 2r−1 sloupci, jej́ıž sloupce
jsou nenulové a r̊uzné. Potom Hammingovy kódy Hr jsou kódy s kontrolńı matićı Kr.
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2 Věty a tvrzeńı

2.1 Odhady kombinatorických funkćı

Věta 1. (Odhad faktoriálu 2):

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
D̊ukaz: Dokazovat budeme za pomoci integrálu a součtu, n! je ale násobek, muśıme proto už́ıt vlastnosti logaritmů:

ln(n!) =

n∑
i=1

ln(i) =

n∑
i=2

ln(i).

Obr. 1: Součet ”schod̊u” podél křivky

� Dolńı odhad: Budeme sč́ıtat ”schody” nad křivkou:

ln(n!) ≥
∫ n

1

ln(x)dx =

= [x ln(x)− x]
n
1 = n ln(n)− n+ 1 =⇒

n! = en lnn−n+1 = e
(n
e

)n
� Horńı odhad: Podobně jako dolńı odhad, jen budeme sč́ıtat ”schody” pod křivkou:

n−1∑
i=1

ln(i) = ln((n− 1)!) ≤ n ln(n)− n+ 1

Vy výsledku dostaneme:

n lnn− n+ 1 ≥ ln((n− 1)!) =⇒ en lnn−n+1 ≥ (n− 1)! =⇒
=⇒ n · en lnn−n+1 ≥ n! =⇒

=⇒ n · e
( e
n

)n
≥ n!

Věta 2. (Odhad kombinačńıho č́ısla): Pro 1 ≤ k ≤ n plat́ı
(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

D̊ukaz: Budeme využ́ıvat vztahu

(
n

k

)
=

n!

k!(n− k)!

� Dolńı odhad:(
n

k

)
=

n(n− 1)(n− 2) · ... · (n− k + 1)

k(k − 1) · ... · 1
=

n

k
· n− 1

k − 1
· n− 2

k − 2
· ... · n− k + 1

1
≥
(n
k

)k
Dostáváme, že n

k je nejmenš́ı a zbytek je rostoućı posloupnost.
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� Horńı odhad: (
n

k

)
=

n(n− 1)(n− 2) · ... · (n− k + 1)

k!
≤ nk(

k
e

)k =
(e · n

k

)k
Tento vztah plat́ı, protože

(
k

e

)k

je dolńı odhad k!.

Věta 3. (Odhad binomického č́ısla
(
2m
m

)
):

∀m ∈ N0 :
22m

2
√
m
≤
(
2m

m

)
≤ 22m√

2m

D̊ukaz: Definujme P :=

(
2m
m

)
22m

a dokažme, že
1

2
√
m
≤ P ≤ 1√

2m
.

P :=

(
2m
m

)
22m

=
(2m)!
m!·m!

2 · 2 · ... · 2︸ ︷︷ ︸
2m

=
1 · 2 · 3 · ... · 2m

(2 · 4 · ... · 2m)(2 · 4 · ... · 2m)
=

1 · 3 · 5 · ... · (2m− 1)

2 · 4 · 6 · ... · 2m

� Horńı odhad:

P 2 =
1 · 1 · 3 · 3 · 5 · 5 · ... · (2m− 1) · (2m− 1)

2 · 2 · 4 · 4 · 6 · 6 · ... · (2m) · (2m)

Pozorováńı 2.
=

= 1 · 1 · 3
2 · 2

· 3 · 5
4 · 4

· 5 · 7
6 · 6

· ... · (2m− 3) · (2m− 1)

(2m− 2) · (2m− 2)
· 2m− 1

(2m) · (2m)
≤

≤ 2m− 1

(2m) · (2m)
<

1

2m
, a proto tedy P ≤ 1√

2m
.

� Dolńı odhad:

P 2 =
1 · 1 · 3 · 3 · 5 · 5 · ... · (2m− 1) · (2m− 1)

2 · 2 · 4 · 4 · 6 · 6 · ... · (2m) · (2m)

Pozorováńı 3.
=

=
1

2
· 3 · 3
2 · 4

· 5 · 5
4 · 6

· ... · (2m− 1) · (2m− 1)

(2m− 2) · (2m)
· 1

2m
≥

≥ 1

4m
, a proto tedy P 2 ≥ 1

4m
a P ≥ 1

2
√
m
.
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2.2 Vytvořuj́ıćı funkce

Věta 4. (Zobecněná binomická věta): Pro d ∈ R plat́ı (1 + x)d =

∞∑
n=0

(
d

n

)
xn, pro |x| < 1.

D̊ukaz: Označme f(x) = (1 + x)d. Vid́ıme, že:

f ′(x) = d(1 + x)d−1

f ′′(x) = d(d− 1)(1 + x)d−2

...

f (n)(x) = d(d− 1) · ... · (d− n+ 1)(1 + x)d−n

Urč́ıme Taylorovým polynomem. Nechť a0, a1, . . . je posloupnost vytvořuj́ıćı funkce f(x), potom an =
f (n)(0)

n!

(
d

n

)
.

Fakt 1. Mějme funkci f(x) = P (x)
Q(x) , kde P (x) a Q(x) jsou polynomy se stupněm d(P (x)) < d(Q(x)).

