Vypracované otazky k skiske z NAIL062

Vyrokova a predikatova logika

Pojmy

1. Model vo vyrokovej logike, pravidvostné funkcie vyroku

Model jazyka P je libovolné pravdivostni ohodnoceni v : P — {0, 1}. MnozZinu (vSech) modelu jazyka P ozna¢ime
Mp .

Mp = {v]|v:P—{0,1}} ={0,1}"
Pravdivostni funkce vyroku ¢ v kone¢ném jazyce P je funkce f,p : {0,1}/Pl — {0,1} definovana induktivné:
e je-li ¢ i-ty prvovyrok z P, potom f,p (2o,...,Tn-1) = Z;,

o jeli ¢ = (=¢'), potom

fap,P (Sﬂo, cee 7xn—1) = fﬁ (fgo’,P (l‘o, s 7xn—1))

e je-li (¢'O¢") kde O € {A,V,—, <}, potom

f<p,P (330, cee ,xn—l) = fo (f«p',P (3607 cee 7»%—1) , fgo”,P (3607 cee 7»%—1)) .
2. Sémantické pojmy (pravdivost, 1zivost, nezavislost, splnitel'nost) v logike vzhladom
k teorii
Rikame, 7e vyrok o(v jazyce P) je

e pravdivy, tautologie, plati (v logice/logicky), a piSeme = ¢, pokud plati v kazdém modelu ( jazyka
P)a MP(()D) = MP

e 17ivy, sporny, pokud nemé Zadny model, Mp(p) =0

e nezavisly, pokud plati v néjakém modelu, a neplati v néjakém jiném modelu, tj. neni pravdivy ani lzivy,
0 C Mp () C Mp

e splnitelny, pokud méa né&jaky model, tj. neni 1Zivy, Mp(y) # 0.

Dale fikame, ze vyroky ¢, (ve stejném jazyce P ) jsou (logicky) ekvivalentni, piSeme ¢ ~ ¢ pokud maji
stejné modely.
Mgjme teorii T v jazyce P. Rikame, Zze vyrok ¢ v jazyce P je

e pravdivy vT, dasledek T, plati vT', a piSeme T |= ¢, pokud ¢ plati v kazZdém modelu teorie T', neboli
Mp(T) € Mp(p),

e 17ivy vT, sporny vT, pokud neplati v zddném modelu T, neboli Mp () N Mp(T) = Mp(T, ) = 0

e nezavisly vT, pokud plati v néjakém modelu T, a neplati v néjakém jiném modelu 7', tj. neni pravdivy v
T ani lzivy v T,0 C Mp(T,») € Mp(T),

e splnitelny vT, konzistentni s 7', pokud plati v n&jakém modelu T', tj. neni lzivy v T, Mp (T, ¢) # 0.



3. Ekvivalencia vyrokov, resp. vyrokovych teoérii, T-ekvivalencia

Vyroky ¢, 1 (ve stejném jazyce P ) jsou (logicky) ekvivalentni, piSeme ¢ ~ ¢ pokud maji stejné modely, tj.
A tikdme, Ze vyroky ¢, (ve stejném jazyce P ) jsou ekvivalentni v T, T-ekvivalentni, piSeme ¢ ~ 1) pokud
plati v tychz modelech T, tj. ¢ ~7 v pravé kdyz Mp(T, ¢) = Mp (T, ).

4. Sémantické pojmy o teorii (sporna, bezsporna, kompletna, splnitel'na)

Je-li T teorie v jazyce L a ¢ L-formule, potom fikdme, ze ¢ je:

pravdiva (plati) v T', znac¢ime T |= ¢, pokud A |= ¢ pro v8echna A € M(T) (neboli: M(T

=
~—

1ziva v T, pokud T |= —¢, t. pokud je 1ziva v kazdém modelu T (neboli: M(T) N M(p) =
nezéavisla v T, pokud neni pravdiva v T ani 1ziva v T.

Mame-li prazdnou teorii T' = ) (tj.M(T) = My), potom teorii T' vynechavame, piseme = ¢, a fikame, ze
© je pravdiva (v logice), (logicky) plati, je tautologie; podobné pro ostatni pojmy.

