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1 Definice

1.1 Vytvorujici funkce
Definice 1. (Vytvorujici funkce): Vytvoiujici funkce posloupnosti ag,aq,... = (a,)52, € R je funkce proménné
o0

x definovéna jako soucet f(z) = Z anx”.
n=0
Definice 2. (Catalanova ¢isla): (Cp), uddvaji pocet bindrnich stromu s n vnitfnimi vrcholy.

1.2 Projektivni roviny

Definice 3. (Hypergraf): je dvojice (V,H), kde H je mnozina podmnozin V, tedy H C P(V). Prvky V jsou
vrcholy a prvky H jsou hyperhrany.

Definice 4. (Graf incidence): hypergrafu (V, H) je bipartitni graf s partitami V' a H, kde mezi x € V a h € H
vede hrana <= =z € h.

Definice 5. (Projektioni rovina): je hypergraf (X, P), kde prvky X jsou body a prvky P jsou primky, t.z.:

(i) Kazdé dva rizné body urcuji prdvé jednu primku.
Vo, ye X,o#y, ApeP:{z,y} Cp

(ii) Kazdé dvé ruzné primky se protinaji v prdvé jednom bodé.
Vp.gEP.p#q:lpngl=1

(iii) Ewistuje ctverice bodu takovd, Ze Zddné tri body nelei na stejné primce.

ICeX,|ICl=4,VpeP:|pNnC| <2
Definice 6. (Rdd projektivni roviny): KPR (X, P) mé 7dd n € N, pokud kazda jeji pifmka mé n + 1 bodi.
Definice 7. (Dudlni projektioni rovina): k projektivni roviné (X, P) je hypergraf (X*, P*), kde:
(i) X* =P,
(ii) pro z € X definujeme z* := {z € p | p € P},
(iii) P* ={z* |z € X}.

1.3 Toky v sitich
Definice 8. (Tokovd sit): Je pétice (V, E, z, s, c):
e V' = mnozina vrcholu
e ' = mnozina orientovanych hran £E CV x V

o zcV = zdroj

s € V\{z} = stok/ spotiebic

c¢: E—[0,400) = c(e) je kapacita hrany e
Definice 9. (Tok): V siti (V, E, z,s,¢) je funkce f: E — [0,400) spliujici:

(i) Ve e E:0 < f(e) < c(e)
(i) Ve e V\ {z,s}: Z flz,y) = Z f(z,y), respektive Vo € V' \ {z,s} : f[In(z)] = flOut(z)].
yev yeV
(z,y)EE (z,y)EE
Definice 10. (Velikost toku): Velikost toku f v siti (V, E, z,s,¢) je w(f) := flOut(z)] — f[In(2)].
Definice 11. (Mazimdini tok): je takovy tok, ktery m4 nejveétsi velikost.
Definice 12. (Rez): v siti (V, E, z,s,c) je mnoziana hran R C E, t.z.: kazd4 orientovand cesta ze z do s mé
neprazdny prunik s R.
e Kapacita tezu R = ¢(R) = Z c(e)
eER

o Minimdlni ez je Tez, ktery méa ze vSech fezu nejmensi kapacitu.



Definice 13. (Elementdrni rez): Necht A C V je mnozina vrcholu, t.z. z € A a s ¢ A. Potom zjevné Out(A)
tvori fez. Kazdy takovy fez je elementdrni rez.

Definice 14. (Nenasycend cesta): Necht f je tok v siti (V, E,z,s,c). Nenasycend cesta pro f je neoreintovand
cesta r1e1x0€g ... Tp_1€p—1Tk€LTK4+1, Kde Vi=1,... k:

e ¢; je bud doprednd hrana, tedy e; = (z;,x;41), nebo

e ¢; je zpétnd hrana, tedy e;(x;y1,x;).
Zaroven plati f(e;) < ¢(e;) pro kazdou doprednou hranu a f(e;) > 0 pro kazdou zpétnou hranu.
Definice 15. (Zlepsujici cesta): Zlepsujici cesta pro f je nenasycend cesta ze z do s.

Definice 16. (Pdrovdni): v grafu G = (V, E) je mnozina hran M C E, t.z. kazdy vrchol pati{ do nejvyse jedné
hrany z M.

Definice 17. (Vrcholové pokryti): v grafu G = (V, E) je mnozina vrchola C C V, t.z. kazdd hrana obsahuje
alespon jeden vrchol z C'.

Definice 18. (Systim riznych reprezentanti - SRR): v hypergrafu H = (V, E) je funkce r : E — V, t.7.:
1. Ve € E: r(e) € e, kde r(e) je reprezentant hyperhrany e
2. Ve, feE:e#£ f = r(e) Zr(f), tedy funkce r je prostd

Definice 19. (Hranovy rez): F C E je hranovy fez v G pokud G \ F je nesouvisly.

Definice 20. (Hranovd k—souvislost): G je hranové k—souvisly, pokud neobsahuje zadny hranovy fez velikosti
mensi nez k.

Definice 21. (Vrcholovd k-souvislost): Graf G je vrcholové k-souvisly, pokud mé alespon k+1 vrcholu a neobsahuje
zaddny vrcholovy fez velikosti < k.

Definice 22. (Vrcholovd souvislost): grafu G, znaceno K, (G), je nejvétsi k, t.z.: G je vrcholové k-souvisly.

1.4 Ramseyovy véty
Definice 23. (Klika): v grafu G = (V, E) je mnozina vrcholt, t.7. kazdé dva jsou spojené hranou.

Definice 24. (Nezdvisld mnozina): v grafu G = (V, E) je mnozina vrcholu, t.z. zddné dva nejsou spojené hranou.