Nechť Q(x) má navzájem r̊uzné reálné kořeny ρ1, ρ2, . . . , ρk a nechť ni označuje stupeň kořenu ρi.
Předpokládejme, že Q(x) nemá nereálné kořeny, tedy Q(x) = γ · (x− ρ1)

n1(x− ρ2)
n2 · ... · (x− ρk)

nk , kde γ ∈ R.
Potom f(x) se dá vyjádřit jako součet parciálńıch zlomk̊u pro kořeny ρ1, . . . , ρk, kde parciálńı zlomky pro kořen
ρi maj́ı stupeň nejvýše ni, neboli:

∃αi,j ∈ R : f(x) =

k∑
i=1

ni∑
j=1

αi,j

(x− ρi)j
.
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Př́ıklad 1. (Odvozeńı Catalanova č́ısla):

Mějme funkci C(x) :=

∞∑
n=0

Cnx
n, C0 = 1 a Cn = C0Cn−1 + C1Cn−2 + ...+ Cn−1C0 =

n−1∑
i=0

CiCn−i−1:

Obr. 2: Odvozeńı součtu Catalanových č́ısel pro ∀n ≥ 1

∞∑
n=1

Cnx
n =

∞∑
n=1

(
n−1∑
i=0

CiCn−i−1

)
xn =⇒

C(x)− 1 = x

∞∑
n=0

(
n∑

i=0

CiCn−i

)
xn = x · C2(x)

Dostáváme tak: C(x) = 1 + xC2(x), což si můžeme zapsat jako kvadratickou rovnici a vyjdou nám dvě řešeńı:

xC2(x)− C(x) + 1 =⇒

{
1+

√
1−4x
2x = C+(x) neńı řešeńım - diverguje

1−
√
1−4x
2x = C−(x) konverguje k 1 při x→ 0

Poč́ıtáme tak dál a vyjádř́ıme vzorec pro n-tý člen:

Cn := [xn]
1−
√
1− 4x

2x
= [xn+1]

1−
√
1− 4x

2
= [xn+1]

(
1

2
−
√
1− 4x

2

)
=

= −1

2
[xn+1]

√
1− 4x = −1

2
(−4)n+1[xn+1]

√
1− x = −1

2
(−4)n+1[xn+1](1− x)

1
2 =

ZBV
= −1

2
(−4)n+1[xn+1]

( 1
2

n+ 1

)
= (−1)n22n+1 ·

1
2 (

1
2 − 1)( 12 − 2) · ... · ( 12 − n)

(n+ 1)!
=

= (−1)n22n+1 ·
1
2 (−

1
2 )(−

3
2 ) · ... · (−

2n−1
2 )

(n+ 1)!
= 2n · 1 · 3 · 5 · ... · (2n− 1)

(n+ 1)!
=

=
1 · 3 · 5 · ... · (2nn!)

(n+ 1)!n!
=

(2n)!

(n+ 1)!n!
=

1

n+ 1

(
2n

n

)
.
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2.3 Projektivńı roviny

Tvrzeńı 1. Pro konečnou projektivńı rovinu (X,P) řádu n plat́ı:

(a) Každý bod KPR patř́ı do právě n+ 1 př́ımek.

(b) Počet bod̊u je |X| = n2 + n+ 1.

(c) Počet př́ımek je |P| = n2 + n+ 1.

D̊ukaz: Budeme postupně dokazovat jednotlivé body.

(a) Zvolme si x ∈ X a dle Lemmatu v́ıme, že ∃p ∈ P : x ̸= p.
Označme p = {y1, y2, . . . , yn+1} a definujme př́ımky g1, g2, . . . , gn+1, kde gi = xyi.
Tvrd́ıme, že pro i ̸= j je gi ̸= gj , protože kdyby ne, tak {yi, yj} ⊆ gi ∩ p, což je spor. Tvrd́ıme ∀r ∈ P, kde
pokud x ∈ r, tak plat́ı r ∈ {g1, . . . , gn+1}.

Obr. 3: Obrázek d̊ukazu (a)

Zvolme si př́ımku r ∈ P, t.ž.: x ∈ r, což má podle axiomu zřejmě |r ∩ p| = 1. Dále nechť y je prvek r ∩ p,
potom, potom r = xyi = gi. Tedy bodem x procháźı právě n+ 1 př́ımek.

(b) Zvolme si x ∈ X a nechť p1, p2, . . . , pn+1 jsou př́ımky procházej́ıćı x. Všimněme si, že každý bod y ∈ X \ {x}
patř́ı do právě jedné z př́ımek p1, p2, . . . , pn+1.
Takže |X| = |{x}|+ |p1 \ {x}|+ |p2 \ {x}|+ · · ·+ |pn+1 \ {x}| = 1 + (n+ 1)n = n2 + n+ 1.

Obr. 4: Obrázek d̊ukazu (b)

(c) Poč́ıtáme počet dvojic (x, p) ∈ X × P takových, že x ∈ p. To lze udělat dvěma zp̊usoby:
dvojic je |X|(n+ 1) = (n2 + n+ 1)(n+ 1) a dvojic |P|(n+ 1) = (n2 + n+ 1)(n+ 1) =⇒

|P|(n+ 1) = (n2 + n+ 1)(n+ 1) =⇒ |P| = n2 + n+ 1

Obr. 5: Obrázek d̊ukazu (c)
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Tvrzeńı 2. Duálńı projektivńı rovina (X∗,P∗) je projektivńı rovina.

D̊ukaz: Muśıme dokázat všechny axiomy klasické projektivńı roviny. (X∗,P∗) splňuje:

(i) ∀p, q ∈ X∗, p ̸= q,∃!x∗ ∈ P∗ : {p, q} ⊆ x∗ ⇐⇒ ∀p, q ∈ P, p ̸= q,∃!x ∈ X : x ∈ p & x ∈ q
⇐⇒ (X,P ) splňuje (ii).

(ii) Vycháźı z (i). Tedy splňuje (ii) ⇐⇒ (X,P) splňuje (i).