Teorie je sporné, jestlize v ni plati spor L, ktery v predikatové logice muzeme definovat jako R (21, ...,Z,)A
=R (x1,...,%,), kde R je libovolny (tfeba prvni) rela¢ni symbol z jazyka nebo rovnost (nemé-li jazyk
rela¢ni symbol, musi byt s rovnosti). Teorie je sporna, pravé kdyz v ni plati kazda formule, nebo, ek-
vivalentné, pravé kdyZ nemé zadny model. Jinak fikadme, Ze je teorie bezespornéa (neplati-li v ni spor,
ekvivalentné ma-li alespon jeden model).

Sentencim pravdivym v T fikdme disledky 7; mnozina vSech dusledka T' v jazyce L je:

Csqy(T) = {¢ | ¢ je sentence a T |= ¢}

Teorie je kompletni, je-li bezesporna a kazda sentence je v ni bud’ pravdiva, nebo 1ziva.

5. Extenzia teodrie (jednoducha, konzervativna), zodpovedajice sémantické kritéria

Vyrokova

Méjme teorii T' v jazyce P.

Extenze teorie T je libovolna teorie T v jazyce P’ 2 P splijici Csqp(T) C Csqp (T7),
je to jednoduché extenze, pokud P’ = P,

je to konzervativni extenze, pokud Csqp(7T) = Csqp (T") = Csqp, (T') N VFp.

Je-li T teorie v jazyce P a T’ teorie v jazyce P’ obsahujicim jazyk P. Potom plati:
T’ je jednoduchou extenzi T, pravé kdyz P’ =P a Mp (T") C Mp(T),

T’ je extenzi T, pravé kdyz Mp, (T”) C Mp/ (T). Uvazujeme tedy modely teorie T' nad rozsifenym jazykem
P’.21 Jinymi slovy, restrikce 22 libovolného modelu v € Mp: (T') na piivodni jazyk P musi byt modelem
T, mohli bychom psat v]p € Mp(T') nebo:

{v]p | v € Mp (T')} € Mp(T)
T’ je konzervativni extenzi T, pokud je extenzi a navic plati, Ze kazdy model T (v jazyce P) lze ngjak
expandovat (rozsfiit) 23 na model T” (v jazyce P’), neboli kazdy model T (v jazyce P ) ziskdme restrikci
n&jakého modelu 77 na jazyk P. Mohli bychom psat:

{olle |0 € Mp: (T')} = Mp(T)
T’ je extenzi T a zarovenr T je extenzi T”, pravé kdyz P’ =P a Mp (T") = Mp(T), neboli 77 ~ T.

Kompletni jednoduché extenze T jednozna¢né az na ekvivalenci odpovidaji modelim T'. Sentencim prav-
divym v T tikdme dtsledky T'; mnozina v8ech dusledku T v jazyce L je:



Csqp(T) = {¢ | ¢ je sentence a T |= ¢}
Predikatova

Méjme teorii T' v jazyce L.
e Extenze teorie T je libovolna teorie T'v jazyce L' D L spliwjici Csq, (T) C Csqy, (T7),
e je to jednoducha extenze, pokud L' = L,

e je to konzervativni extenze, pokud Csq; (T) = Csq; (T") = Csqy, (T') N Fmyp, kde? Fmy, zna¢i mnozinu
vSech formuli v jazyce L.

e Teorie T” (v jazyce L) je ekvivalentni teorii T, pokud je T” extenzi T a T extenzi T".
Méjme teorie T, T" v jazyce L. Potom:

e T je extenze T, prave kdyz My, (T") C M (T).

o T je ekvivalentni s T, pravé kdyz My, (T") = ML (T).