1.5 Samoopravné kody

Definice 25. (Hammingova vzddlenost): Pro x,y € ZY je Hammingova vzddlenost d(z,y) := pocet i, t.2. x; # y;.
Definice 26. (Hammingova vdha): ||x|| := pocet i, t.z. z; # 0.

Definice 27. (Minimdlni vzddlenost): pro kéd C € Z% je A(C) := min d(z,y).

z,yeC

Ty
Definice 28. ((n,k,d)-kéd): je mnozina C € Z3 takova, ze |C| = 2% a A(C) = d.
Definice 29. (Linedrni kdd): je kéd C € Z3, ktery je vektorovy podprostor Z3.
Definice 30. (Generujici matice kddu C): pro linedrni (n, k, d)-kéd je matice G € ZSX”, jejiz fadky tvoii bazi C.
Definice 31. (Kddovdni): Necht C je (n,k,d)-kéd pro k € N, tak kédovdni pro C je bijekce Z5 — C.
Definice 32. (Dekédovdni): (n,k,d)-kédu C je funkce g : Z3 — C takova, ze Vo € Z% : d(x, g(x)) = ggg d(z,y).
(Prirazujeme nejblizsi slovo; slovo s nejmensti vzddlenosti.)
Definice 33. (Dudlni kéd k C' "orotgondlni doplnek”): C*+ = {(z,y) = 0|y € Z,Vz € C}
Definice 34. (Kontrolni matice): Necht C je linearni (n, k, d)-kéd. Kontrolni matice kédu C je matice, jejiz fadky
tvoii bazi C+.

Definice 35. (Hammingovy kédy): Necht r € N,r > 2, necht K, je matice s r fddky a 2" — 1 sloupci, jejiZ sloupce
jsou nenulové a ruzné. Potom Hammingovy kédy H, jsou kédy s kontrolni matici K.



2 Veéty a tvrzeni

2.1 Odhady kombinatorickych funkci
Véta 1. (Odhad faktoridlu 2):
e (E)n <nl<en (E>n
e - e

Drikaz: Dokazovat budeme za pomoci integralu a souctu, n! je ale ndsobek, musime proto uzit vlastnosti logaritmiu:

In(n!) =Y In(i) = > _In(i).
i=1 =2

Obr. 1: Soucet "schodu” podél krivky

In(z)

e Dolni odhad: Budeme scitat ”schody” nad kiivkou:

In(n!) > /171 In(z)dz =
= [zIn(z) — 2]} =nln(n) —n+1 =

_ n\"
nl = enlnn n+1 —e (7>
&

e Horni odhad: Podobné jako dolni odhad, jen budeme sé¢itat ”schody” pod kiivkou:
n—1
> In(i) =In((n — 1)) <nln(n) —n+1
i=1

Vy vysledku dostaneme:
nlnn—n+1>In((n—1)) = et > (1) —
— - enlnn—n+1 2 nl S

e n
:>n-e(f) > n!
n

k k
Véta 2. (Odhad kombinacéniho ¢isla): Pro 1 < k < n plati (%) < (Z) < (@) .
n!

Dikaz: Budeme vyuzivat vztahu (Z) = m

e Dolni odhad:

(n) nn—1)n-2)-...-(n—k+1) n n—1 n-—2 .n—k—i-lz( )k

k)~ k(k—1)-..-1 Tk k-1 k-2 " 1

Dostavame, Ze 7 je nejmensi a zbytek je rostouci posloupnost.



e Horni odhad:

o |

k
Tento vztah plati, protoze ( ) je dolni odhad k!.

Véta 3. (Odhad binomického cisla (> ):

22m om 22m
Y Np : < <
e wa—(m)—m
(Qm) 1 1

m

Diikaz: Definujme P := S2m @ dokazme, ze N <P< \/ﬁ

b G) Gy 1-2-3-...-2m C1-3-5-..-(2m—1)
To22m2.92....2 (2-4-..-2m)(2-4 2m)  2-4-6-..-2m
2

e Horni odhad:
2 1-1-3-3-5-5-...-(2m—1)-(2m —1) Pozorovéni 2.

P 2:2:4-4-6-6 -(2m) - (2m)
1335 5T med)(Gm=1) 2m-1
2.2 4- 67T 2m—2)-2m—2) (2m)-(2m) —
2m —1 1 1
_W<%,aprototedyP§ﬁ.

e Dolni odhad:
_1~1-3~3-5~5-...-(2m—1)-(2m—1) Pozorovén{ 3.
2:2:4-4-6-6-...-(2m) - (2m) B
1 33 55 2m—-1)-2m—-1) 1
2°2.4 4.6 7 2m-2)-2m) 2m
> L aprototedyP2>iaP>L.
~4m’ ~ 4m ~ 2ym

>




2.2 Vytvorujici funkce

— (d
Véta 4. (Zobecnénd binomickd véta): Pro d € R platf (1 4+ 2)? = Z ( )xnv pro [z < 1.
n

Diikaz: Oznac¢me f(z) = (1 + x)9. Vidime, ze:

f™(z)=dd—1)-...-(d—n+1)(1+z)""

. ™)(0) (d
Uréime Taylorovym polynomem. Necht ag, ay, ... je posloupnost vytvorujici funkce f(x), potom a,, = |( ) ( )
n! n

O

Fakt 1. Méjme funkei f(z) = ng;, kde P(x) a Q(x) jsou polynomy se stupném d(P(z)) < d(Q(x)).
Necht Q(x) ma navzdjem riizné realné kofeny p1, pa, ..., p, a necht n; oznacuje stupenn korenu p;.