(iii) ∃C∗ ⊆ X∗, |C∗| = 4 & ∀x∗ ∈ P∗ : |x∗ ∩ C∗| ≤ 2 ⇐⇒ ∃C∗ ⊆ P∗, |C∗| = 4 & ∀x ∈ X :
Nejvýše dvě př́ımky z C procházej́ı skrz x :
Ukážeme, že (X,P) splńı výše uvedené tvrzeńı a to tak, že ukážeme, že {a, b, c, d} ⊆ X, t.ž.: žádné tři body
C nelež́ı na jedné př́ımce.

Obr. 6: Protipř́ıklad

Předpokládejme C∗ := {ab, bc, cd, ad}. Zvolme si např́ıklad př́ımky ab, bc, cd :
Jelikož ab ∩ bc = {b} a bc ∩ cd = {c}, tak plat́ı, že ab ∩ bc ∩ cd = ∅, což nám dává spor.

Konstrukce konečné projektivńı roviny řádu n ∈ N

(1) Nechť T je konečné těleso s n prvky, potom uvažujme vektorový prostor V = T 3 = {(x, y, z) | x, y, z ∈ T}.
Plat́ı |V | = n3.

(2) Nechť X je množina podprostor̊u dimenze 1 ve V . Plat́ı |X| = n3−1
n−1 = n2 + n+ 1.

(3) Pro každý podprostor p ⊆ V dimenze 2 definujme p̃ := {x ∈ X | x ⊆ p}.

(4) P = {p̃ | p je podprostor V dimenze 2}. (|P| = n2 + n+ 1 = |X|, v dim = 1, protože orotgonálńı doplněk)

Tvrd́ım, že (X,P) je projektivńı rovina.

(i) Z lineárńı nezávislosti.

(ii) P,Q podprostory V :

2︷ ︸︸ ︷
dimP +

2︷ ︸︸ ︷
dimQ−

1︷ ︸︸ ︷
dimP ∩Q = dim(

3︷ ︸︸ ︷
obalu P ∪Q).

(iii) Např́ıklad C = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.
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2.4 Toky v śıt́ıch

Fakt 2. V každé tokové śıti existuje maximálńı tok.

Věta 5. Nechť f je tok v śıti (V,E, z, s, c), potom následuj́ıćı tvrzeńı jsou ekvivalentńı:

(i) f je maximálńı

(ii) f nemá zlepšuj́ıćı cestu

(iii) Existuje řez R, t.ž.: w(f) = c(R).

D̊ukaz: Dokážeme postupně implikace.

� (i) =⇒ (ii) : Kdyby měl f nějakou zlepšuj́ıćı cestu, tak můžeme zvětšit f a ten tak potom neńı maximálńı.

� (iii) =⇒ (i) : Vı́me, že pro libovolný řez R′ a libovolný tok f ′ plat́ı, že w(f ′) ≤ c(R′). Kdyby f nebyl
maximálńı, tak existuje tok f+ splňuj́ıćı w(f+) > w(f).

Potom pro každý řez R plat́ı, že c(R) ≥ w(f+) > w(f), tedy neexistuje žádný řez R splňuj́ıćı c(R) = w(f).

� (ii) =⇒ (iii) : Nechť f je tok, který nemá zlepšuj́ıćı cestu.
Definujeme si množinu A = {x ∈ V | ze z do x vede nenasycená cesta}. Zjevně z ∈ A, s /∈ A a dále
definujeme R := Out(A) = {u, v ∈ E | u ∈ A, v /∈ A}.
Můžeme si všimnout, že ∀e ∈ Out(A) : f(e) = c(e) a analogicky ∀e′ ∈ In(A) : f(e′) = 0.

Z (Lemmatu 3.) dostáváme, že:

w(f) = f [Out(A)]︸ ︷︷ ︸
c(Out(A))

− f [In(A)]︸ ︷︷ ︸
0

= c(Out(A)) = c(R).

Důsledek 1. (Minimaxová věta o toku a řezu) Nechť fmax je maximálńı tok a Rmin je minimáńı řez v (V,E, z, s, c),
potom w(fmax) = c(Rmin).

D̊ukaz: Budeme dokazovat (i) w(fmax) ≤ c(Rmin) a (ii) w(fmax) ≥ c(Rmin)

(i) Triviálńı. Vı́me d́ıky předchoźımu lemmatu. Pro každý tok f ′ a pro každý řez R′ plat́ı w(f ′) ≤ c(R′).

(ii) Dı́ky předchoźı větě. Existuje řez R, t.ž.: w(fmax) = c(R) ≥ c(Rmin).

Důsledek 2. V śıti, kde všechny kapacity jsou celoč́ıselné, Ford-Fulkerson̊uv algoritmus nalezne maximálńı tok,
který je také celoč́ıselný.
Algoritmus Ford-Fulkerson(G):

1. f ← nulový tok

2. while existuje zlepšuj́ıćı cesta P ze z → s do:

3. ε← mine∈E(P ) r(e).

4. Zvětš́ıme tok f podél P o ε (kažé hraně e po směru zvětš́ıme f(e) a hranám proti směru zmenš́ıme f(e))

5. return tok f .

Pozorováńı 1. Pokud M je párováńı a C je vrcholové pokryt́ı v G = (V,E), tak |M | ≤ |C|.

D̊ukaz: Každá hrana z M muśı být pokrytá vrcholem z C a zároveň 1 vrchol z C, pokryje nejvýše 1 hranu z M .
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Věta 6. (König-Egerváty): V každém bipartitńım grafu má největš́ı párováńı stejnou velikost, jako nejmenš́ı
vrcholové pokryt́ı.

D̊ukaz: Nechť G = (V,E) je bipartitńı graf s partitami A,B. Vytvořme tokovou śı̌t (V ∪ {z, s}, E+, z, s, c), kde
E+ = {zx | x ∈ A} ∪ {ys | y ∈ B} ∪ {xy | {xy} ∈ E & x ∈ A & y ∈ B} a c(zx) = c(ys) = 1 pro x ∈ A, y ∈ B a
c(xy) = |A|+ |B|+ 1 (záměrně hodně vysoké, aby nemohly nic omezovat - dejme tomu ∞).

Nechť Cmin je nejmenš́ı vrcholové pokryt́ı v G a Mmax je největš́ı párováńı v G.

� Vı́me, že |Mmax| ≤ |Cmin|, a to z (Pozorováńı 7.).

� Nechť f je maximálńı tok v té śıti a R je minimáńı řez. Dı́ky minimaxové větě v́ıme, že w(f) = c(R) a
nakonec BÚNO f má celoč́ıselné hodnoty.

Definujeme si množinu Mf = {{x, y} ∈ E | f(x, y) > 0}, neboli že v maximálńım toku po hranách něco těče.
Zjevně je Mf párováńı v G a nav́ıc |Mf | = w(f). (Protože kdyby se stalo, že máme 2 hrany z A do B se
společným vrcholem, tak by přiteklo do A ze zdroje 1 a odteklo z B ze dvou vrhol̊u do stoku v součtu 2 - tok
ale muśı být celoč́ıselný, takže dostaneme spor).

Obr. 7: Př́ıklad bipartitńıho grafu.

(a) Vytvoř́ıme śıť a zorientujeme hrany (b) Spor s celoč́ıselným ohodnoceńım

Definujeme si CR := {x ∈ A | zx ∈ R} ∪ {y ∈ B | ys ∈ R}. Všimněme si, že R neobsahuje žádnou hranu z A
do B a jistě je tak CR vrcholové pokryt́ı G.

Obr. 8: Obrázek vzniklé sporné nepokryté hrany v biparitńım grafu.

 nepokrytá
 hrana

 řez

Máme CR, t.̌z. za každou řez. hranu ze z vlož́ım vrchol z A a za každou řez. hranu do s vlož́ım vrchol z B.

Kdyby CR nebylo pokryt́ı, tak existuje nepokrytá hrana {x, y} ∈ E a potom cesta z → x → y → s by byla
ve sporu s t́ım, že R je řez. (protože by skrz tuto hranu vedla orientovaná cesta ze z do s).

Nav́ıc plat́ı, že |CR| = |R| = c(R). Dostali jsme tak:

|Cmin| ≤ |CR| = c(R)
minimax

= w(f) = |Mf | ≤ |Mmax|.
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Věta 7. (Hallova): Nechť G je bipartitńı graf s partitami A,B. Potom G má párováńı velikosti

|A| ⇐⇒ ∀X ⊆ A : |N(X)| ≥ |X|.

D̊ukaz: Muśım dokázat obě implikace.

=⇒ Pokud existuje párováńı velikosti |A|, tak pro každou X ⊆ A existuje |X| vrchol̊u spárovaných s X a ty patř́ı
do N(X). Tedy |N(X)| ≥ |X|.

⇐= Pro spor. Nechť M je největš́ı párováńı G, t.ž.: |M | < |A|. Existuje pokryt́ı C, kde |C| = |M | < |A|.
Definujeme si CA := C ∩A, CB := C ∩B a X := A \ CA.

Zjist́ıme, že N(X) ⊆ CB a nav́ıc, že |X| = |A| − |CA| > |CB | ≥ |N(X)|, což nám dává spor.

Věta 8. (Hallova - hypergrafová verze): Hypergraf H = (V,E) má SRR ⇐⇒ ∀F ⊆ E :

∣∣∣∣∣⋃
e∈F

e

∣∣∣∣∣ ≥ |F |.
D̊ukaz: Nechť H = (V,E) je hypergraf, nechť IH je jeho graf incidence.
Všimneme si, že H má SRR ⇐⇒ IH má párováńı velikosti |E|.

Obr. 9: Incidence a párováńı

Dále si všimneme, že Hallova podmı́nka pro H, ⇐⇒ ∀F ⊆ E :

∣∣∣∣∣⋃
e∈F

e

∣∣∣∣∣ ⇐⇒ bipartitńı Hallova podmı́nka pro IH

a partitu E. Mezi těmito pozorováńımi plat́ı ekvivalentńı vztah d́ıky bipartitńı Hallově podmı́nce.

Věta 9. (Menger - hranová xy-verze): Pro dva r̊uzné vecholy x, y grafu G plat́ı, že G obsahuje ∀k ∈ N hranově
disjunktńıch cest z x do y ⇐⇒ G neobsahuje hranový xy−řez velikosti menš́ı než k.

D̊ukaz: Dokazujeme dvě implikace:

=⇒ Pokud mám k hranově disjunktńıch cest z x do y, tak každý hranový xy−řez muśı dosahovat ≥ 1 hranu z
každé té cesty.

⇐= Nechť G neobsahuje hranový xy−řez velikosti < k. Vyrob́ıme tokovou śı̌t (V, E⃗, x, y, c), kde ∀e ∈ E⃗ : c(e) = 1

a E⃗ = {uv, ve | {u, v} ∈ E}.
Všimneme si, že v té śıti neńı žádný řez velikosti < k. Tedy v té siti existuje tok velikosti ≥ k.