Predpoklddejme, ze Q(z) nemé neredlné kofeny, tedy Q(z) = - (x — p1)™* (x — p2)™ - ... - (x — pr)™, kde v € R.
Potom f(x) se d4 vyjddfit jako soucet parcidlnich zlomku pro kofeny p1, ..., pk, kde parcidlni zlomky pro koren

p; maji stupen nejvyse n;, neboli:
o
€ R )= 03

1-_
1=1j5=1 pZ



Piiklad 1. (Odvozeni Catalanova éisla):

[e’e) n—1
Mgjme funkei C(z) := Z Cpz™, Co=1 a C,=CyC,_1+CCph_o+..+Cyp_1Cy= Z C;Ch_i_1:
n=0 =0

Obr. 2: Odvozeni souctu Catalanovijch éisel pro Vn > 1

3
|
—

e -3
n=1 n=1

Clz)—1==z C’iC’n_l) " =x-C*(x)

=0 \i=0
Dostévame tak: C(x) = 1 + 2C?(x), coz si mizeme zapsat jako kvadratickou rovnici a vyjdou nam dvé fegent:
LEVIZAr — O+ (z)  nenf FeSenim - diverguje

zC%(z) - C(z) +1 = 2w
e {1_@7“:0_@) konverguje k 1 pii & — 0

Pocitame tak déal a vyjadiime vzorec pro n-ty ¢len:

ol V1—dr o 1—y1—dr (1T 14z

G im P E g = Y e (- ) -
_ _%w“]m _ _%(_4)"“[30"“]\/@ _ —%(—4)"+1[xn+1}(1 _a)b =
zpv 1 1t ntl % B no2nil 1(1_1)(2_2).._..(l_n)7
- 75(74) e ]<n+1> = (1) gt 2 2(n—i—l)! : B
_ nozni1 3(=3)(=3) - 2”{1)_ n 1:3-5-..-2n—1)
(-2 (n+1)! =2 (n+1)! B
13520  (@2n)! 1 (2n
B (n+1)!n! _(n—f—l)!n!_n—}—l(n)'



2.3 Projektivni roviny

Tvrzeni 1. Pro koneénou projektioni rovinu (X, P) radu n plati:
(a) Kazdy bod KPR patii do pravé n + 1 primek.
(b) Poéet bodii je | X| =n?+n+ 1.
(c) Poéet primek je |P| =n? +n+ 1.

Drikaz: Budeme postupné dokazovat jednotlivé body.

(a) Zvolme si z € X a dle Lemmatu vime, ze 3p € P : = # p.
Oznacme p= {yla Y2,-- -, y’n+1} a deﬁnujme pffmky 91,92, -5 9n+1, kde gi = TY;-
Tvrdime, ze pro i # j je g; # g;, protoze kdyby ne, tak {y;,y;} C g; Np, coz je spor. Tvrdime Vr € P, kde
pokud z € r, tak plati r € {g1,...,gn+1}-

Obr. 3: Obrdzek dikazu (a)

Zvolme si pifmku r € P, t.z.: o € 7, coz ma podle axiomu ziejmé |r N p| = 1. Dale necht y je prvek r N p,
potom, potom r = ZTy; = ¢;. Tedy bodem x prochazi pravé n + 1 piimek.

(b) Zvolme si z € X anecht p1,pa,...,pny1 jsou pifmky prochézejici x. Vsimnéme si, ze kazdy bod y € X \ {z}
patii do prave jedné z ptimek p1,po2, ..., Pn+1-
Takze | X| = {z}| +[p1 \ {2} + [p2 \ {z} + - + [poss \{z} =1+ (n+ Dhn =n" + n + L.

Obr. 4: Obrdzek dukazu (b)

X

(¢) Pocitame pocet dvojic (x,p) € X x P takovych, ze x € p. To lze udélat dvéma zpusoby:
dvojic je | X|(n +1) = (n? + n+ 1)(n + 1) a dvojic |P|(n+ 1) = (n>+n+1)(n+1) =

Pl(n+1) =2 +n+1)(n+1) = |[Pl=n?+n+1

Obr. 5: Obrdzek dukazu (c)

?
A
B

B
e ®© & o © o O
n+1
%1
e O o e © 0 ©°

Y J
5 Y

n-+mn+1




Tvrzeni 2. Dudlni projektivni rovina (X*,P*) je projektivni rovina.
Diikaz: Musime dokézat vSechny axiomy klasické projektivni roviny. (X*,P*) spliauje:

(i) Vp,ge X*,p#q,a* € P*: {p,q} Ca* < Vp,qeP,p#£q¢glxeX:z€p & x€q
< (X, P) splauje (7).

(ii) Vychézi z (i). Tedy spliuje (ii) < (X, P) splauje ().

(iii) 3C* C X*|C*| = 4 & Vz*r € P* : 2" NC* < 2 <« 3IC* C P*|C*] =4 & Vo € X :
Nejvyse dvé primky z C prochdzeji skrz x :
Ukézeme, ze (X, P) splnf vyse uvedené tvrzeni a to tak, ze ukdzeme, ze {a,b,c,d} C X, t.Z.: zaddné tii body
C nelezi na jedné piimce.

Obr. 6: Protipriklad

Piedpoklddejme C* := {ab, be, cd,ad}. Zvolme si napiiklad pifmky ab, be, cd
Jelikoz abNbc = {b} a bcNcd = {c}, tak plati, Ze abNbc N ed = ), coz ndm dava spor.

Konstrukce konec¢né projektivni roviny fadu n € N

(1) Necht T je konecné téleso s n prvky, potom uvazujme vektorovy prostor V.= T3 = {(x,y,2) | z,y,z € T}.
Plati |V| = n®.