Nechť f je celoč́ıselný maximálńı tok a nav́ıc předpokládejme, že mezi všemi celoč́ıselnými maximálńımi toky
zvoĺıme f tak, aby množina s(f) = {e ∈ E⃗ | f(e) = 1} byla co nejmenš́ı.

Obr. 10: D̊ukaz - pár obrázk̊u pro pochopeńı

Dále si všimneme, že s(f) neobsahuje žádný orientovaný cyklus. Jinak spor s minimalitou s(f).

Pomoćı s(f) vyrob́ım k hranově disjunktńıch cest z x do y:

opakuj k-krát:

1. zacni v x

2. jdi po hranach z s(f), dokud nedojdes do y

3. pouzite hrany odstran z s(f)
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Věta 10. (Menger - globálńı hranová verze): Graf G je hranově k−souvislý ⇐⇒ mezi každými dvěma r̊uznými
vrcholy existuje k hranově disjunktńıch cest.

D̊ukaz: G je hranově k-souvislý ⇐⇒ neexistuje hranový řez < k ⇐⇒ ∀x, y r̊uzné vrcholy neexistuje hranový
xy−řez velikosti < k ⇐⇒ ∀xy r̊uzné: ∃k hranově disjunktńıch cest z x do y.

Věta 11. (Menger - xy-verze pro vrcholovou souvislost): Nechť G = (V,E) je graf, nechť x, y jsou r̊uzné nesousedńı
vrcholy a nechť k ∈ N. Potom G obsahuje k navzájem VVD cest z x do y ⇐⇒ G neobsahuje vrcholový xy-̌rez
velikosti < k.

D̊ukaz: Dokazujeme dvě implikace:

=⇒ Hodně disjunktńıch cest znamená, že tam nemůže být malý řez. Zřejmé.

⇐= Nechť G nemá vrcholový xy-̌rez velikosti < k. Vyrob́ıme śı̌t S:

1. za každý vrchol u ∈ V dáme do S dva vrcholy u+, u− a hranu u+u− s kapacitou 1.

2. za každou hranu {u, v} ∈ E dáme do S dvě orientované hrany u−v+ a v+u− s kapacitami ”∞”.

3. zdroj: x−, stok y+

Tvrd́ıme, že S nemá řez kapacity c < k. Sporem, nechť takový řez existuje, potom všechny jeho hrany jsou
tvatu u+u− pro nějaké u ∈ V a odpov́ıdaj́ıćı vrcholy v G tvoř́ı vrcholový xy-řez velikosti c < k, což je spor.

Minimaxová věta o toku a žezu. V S existuje tok velikosti ≥ k, BÚNO tok je celoč́ıselný, ř́ıkejme mu f .

Z existence takového toku f plyne, že obsahuje k hranově disjunktńıch cest z x− do y+ (viz. hranová verze).

Označme je P⃗1, . . . , P⃗k.

Tedy cesty P⃗1, . . . , P⃗k jsou i vnitřně vrcholově disjunktńı, protože každá cesta (orientovaná) z x− do y+ v S,
která obsajuje vrchol u+ nebo u− pro nějaké u ∈ V \ {x, y}, muśı obsahovat hranu u+u−.

Když v cestách P⃗1, . . . , P⃗k nahrad́ıme každou hranu tvaru u+u− jedńım vrcholem u, tak dostaneme k VVD
cest z x do y v G.

Věta 12. (Menger - vrcholová globálńı verze): G je vrcholově k-souvislý ⇐⇒ mezi každými dvěma vrcholy x, y
existuje k navzájem VVD cest.

D̊ukaz: Nechť G = Kn, Hv(Kn) = n− 1, t.j. Kn je vrcholově k-souvislý ⇐⇒ k ≤ n− 1. Nechť G neńı úplný:

=⇒ Mezi každými dvšma vrcholy je k VVD cest =⇒ G má ≥ k + 1 vrchol̊u, žádný řez velikosti < k =⇒ G je
k-souvislý.

⇐= Nechť x, y jsou r̊uzné vrcholy, máme př́ıpady:

(a) {x, y} ≠ E. xy-verze M.v věty: ∃k VVD cest z x do y.

(b) {x, y} ∈ E. Nechť G− := (V,E \ {e}). Lemma Kv(G
−) ≥ k− 1, xy-verze M. věty pro G−: v G−∃k− 1

VVD cest z x do y. Přidám k nim hranu e a mám k VVD cest z x do y v G.

Věta 13. (O uš́ıch): Graf G je 2-souvislý ⇐⇒ G se dá vyrobit z kružnice pomoćı přidáváńım uš́ı.

D̊ukaz: Dokazujeme dvě implikace:

⇐= Každá kružnice je 2-vrcholově souvislá a přidáńım hran se to nepokaźı.

=⇒ Máme 2-souvislý grafG = (V,E), C je libovolná kružnice (ta tam muśı být, jinak by nebyla 2-souvislá) Zvolme
graf Gmax = (Vmax, Emax), t.ž. je největš́ım podgrafem grafu G, který se dá vyrobit pomoćı přidáváńı uš́ı.
Tvrd́ıme Gmax = G. Kdyby tomu tak nebylo, tak:

1. Vmax = V,Emax ⊊ E: přidáńı hrany znamená přidáńı ucha, což je spor s maximalitou

2. Vmax ⊆ V : G je souvislý. Dále ∃e = {x, y}, t.ž. x ∈ Vmax, y /∈ Vmax, G− x je souvislý
Dostáváme z toho, že y se dá napojit i jinou cestou než přes x, takže jde připojit ucho.
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2.5 Cayleyho vzorec

Sn ≡ počet stromů na množině vrchol̊u [n] = {1, 2, . . . , n} =⇒ nn−2

Definice 36. (Kořenový strom): je strom, ve kterém se jeden vrchol určil jako kořen a všechny hrany se
zorientovaly směrem ke kořeni. V grafu bude každá hrana ukazovat směrem ke kořeni

Definice 37. (Povykos - ”Postup vytvářeńı kořenového stromu”): je posloupnost n − 1 orientovaných hran
(e1, e2, . . . , en−1) na vrcholech [n], t.ž.: ([n], {e1, . . . , en−1}) je kořenový strom.

Pozorováńı 2. Posloupnost orientovaných hran (e1, e2, . . . , en−1) je povykos ⇐⇒ pro každé k = {1, . . . , n− 1}:

(1) hrana ek spojuje vrcholy z r̊uzných komponent grafu tvořeného předchoźımi hranami e1, . . . , ek−1

(2) hrana ek vyháźı z vrcholu, z něhož nevycháźı žádná z hran e1, . . . , ek−1.

Věta 14. (Ceyleyho vzorec, Borchardt 1860): Sn = nn−2.

D̊ukaz: Nechť Kn je počet kořenových stromů na n vrcholech a Pn je počet povykos̊u. Všimneme si, že Kn = n ·Sn

a že Pn = (n− 1)! ·Kn (je započ́ıtán počet všech permutaćı hran, které strom vytvoř́ı).
Využijeme Pozorováńı 2. Začneme s množinou vrchol̊u a budeme postupně přidávat hrany až skonč́ıme s kořenovým
stromem.

Obr. 11: Přidáváńı hran, tvorba kořenového stromu

Chceme vyrobit povykos (e1, . . . , en−1) a máme n · (n− 1) možnost́ı, jak zvolit e1 (druhá podmı́nka bude splňena
automaticky, prvńı podmı́nka ř́ıká, že by měla hrana spojovat dva vrcholy, takže n možnost́ı pro výběr, kde bude
hrana zač́ınat a n− 1, kde bude končit)
Pokračujeme, máme n · (n− 2), kde (n− 2) je počet možnost́ı, jak vyrobit komponentu kde e2 zač́ıná (dle (2) muśı
e2 zač́ınat v kořeni komponenty).
Pokud už jsme vybrali e1, . . . , ek−1 v souladu s (1) a (2), tak máme n · (n− k) možnośı, jak vybrat hranu ek.
Máme tedy celkem:

Pn = n(n− 1) · n(n− 2) · n(n− 3) · . . . · n · 1 =

n−1∏
k=1

n(n− k) = nn−1(n− 1)!

Kn =
Pn

(n− 1)! = nn−1

Sn =
Kn

n
= nn−2.
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2.6 Poč́ıtáńı dvěma zp̊usoby

Definice 38. (Antiřetězec): v P([n]) je množina a ⊆ P([n]), t.ž.: ∀M,M ′ ∈ a, kde M ̸= M ′ neplat́ı M ⊆M ′, ani
M ′ ⊆M .

Př́ıklad: n = 4 je antiřetězec v P([4]): {{1}, {2}, {3}, {4}}, {∅}, ∅, {{1, 2, 3}, {3, 4}}, {X ⊆ [4], |X| = 2}

Definice 39. (Nasycený řetězec): v P([n]) je posloupnost M0,M1, . . . ,Mn ⊆ [n], kde M0 ⊆M1 ⊆ . . . ,⊆Mn ⊆ [n]
a |Mi| = i.

Př́ıklad: n = 4: ∅ ⊆ {2} ⊆ {1, 2, 4} ⊆ {1, 2, 3, 4} = [4] a |Mi| = i

Věta 15. (Spernerova - 1928): Největš́ı antǐretězec v P([n]) má velikost
(

n
⌊n/2⌋

)
=
(

n
⌈n/2⌉

)
.

D̊ukaz: Muśım dokázat, (i) že existuje a (ii) že neexistuje větš́ı.

(i) Antǐretězec velikosti
(

n
⌊n/2⌋

)
je např.

(
[n]

⌊n/2⌋
)
. Vı́me tak, že existuje.

(ii) Nechť a je antǐretězec, označme množiny, které do něj patř́ı a = {A1, A2, . . . , Ak}, kde k = |a|. Chceme
ukázat, že k ≤

(
n

⌊n/2⌋
)
.

Obr. 12: (ii) vytvoř́ıme bipartitńı graf

nasycené řetězce

Máme n! nasycených řetězc̊u v P([n]). Každý nasycený řetězec obsahuje nejvýš jednu množinu a.

Poč́ıtáme dvěma zp̊usoby dvojice (A,R), kde A ∈ a a R je nasycený řetězec. Zároveň A ∈ R.

(1) dvojic je ≤ n!

(2) pro A ∈ a máme A! · (n− |A|)! nasycených řetězc̊u obsahuj́ıćı A. To lze odvodit např́ıklad z n = 4:

∅ ⊆ {2} ⊆︸ ︷︷ ︸
|A|! možnost́ı

{2, 4}︸ ︷︷ ︸
=A

⊆ · · · ⊆ [n]︸ ︷︷ ︸
(n−|A|)!

Zjistili jsme tak vše potřebné, tedy:

n! ≥
∑
A∈a

|A|!(n−|A|)! =⇒ 1 ≥
∑
A∈a

|A|!(n− |A|)!
n!

=
∑
A∈a

1(
n
|A|
) ≥∑

A∈a

1(
n

⌊n
2 ⌋
) = |a|· 1(

n
⌊n

2 ⌋
) =⇒

(
n

⌊n/2⌋

)
≥ |a|
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Věta 16. Nechť G = (V,E) je graf na n vrcholech, který neobsahuje C4 jako podgraf. Potom |E| ≤ O(n3/2).