X|:%:n2+n+l.

(2) Necht X je mnozina podprostori dimenze 1 ve V. Plati =

(8) Pro kazdy podprostor p CV dimenze 2 definujme p:= {x € X | x C p}.

(4) P ={p| p je podprostor V dimenze 2}. (|P| =n?+n+1=|X|, vdim = 1, protoZe orotgondlni doplnék)
Turdim, Ze (X, P) je projektivni rovina.

(i) Z linedrni nezdvislosti.

2 2 1 3
—_——— A —A— —_—
(i) P,Q podprostory V: dim P+ dim Q — dim P N Q = dim(obalu P U Q).

(iii) Napiiklad C = {(1,0,0), (0,1,0),(0,0,1), (1,1,1)}.



2.4 Toky v sitich
Fakt 2. V kazdé tokové siti existuje mazximdlnd tok.
Véta 5. Necht f je tok v siti (V, E, z, s, c), potom nasledujici tvrzeni jsou ekvivalentni:

(i) f je maxim&lni

(ii) f nem4 zlepsujici cestu

(iii) Existuje fez R, t.z.: w(f) = c¢(R).
Druikaz: Dokazeme postupné implikace.

e (i) = (it) : Kdyby mél f néjakou zlepSujici cestu, tak muzeme zvétsit f a ten tak potom neni maximélni.

e (iii) = (i) : Vime, ze pro libovolny fez R’ a libovolny tok f’ plati, ze w(f’) < ¢(R’). Kdyby f nebyl
maximalni, tak existuje tok fT spliujici w(f*) > w(f).
Potom pro kazdy fez R plati, Zze ¢(R) > w(f1) > w(f), tedy neexistuje zddny fez R splitujici ¢(R) = w(f).
e (i) = (iii) : Necht f je tok, ktery neméa zlepsujici cestu.

Definujeme si mnozinu A = {& € V | ze z do x vede nenasycend cesta}. Zjevné z € A;s ¢ A a déle
definujeme R := Out(A) = {u,v € E|u€ A,v ¢ A}.

Muzeme si vimnout, ze Ve € Out(A) : f(e) = c(e) a analogicky Ve’ € In(A) : f(e/) = 0.

Z (Lemmatu 3.) dostavame, ze:

w(f) = flOut(A)] = flIn(A)] = c(Out(A)) = c(R).
c(Out(A)) 0

O

Disledek 1. (Minimazovd véta o toku a vezu) Necht fi.x je maximalni tok a Ry, je miniméani ez v (V, E, 2, s, ¢),
potom w( fimax) = ¢(Rmin)-

Dikaz: Budeme dokazovat (i) w(fmax) < ¢(Rmin) & (42) w(fmax) > ¢(Rmin)
(i) Trividlni. Vime diky pfedchozimu lemmatu. Pro kazdy tok f’ a pro kazdy fez R’ plati w(f’) < c¢(R').
(ii) Diky predchozi vété. Existuje fez R, t.2.: w(fmax) = ¢(R) > ¢(Rmin)-
O

Dusledek 2. V siti, kde vSechny kapacity jsou celoc¢iselné, Ford-Fulkersonuv algoritmus nalezne maximélni tok,
ktery je také celociselny.
Algoritmus FORD-FULKERSON(G):

1. f + nulovy tok
. while existuje zlepsujici cesta P ze z — s do:
€ < mingcpp)r(e).

2
3.
4. Zvétsime tok f podél P o e (kazé hrané e po sméru zvétsime f(e) a hrandm proti sméru zmensime f(e))
5

. return tok f.
Pozorovani 1. Pokud M je pdrovini a C je vrcholové pokryti v G = (V, E), tak |M| < |C.

Diikaz: Kazda hrana z M musi byt pokryta vrcholem z C' a zaroven 1 vrchol z C, pokryje nejvyse 1 hranuz M. O

10



Véta 6. (Konig-Fgervdty): V kazdém bipartitnim grafu mé nejvétsi parovani stejnou velikost, jako nejmensi
vrcholové pokryti.

Diikaz: Necht G = (V, E) je bipartitn{ graf s partitami A, B. Vytvofme tokovou sit (V U {z,s}, Et,2,s,¢), kde
Et ={zz|zeA}U{ys|yeB}U{ay|{zy}€E & z€A & yeB}ac(zz)=c(ys)=1prox € A,y € B a
c(zy) = |Al + |B| + 1 (zdmérné hodné vysoké, aby nemohly nic omezovat - dejme tomu o).

Necht Cpin je nejmensi vrcholové pokryti v G a M., je nejvétsi parovani v G.
e Vime, Ze |Munax| < |Chinl, a to z (Pozorovdni 7.).

e Necht f je maximélni tok v té siti a R je minimdn{ fez. Diky minimazové vété vime, ze w(f) = c¢(R) a
nakonec BUNO f ma celociselné hodnoty.

Definujeme si mnozinu My = {{z,y} € E | f(x,y) > 0}, neboli ze v maximélnim toku po hrandch néco téce.
Zjevné je My parovani v G a navic |My| = w(f). (ProtoZe kdyby se stalo, Ze mdme 2 hrany z A do B se
spoleéngm vrcholem, tak by priteklo do A ze zdroje 1 a odteklo z B ze dvou vrholu do stoku v souctu 2 - tok
ale mus? byt celociselny, takze dostaneme spor).

Obr. 7: Priklad bipartitniho grafu.

<z

(a) Vytvorime sit a zorientujeme hrany (b) Spor s celociselnym ohodnocenim

Definujeme si Cr :={z € A| zx € R}U{y € B | ys € R}. Vsimnéme si, Ze R neobsahuje zddnou hranu z A
do B a jisté je tak C'g vrcholové pokryti G.

Obr. 8: Obrdzek vzniklé sporné nepokryté hrany v biparitnim grafu.

----- =fez
—>» =nepokrytd .5°
hrana™ ..~

Mdme Cgr, t.2. za kaZdou Tez. hranu ze z vloZim vrchol z A a za kaZdou Tez. hranu do s vloZim vrchol z B.

Kdyby Cgr nebylo pokryti, tak existuje nepokrytd hrana {x,y} € E a potom cesta z — & — y — s by byla
ve sporu s tim, Ze R je fez. (protoZe by skrz tuto hranu vedla orientovand cesta ze z do s).

Navic plati, ze |Cr| = |R| = ¢(R). Dostali jsme tak:

|Cmin| < |Cr| = ¢(R) e w(f) = |Mf| < | Mnax]-
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Véta 7. (Hallova): Necht G je bipartitn{ graf s partitami A, B. Potom G mé parovan{ velikosti
|A] <= VX C A:|N(X)| > |X].
Druikaz: Musim dokéazat obé implikace.

= Pokud existuje parovani velikosti | 4|, tak pro kazdou X C A existuje | X| vrcholu sparovanych s X a ty pati{
do N(X). Tedy |N(X)| > |X].

<= Pro spor. Necht M je nejvétsi parovani G, t.z.. |M| < |A|. Existuje pokryti C, kde |C| = |M| < |A].
Definujeme si Cy :=CNA, Cg:=CNBaX:=A\Cj4.
Zjistime, 7ze N(X) C Cp a navic, ze |X| = |A| — |C4| > |Cp| > |N(X)|, coz ndm dava spor.

Véta 8. (Hallova - hypergrafovd verze): Hypergraf H = (V, E) m&d SRR < VF C E:

Ue

ecF

> |Fl.

Diikaz: Necht H = (V, E) je hypergraf, necht Iz je jeho graf incidence.
Vsimneme si, ze H m&d SRR <= Iy mé parovani velikosti |E|.

Obr. 9: Incidence a pdrovdnt

L.

Ue
ecl
a partitu E. Mezi témito pozorovanimi plati ekvivalentni vztah diky bipartitni Hallové podmince. O

Dale si vSimneme, ze Hallova podminka pro H, <— VF C E : <= bipartitni Hallova podminka pro Iy

Véta 9. (Menger - hranovd xy-verze): Pro dva ruzné vecholy z,y grafu G plati, ze G obsahuje Vk € N hranove
disjunktnich cest z x do y <= G neobsahuje hranovy xy—fez velikosti mensi nez k.

Duikaz: Dokazujeme dvé implikace:

=—> Pokud mam k hranové disjunktnich cest z x do y, tak kazdy hranovy xy—fez musi dosahovat > 1 hranu z
kazdé té cesty.

— NeShE G neobsahuje hranovy zy—fez velikosti < k. Vyrobime tokovou st (V, E, z,y, ¢), kde Ve € E : ¢(e) = 1
a E = {uv,ve | {u,v} € E}.
Vsimneme si, ze v té siti neni zadny fez velikosti < k. Tedy v té siti existuje tok velikosti > k.
Necht f je celoéiselny maximéln{ tok a navic predpoklddejme, ze mezi viemi celoé¢iselnymi maximalnimi toky

zvolime f tak, aby mnozina s(f) = {e € E | f(e) = 1} byla co nejmensi.

Obr. 10: Dikaz - pdr obrazki pro pochopend

Sipky vedou obousmé&ma Pozorovani Neni cyklus Algoritmus

Déle si vSimneme, ze s(f) neobsahuje zddny orientovany cyklus. Jinak spor s minimalitou s(f).
Pomoci s(f) vyrobim k hranové disjunktnich cest z x do y:
opakuj k-krat:

1. zacni v

2. jdi po hranach z s(f), dokud nedojdes do y

3. pouzite hrany odstran z s(f)

12



O

Véta 10. (Menger - globdlni hranovd verze): Graf G je hranové k—souvisly <= mezi kazdymi dvéma ruznymi
vrcholy existuje k£ hranové disjunktnich cest.

Diuikaz: G je hranové k-souvisly <= neexistuje hranovy fez < k <= Vx,y ruzné vrcholy neexistuje hranovy
xy—rtez velikosti < k <= Vxy ruzné: Ik hranové disjunktnich cest z = do y. O

Véta 11. (Menger - xy-verze pro vrcholovou souvislost): Necht G = (V, E) je graf, nechf x, y jsou riizné nesousedn{
vrcholy a necht k£ € N. Potom G obsahuje k navzdjem VVD cest z x do y <= G neobsahuje vrcholovy zy-fez
velikosti < k.

Duikaz: Dokazujeme dvé implikace:
= Hodné disjunktnich cest znamend, ze tam nemuze byt maly fez. Ziejmé.
<= Necht G nem4 vrcholovy xy-fez velikosti < k. Vyrobime sit S:

1. za kazdy vrchol u € V ddme do S dva vrcholy u™,u™ a hranu utu~ s kapacitou 1.

2. za kazdou hranu {u,v} € E ddme do S dvé orientované hrany v~ v" a vTu™ s kapacitami "oco”.

3. zdroj: =, stok y*+
Tvrdime, ze S nem4 fez kapacity ¢ < k. Sporem, nechf takovyj vez existuje, potom viechny jeho hrany jsou
tvatu utuT pro néjaké u € V a odpovidagici vrcholy v G tvori vrcholovy xy-vez velikosti ¢ < k, coZ je spor.
Minimaxovéa véta o toku a zezu. V S existuje tok velikosti > k, BUNO tok je celoc¢iselny, fikejme mu f.