D̊ukaz: Nechť G = (V,E) je graf bez C4, |V | = n. Označme H počet dvojic (x, {y, z}) takových, že x, y, z ∈ V,
y ̸= z, x je soused y i z.
Poč́ıtáme H dvěma zp̊usoby:

� Pro dané x ∈ V máme přesně
(
deg(x)

2

)
možnost́ı, jak zvolit y a z. Tedy

H =
∑
x∈V

(
deg(x)

2

)
≥
∑
x∈V

(deg(x)− 1)2

2
.

� Pro dané {y, z} ∈
(
V
2

)
existuje nejvýše jeden společný soused x ∈ V , protože jinak by G obsahoval C4.

Tedy H ≤
(
n
2

)
≤ n2

2

Máme odhadnuto H z obou stran, proto plat́ı:

n2

2
≥
∑
x∈V

(deg(x)− 1)2

2
, tedy n2 ≥

∑
x∈V

(deg(x)− 1)2.

My chceme |E| = 1
2

∑
x∈V

deg(x) ≤ O(n3/2). Uvážme proto konvexńı funkci f(x) = (x− 1)2.

Obr. 13: Konvexńı funkce

Tedy pro každé:

x1, x2, . . . , xn ∈ R : f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n

(
2E

n
− 1

)2

≤


∑
x∈V

deg(x)

n
− 1


2

≤

∑
x∈V

(deg(x)− 1)
2

n
≤ n

√
n ≥ 2|E|

n
− 1 //počet hran je polovina součtu stupň̊u

n3/2 ≥ 2|E| − n

1

2
(n3/2 + n) ≥ |E|
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2.7 Ramseyovy věty

Věta 17. (Ramseyova, grafová verze, 1930): ∀k ∈ N,∀l ∈ N,∃N ∈ N, t.ž.: Pro každý graf G = (V,E) na N
vrcholech obsahuje kliku velikosti k nebo nezávislou množinu velikosti l.

D̊ukaz: Indukćı podle k + l.
Můžeme si všimnout, že pro R(k, 1) = 1 = R(1, l), pro R(k, 2) = k = R(2, l)

Mějme k ≥ 3, l ≥ 3 a definujme si N :=

existuje dle IP︷ ︸︸ ︷
R(k, l − 1) +R(k − 1, l). Nechť máme dán graf G na N vrcholech. Nechť

x je libovolný vrchol G a označme S množinu soused̊u vrcholu x a T = V \ (S ∪ {x}).
Protože |S|+ |T | = N − 1 = R(k, l − 1) +R(k − 1, l)− 1, tak plat́ı |S| ≥ R(k − 1, l), nebo |T | ≥ R(k, l − 1).

Předpokládejme, že |S| ≥ R(k − 1, l) a označme Gs podgraf G indukovaný S. Tedy Gs obsahuje kliku velikosti
k − 1 nebo nezávislou množinu velikosti l.
Pokud Gs obsajuje nezávislou množinu velikosti l, tak i G ji obsahuje, v takovém př́ıpadě máme hotovo.
Pokud Gs obsajuje kliku velikosti k − 1, tak klika spolu s x tvoř́ı kliku velikosti k v G a máme tak také hotovo.
Př́ıpad |T | ≥ R(k, l − 1) analogicky.

Věta 18. (Ramseyova, Vı́cebarevná verze): ∀b ∈ N,∀m ∈ N,∃N ∈ N, pro každé obarveńı hran KN pomoćı b
barev existuje množina m vrchol̊u, t.ž. všechny hrany mezi nimi maj́ı stejnou barvu (resp. klika velikosti m).

D̊ukaz: Indukćı podle b.

� b = 1 : R∗
1(m) = m

� b = 2 : R∗
2(m) = R(m,m)

� b > 2 : Nechť N = R(m,R∗
b−1(m)). Mějme obarveńı KN pomoćı b barev, nechť ty barvy jsou (1) modráa

(2)b− 1 odst́ın̊u červené.

R.V. pro 2 barvy: v tom obarveńı buď existuje modrá klika velikosti m, v takovém př́ıpadš máme hotovo.
Nebo existuje klika X velikosti R∗

b−1, t.ž. všechny barvy hran mezi vrcholy X jsou odst́ıny červené.

X indukuje úplný graf na R∗
b−1, jehož hrany jsou obarveny pomoćı b− 1 barev, tedy v něm je jednobarevná

klika velikosti m.

Notace:

� pro množinu X:
(
X
p

)
je množina p-prvkových podmnožin X

� K
(p)
N je p-uniformńı úplný hypergraf, což je hypergraf ([N ],

(
[N ]
p

)
), K

(p)
∞ je nekonečný hypergraf (N,

(N
p

)
)

� pro b ∈ N : b-obarveńı K
(p)
N je funkce

(
[N ]
p

)
→ [b]

� pro dané obarveńı β hypergrafu K
(p)
N řekneme, že množina X ⊆ [N ] je jednobarevná (v obarveńı β), pokud

β přǐrazuje všem množinám
(
X
p

)
tu samou barvu.

Věta 19. (Ramsey, konečná verze): ∀p ∈ N,∀b ∈ N,∀m ∈ N,∃N ∈ N,∀b-obarveńı K(p)
N ,∃ jednobarevná m-

prvková podmnožina [N ].

Věta 20. (Ramsey, nekonečná verze): ∀p ∈ N,∀b ∈ N,∀b-obarveńı K(p)
∞ ,∃ nekonečná jednobarevná m-prvková

podmnožina N.