Z existence takového toku f plyne, Ze obsahuje k hranové disjunktnich cest z 2~ do y* (viz. hranovd verze).
Ozna¢me je Py, ..., Py.

Tedy cesty ]51, ceey P, jsou i vnitiné vrcholové disjunktni, protoZe kazda cesta (orientovand) z z~ do y* v S,
kterd obsajuje vrchol u™ nebo u~ pro néjaké u € V' \ {z,y}, musi obsahovat hranu u™u".

Kdyz v cestach }31, ceey P, nahradime kazdou hranu tvaru u™u~ jednim vrcholem u, tak dostaneme k& VVD
cestzx doy v @G.

O

Véta 12. (Menger - vrcholovd globdlni verze): G je vrcholové k-souvisly <= mezi kazdymi dvéma vrcholy z,y
existuje k navzajem VVD cest.

Diikaz: Necht G = K,,, H,(K,) =n — 1, t.j. K,, je vrcholové k-souvisly <= k <mn — 1. Necht G nenf iplny:

= Mezi kazdymi dv8ma vrcholy je k VVD cest = G mé > k + 1 vrcholti, zadny fez velikosti < k = G je
k-souvisly.

<= Necht z,y jsou rizné vrcholy, mame piipady:

(a) {z,y} # E. xy-verze M.v véty: Ik VVD cest z z do y.

(b) {z,y} € E. Necht G~ := (V, E\ {e}). Lemma K,(G~) > k — 1, zy-verze M. véty pro G™: v G~ 3k — 1
VVD cest z  do y. Pfidam k nim hranu e a mam k£ VVD cest z z do y v G.

O
Véta 13. (O usich): Graf G je 2-souvisly <= G se d4 vyrobit z kruznice pomoci priddvanim usi.
Drikaz: Dokazujeme dvé implikace:
<= Kazd4 kruznice je 2-vrcholové souvisld a pfidanim hran se to nepokazi.

= Madme 2-souvisly graf G = (V, E), C je libovolnd kruznice (ta tam musi byt, jinak by nebyla 2-souvisld) Zvolme
gral Gmax = (Vinax, Pmax), t-Z. je nejvétsim podgrafem grafu G, ktery se dd vyrobit pomoci pfiddvan{ usi.
Tvrdime Gpax = G. Kdyby tomu tak nebylo, tak:
1. Vinax =V, Enax € E: pfidani hrany znamend pridani ucha, coz je spor s maximalitou

2. Vinax C V: G je souvisly. Déle Je = {z,y}, t.2. € Vinax, ¥ & Vimax, G — 2 je souvisly
Dostavame z toho, ze y se da napojit i jinou cestou nez pres x, takze jde pfipojit ucho.
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2.5 Cayleyho vzorec

S, = pocet stromii na mnoziné vrcholi [n] = {1,2,...,n} = n"72

Definice 36. (Korenovy strom): je strom, ve kterém se jeden vrchol urcil jako kofen a vSechny hrany se
zorientovaly smérem ke kofeni. V grafu bude kazZdd hrana ukazovat smerem ke koteni

Definice 37. (Pouvykos - ”Postup vytvdieni kotenového stromu”): je posloupnost n — 1 orientovanych hran
(e1,€2,...,e,—1) na vrcholech [n], t.z.: ([n],{e1,...,en—1}) je koFenovy strom.
Pozorovani 2. Posloupnost orientovangch hran (e1,ea,...,e,—1) je povykos <= pro kazdé k ={1,...,n—1}:
(1) hrana ey spojuje vrcholy z ruznijch komponent grafu tvoreného predchozimi hranami eq, ..., ex_1
(2) hrana ey, vyhdzi z vrcholu, z néhoz nevychdzi Zddnd z hran e, ..., ex_1.

Véta 14. (Ceyleyho vzorec, Borchardt 1860): S, = n"~2.

Diikaz: Necht K, je pocet kofenovych stromt na n vrcholech a P, je pocet povykosti. V&imneme si, ze K, = n-S,
aze P, =(n—1)! K, (je zapoCitan pocet vSech permutaci hran, které strom vytvoii).

Vyuzijeme Pozorovdni 2. Zatneme s mnozinou vrcholu a budeme postupné priddvat hrany az skon¢ime s korenovym
stromem.

Obr. 11: Priddvdani hran, tvorba kotenového stromu

€6
€r
€2
€1 €3 €4
€5
Chceme vyrobit povykos (es,...,e,—1) a mame n - (n — 1) moznosti, jak zvolit e; (druhd podminka bude splriena

automaticky, pruni podminka 7ikd, Ze by méla hrana spojovat dva vrcholy, takZe n mozZnosti pro vybér, kde bude
hrana zacinat a n — 1, kde bude konéit)

Pokra¢ujeme, mame n - (n — 2), kde (n —2) je pocet moznosti, jak vyrobit komponentu kde es zacing (dle (2) musi
e2 zatinat v kofeni komponenty).

Pokud uz jsme vybrali e;,...,ex_1 v souladu s (1) a (2), tak mame n - (n — k) moznosi, jak vybrat hranu e.
Méme tedy celkem:
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2.6 Pocitani dvéma zpusoby

Definice 38. (Antifetézec): v P([n]) je mnozina a C P([n]), t.z.:. VM, M' € a, kde M # M’ neplati M C M’, ani
M C M.

Priklad: n =4 je antiretézec v P([4]): {{1},{2},{3},{4}},{0},0,{{1,2,3},{3,4}},{X C [4],|X]| = 2}

Definice 39. (Nasyceny retézec): v P([n]) je posloupnost My, My, ..., M, C [n], kde My C M; C ..., C M, C [n]

Piiklad: n=4: 0 C {2} C{1,2,4} C{1,2,3,4} =[4] o |M;| =i
Véta 15. (Spernerova - 1928): Nejveétsi antifetézec v P([n]) mé velikost (LHT/LQJ) = (M'/Lﬂ).
Diikaz: Musim dokdzat, (i) ze existuje a (ii) ze neexistuje vetsi.

(i) Antifetézec velikosti (Ln72 j) je napf. (LT[:}]? J)' Vime tak, Ze existuje.

(i) Necht a je antifetézec, ozna¢me mnoziny, které do néj patif a = {A1, As,..., Ax}, kde k = |a|. Chceme
ukdzat, ze k < (Ln72J)'

Obr. 12: (ii) vytvorime bipartitni graf

o O o: e 6 o o
N J

Y
nasyceneé fetézce

Méme n! nasycenych fetézcu v P([n]). Kazdy nasyceny fetézec obsahuje nejvys jednu mnozinu a.

Pocitdme dvéma zpusoby dvojice (A4, R), kde A € a a R je nasyceny Tetézec. Zaroveni A € R.

(1) dvojic je < n!
(2) pro A € a mdme A!- (n — |A|)! nasycenych Fetézcu obsahujici A. To lze odvodit napiiklad z n = 4:

0C(2)C (24)C -+ C ]
—

|A|! moznosti =A (n—|A)!

Zjistili jsme tak vse potiebné, tedy:

n> Y A4 — 122"““@5"“'”:2(10 =Y oy bl = (1n7ay) 2o

Aca A€a A€a

15



Véta 16. Necht G = (V, E) je graf na n vrcholech, ktery neobsahuje Cy jako podgraf. Potom |E| < O(n%/?).

Diikaz: Necht G = (V, E) je graf bez Cy, |V| = n. Ozna¢me H pocet dvojic (z,{y,z}) takovych, ze z,y,z € V,
y # z,x je soused y i z.
Pocitdme H dvéma zpusoby:

e Pro dané x € V mdme presné (degz(x)) moznost{, jak zvolit y a z. Tedy

Hoy (M) 2y el

zeV zeV

e Pro dané {y,z} € (‘2/) existuje nejvyse jeden spoleény soused x € V', protoze jinak by G obsahoval Cy.
Tedy H < (3) < %
Méme odhadnuto H z obou stran, proto plati:
d —1)2
Wy WD U ey i > 3 (des(a) - 1)
zeV zeV

My chceme |E| = 1 deg(x) < O(n®/?). Uvézme proto konvexni funkei f(z) = (z — 1)2.
2

Obr. 13: Konvezni funkce

Tite - ATn

Tedy pro kazdé:
flx) + -+ flan)

<

xl,xz,...,xneR:f( -

C(Sdege) \T Y (deg(a) — 1)
<2E—1) <= | <z <n

n n

>
\/ﬁ n

n%% > 2|E| —n

1 //pocet hran je polovina souétu stupit

1
S 40) > ||
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2.7 Ramseyovy véty

Véta 17. (Ramseyova, grafovd verze, 1930): Yk € N,VI € N,3N € N, t.z.: Pro kazdy graf G = (V, E) na N
vrcholech obsahuje kliku velikosti £ nebo nezavislou mnozinu velikosti [.

Drikaz: Indukci podle k + 1.
Muzeme si v§imnout, ze pro R(k,1) =1 = R(1,1), pro R(k,2) = k = R(2,1)
existuje dle IP
Méjme k > 3,1 > 3 a definujme si N := R(k,l — 1) + R(k — 1,1). Necht mame dan graf G na N vrcholech. Necht
x je libovolny vrchol G a ozna¢me S mnozinu sousedu vrcholu z a T =V \ (S U {z}).
Protoze |S|+|T| =N —1=R(k,l — 1)+ R(k — 1,1) — 1, tak plat{ |[S| > R(k — 1,1), nebo |T'| > R(k,l —1).

Piedpokladejme, ze |S| > R(k — 1,1) a oznac¢me G, podgraf G indukovany S. Tedy G, obsahuje kliku velikosti
k — 1 nebo nezavislou mnozinu velikosti {.

Pokud G obsajuje nezavislou mnozinu velikosti [, tak i G ji obsahuje, v takovém piipadé mame hotovo.

Pokud G obsajuje kliku velikosti k — 1, tak klika spolu s x tvoii kliku velikosti £ v G a mame tak také hotovo.
Piipad |T'| > R(k,l — 1) analogicky. O

Véta 18. (Ramseyova, Vicebarevnd verze): Vb € N,Vm € N3N € N, pro kazdé obarveni hran Ky pomoci b
barev existuje mnozina m vrcholu, t.z. vSechny hrany mezi nimi maji stejnou barvu (resp. klika velikosti m).
Drikaz: Indukci podle b.
e b=1:Ri(m)=m
e b=2: R;(m)= R(m,m)
e b>2: Necht N = R(m,R;_,(m)). Mé&me obarveni Ky pomoci b barev, necht ty barvy jsou (1) modraa
(2)b — 1 odstint cervené.

R.V. pro 2 barvy: v tom obarveni bud existuje modré klika velikosti m, v takovém piipads mame hotovo.
Nebo existuje klika X velikosti Rj_;, t.z. vSechny barvy hran mezi vrcholy X jsou odstiny cervené.