Lemma 1. (Königovo): Nechť T je strom s nekonečně mnoha vrcholy, který neobsahuje žádný vrchol nekonečného
stupně, nechť X0 je libovolný vrchol T . Potom T obsahuje cestu zač́ınaj́ıćı v X0.

D̊ukaz: Zakořeňme T ve vrcholu X0. Indukćı definujme posloupnost vrchol̊u X0, X1, . . . tak, že tvoř́ı cestu pro
∀i ∈ N0. Podstrom zakořeněný v Xi má nekonečně mnoho vrchol̊u.
Už máme X0. Nechť už máme X0, X1, . . . , Xn, nechť y1, y2, . . . , yk jsou děti Xn.
Alespoň jeden vrchol y ∈ {y1, . . . , yk} je kořenem nekonečného podstromu, tedy definujeme Xn+1 := y.
Posloupnost X0, X1, X2, . . . tvoř́ı nekonečnou cestu v T .
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2.8 Samoopravné kódy

Tvrzeńı 3. Pokud G je generuj́ıćı matice (n, k, d)−kódu C, tak zobrazeńı, které vektoru x = (x1, . . . , xk) ∈ Zk
2

přǐrad́ı vektor xG, je kódováńı pro C.

D̊ukaz: Uvažujme zobrazeńı f : Zk
2 → Zn

2 definované f(x) = xG. Stač́ı ověřit

(1) ∀x ∈ Zk
2 : f(x) ∈ C

(2) f je prosté.

Nejprve ověř́ıme (1). Nechť r1, . . . , rk jsou řádky G, tedy r1, . . . , rk ∈ C. Potom pro každé x ∈ (x1, . . . , xk) plat́ı
xG = x1r1 ⊕ x2r2 ⊕ · · · ⊕ xkrk, což je lineárńı kombinace prvk̊u C, tedy prvek C.
Nyńı ověř́ıme (2). Kdyby nebylo prosté ∃x ̸= x′ ∈ Zk

2 : f(x) = f(x′), tak xG = x′G ⇐⇒ (x− x′︸ ︷︷ ︸
̸=0

)G = 0, což

nemůže nastat, protože řádky G jsou lineárně nezávislé.

Tvrzeńı 4. Nechť C je lineárńı (n, k, d)-kód s kontrolńı matićı K. Potom ∀x ∈ Zn
2 : x ∈ C ⇐⇒ KxT = 0.

D̊ukaz: Nechť r1, . . . , rn−k ∈ Zn
2 jsou řádky K. Potom:

x ∈ C ⇐⇒ x ∈ (C⊥)⊥ ⇐⇒ y ∈ C⊥ ⇐⇒ ⟨x, y⟩ = 0 ⇐⇒
⇐⇒ ∀i = 1, . . . , n− k : ⟨x, r⟩ = 0 ⇐⇒
⇐⇒ KxT = 0.

Pozorováńı 3. ∆(C) je nejmenš́ı t ≥ 1 takové, že v K lze naj́ıt t sloupc̊u, jejichž součet je 0 ∈ Zn−k
2 .

Důsledek 3. ∆(C) ≥ 2 ⇐⇒ K má všechny sloupce ̸= 0. ∆(C) ≥ 3 ⇐⇒ K má nav́ıc každé dva sloupce r̊uzné.

Tvrzeńı 5. ∀r ≥ 2, pro n = 2r − 1, ∀x ∈ Zn
2 ; ∃!y ∈ Hr takové, že d(x, y) ≤ 1. Nav́ıc lze y nalézt algoritmem:

1. Spoč́ıtej s := Krx
T

2. if s = 0: x ∈ Hr =⇒ y := x.

3. if s ̸= 0: Nechť i = {1, . . . , n} je takové, že i-tý sloupec Kr je roven s. Potom nechť y je vektor, který
vznikne z x změnou i-tého bitu.

Notace:

� ”Koule” B(x, t) := {d(x, y) ≤ t | y ∈ Zn
2}, neboli okoĺı poloměru t kolem x v Zn

2 .

� ”Objem” V (t) := |B(x, t)| =
(
n
0

)
+
(
n
1

)
+ . . .+

(
n
t

)
.

Tvrzeńı 6. (Singleton̊uv odhad): Pokud existuje (n, k, d)-kód C, tak k + d ≤ n+ 1.

D̊ukaz: Nechť C je (n, k, d)-kód. Definujeme zobrazeńı Ψ : Zn
2 → Zn−d+1

2 tak, že Ψ(x1, . . . , xn) = (x1, . . . , xn−d+1).
Pro x, y ∈ C, kde x ̸= y =⇒ Ψ(x) ̸= Ψ(y). Tedy |C| ≤ 2n−d+1 a proto k ≤ n− d+ 1.

Tvrzeńı 7. (Hamming̊uv odhad): Pokud existuje (n, k, d)-kód C, tak |C| ≤ 2n

V (⌊d−1
2 ⌋)

D̊ukaz: Plyne z toho, že x, y ∈ C, kde x ̸= y: B(x, ⌊d−1
2 ⌋) ∩B(y, ⌊d−1

2 ⌋) ̸= ∅.

Tvrzeńı 8. (Gilbert-Varshamov̊uv odhad): ∀n, d, kde n < d, existuje kód C, t.ž. |C| ≥ 2n

V (d− 1)

D̊ukaz: Vždy vezmeme vektor, dáme ho do C a hladově hledáme vektory, dokud tam nějaké zbydou.
V každém kroku nejvýše 2n

V (d−1) vektor̊u eliminujeme: 1 vybereme, ostatńı jsou zakázané. Z toho plyne vzorec.
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