X indukuje dplny graf na R;_,, jehoz hrany jsou obarveny pomoci b — 1 barev, tedy v ném je jednobarevna
klika velikosti m.

O

Notace:

e pro mnozinu X: (); ) je mnozina p-prvkovych podmnozin X

. KJ(\I;) je p-uniformni Uplny hypergraf, coz je hypergraf ([INV], ([];]])), K je nekoneény hypergraf (N, (I;I))

e pro b € N : b-obarveni KZ(\Z,)) je funkce (UZ]) — [b]

e pro dané obarveni 8 hypergrafu K](\fv’) fekneme, ze mnozina X C [N] je jednobarevnd (v obarveni §3), pokud

ven . - vz X
[ prifazuje vSem mnozinam (p) tu samou barvu.

Véta 19. (Ramsey, koneénd verze): Vp € N)Vb € N,¥Ym € N,IN € N, Vb-obarveni KI(\?),EI jednobarevnd m-
prvkovd podmnoZzina [N].

Véta 20. (Ramsey, nekonecnd verze): Vp € N,Vb € N, Vb-obarveni Kég), 3 nekonec¢nd jednobarevna m-prvkova
podmnozina N.

Lemma 1. (Kénigovo): Necht T je strom s nekoneéné mnoha vrcholy, ktery neobsahuje Zaddny vrchol nekoneéného
stupné, necht Xy je libovolny vrchol 7. Potom T obsahuje cestu zaéinajici v Xp.

Duikaz: Zakorenme T ve vrcholu Xy. Indukei definujme posloupnost vrcholu X, X1,... tak, Ze tvoii cestu pro
Vi € Ny. Podstrom zakotenény v X; méa nekoneé¢né mnoho vrcholt.

Uz méme Xg. Necht uz mame Xo, X1, ..., X,, necht y1, 92, ..., ys jsou déti X,,.

Alespon jeden vrchol y € {y1,...,yr} je koFenem nekoneéného podstromu, tedy definujeme X, 41 :=y.
Posloupnost X, X1, Xo,... tvofi nekonecnou cestu v T. O
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2.8 Samoopravné kody

Tvrzeni 3. Pokud G je generujici matice (n,k,d)—kédu C, tak zobrazeni, které vektoru z = (x1,...,71) € Z5
pritadi vektor G, je kédovéani pro C.

Diikaz: Uvazujme zobrazeni f : Z5 — Z2 definované f(x) = xG. Sta¢i ovérit
(1) Ve eZ: f(x) e C
(2) f je prosté.

Nejprve ovéifme (1). Necht ry, ...,y jsou fadky G, tedy r1,...,7, € C. Potom pro kazdé = € (x1,...,x;) plati
G = x111 D X279 B -+ - P xETg, coZ je linedrni kombinace prvku C, tedy prvek C.
Nyni ovéifme (2). Kdyby nebylo prosté 3z # 2’ € Z& : f(x) = f(2), tak 2G = 2/G <= (v —2')G = 0, coz

#0
nemuze nastat, protoze fadky G jsou linedrné nezavislé. O

Tvrzeni 4. Necht C je linedrni (n, k, d)-kéd s kontrolni matici K. Potom Vo € Z8 : x € C <= Kz = 0.
Diikaz: Necht ry,... 7, € Z% jsou faddky K. Potom:
1€C = € (CH) <= yeCt <= (r,9) =0 <
— Vi=1,....n—k:{(z,r) =0 <=
«— Kz' =0.

Pozorovani 3. A(C) je nejmensit > 1 takové, Ze v K lze najit t sloupci, jejichz soucet je 0 € Zgik.
Disledek 3. A(C) > 2 <= K m4 viechny sloupce # 0. A(C) >3 <= K m4 navic kazdé dva sloupce ruzné.
Tvrzeni 5. Vr > 2, pron =2" — 1, Va € ZY; 3y € H, takové, ze d(x,y) < 1. Navic lze y nalézt algoritmem:

1. Spotitej s := K,aT
2. if s=0:2z€ H, — y:==x.

3. if s # 0: Necht i = {1,...,n} je takové, 7e i-ty sloupec K, je roven s. Potom necht y je vektor, ktery
vznikne z x zménou i-tého bitu.

Notace:
e "Koule” B(x,t) := {d(z,y) <t |y € Zy}, neboli okoli poloméru t kolem x v Z%.
o "Objem” V(t) := [B(z,t)| = (3) + (1) +...+ (}).

Tvrzeni 6. (Singletoniv odhad): Pokud existuje (n, k,d)-kéd C, tak k+d <n+ 1.

Diikaz: Necht C je (n, k,d)-kéd. Definujeme zobrazeni W : Z3 — Z2 =% tak, 7e W(xy,...,2,) = (T1,..., T di1)-

Proz,y € C,kde x #y = U(x) # ¥(y). Tedy |C| < 2"~ a proto k <n —d+ 1. O
Tvrzeni 7. (Hammingiv odhad): Pokud existuje (n, k, d)-kéd C, tak |C| < V(LQ‘;;”)

Diikaz: Plyne z toho, ze x,y € C, kde = # y: B(«z, L%J) N B(y, L%J) £ . O
Tvrzeni 8. (Gilbert-Varshamouviv odhad): ¥n,d, kde n < d, existuje kéd C, t.z. |C| > %

Diikaz: Vzdy vezmeme vektor, ddme ho do C' a hladové hleddme vektory, dokud tam né&jaké zbydou.
V kazdém kroku nejvyse % vektortu eliminujeme: 1 vybereme, ostatni jsou zakazané. Z toho plyne vzorec. [
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