6. Tablo z tedrie, tablo dokaz
Vyrokova

Koneéné tablo z teorie T' je usporadany, polozkami oznackovany strom zkonstruovany aplikaci kone¢né mnoha
néasledujicich pravidel:

e jednoprvkovy strom oznackovany libovolnou polozkou je tablo z teorie T,

e pro libovolnou polozkou P na libovolné vétvi V', muzeme na konec vétve V pripojit atomické tablo pro
polozku P,

e na konec libovolné vétve mtuzeme pfipojit polozku T « pro libovolny axiom teorie o € T

Tablo z teorie T je bud’ kone¢né, nebo i nekoneéné: v tom piipadé vzniklo ve spocetné mnoha krocich.
Mizeme ho formalné vyjadiit jako sjednoceni 7 = |J,~, 7i, kde 7; jsou konec¢na tabla z T', 7y je jednoprvkové
tablo, a 7,41 vzniklo z 7; v jednom kroku. Tablo pro polozku P je tablo, které ma polozku P v kofeni.

Tablo diikaz vyroku ¢ z teorie T je sporné tablo z teorie T' s polozkou F¢ v kofeni. Pokud existuje, je ¢
(tablo) dokazatelny z T', piSeme T I . (Definujme také tablo zamitnuti jako sporné tablo s Ty v kofeni. Pokud
existuje, je ¢ (tablo) zamitnutelny z T, tj. plati T F —¢.)

e Tablo je sporné, pokud je kazdé jeho vétev sporna.

e Vétev je sporna, pokud obsahuje polozky T v a F 1 pro néjaky vyrok v, jinak je bezesporna.

Tablo je dokoncené, pokud je kazda jeho vétev dokoncena.

Vétev je dokoncend, pokud

— je sporné, nebo

— je kazda jeji polozka na této vétvi redukované a zaroven obsahuje polozku T « pro kazdy axiom a € T

Polozka P je redukované na vétvi V' prochéazejici touto polozkou, pokud

— je tvaru Tp resp. Fp pro néjakou vyrokovou proménnou p € P, nebo

— pii konstrukei tabla jiz doglo k jejimu rozvoji na V, tj. vyskytuje se na V jako kofen atomického
tabla.

Predikatova

Koneéné tablo z teorie T je uspofdadany, polozkami oznackovany strom zkonstruovany aplikaci koneéné
mnoha nasledujicich pravidel:



e jednoprvkovy strom oznackovany libovolnou polozkou je tablo z teorie T,

e pro libovolnou polozkou P na libovolné vétvi V|, muzeme na konec vétve V' pripojit atomické tablo pro
polozku P, pfi¢em?z je-li P typu ’svédek’, miZeme pouzit jen pomocny konstantni symbol ¢; € C, ktery se
na vétvi V dosud nevyskytuje (pro polozky typu ’v8ichni’ mizeme pouzit libovolny konstantni Lo-term
ti )a

e na konec libovolné vétve muzeme pfipojit polozku T « pro libovolny axiom teorie o € T

Tablo z teorie T je bud’ kone¢né, nebo i nekone¢né: v tom piipadé vzniklo ve spocetné mnoha krocich.
Mizeme ho formalné vyjadfit jako sjednoceni 7 = J,~( 7i, kde 7; jsou kone¢na tabla z T, 7y je jednoprvkové
tablo, a 7,41 vzniklo z 7; v jednom kroku. Tablo pro polozku P je tablo, které ma polozku P v kofeni.

Tablo dikaz sentence ¢ z teorie T je sporné tablo z teorie T' s polozkou F¢ v kofeni. Pokud existuje, je
¢ (tablo) dokazatelna z T, piseme T F ¢. (Definujme také tablo zamitnuti jako sporné tablo s T ¢ v kofeni.
Pokud existuje, je ¢ (tablo) zamitnutelna z T, tj. plati T F —y.)

e Tablo je sporné, pokud je kazda jeho vétev sporna.

e Vétev je sporna, pokud obsahuje polozky T ¢ a F ¢ pro né&jakou sentenci v, jinak je bezesporna.
e Tablo je dokonéené, pokud je kazdé jeho vétev dokoncena.

e Vétev je dokoncena, pokud

— je sporna, nebo

— je kazda polozka na této vétvi redukované a zaroven vétev obsahuje polozku T « pro kazdy axiom
acT.

e Polozka P je redukované na vétvi V prochazejici touto polozkou, pokud

— nen{ typu ’v8ichni’ a pii konstrukei tabla jiz doslo k jejimu rozvoji na V, tj. vyskytuje se na V jako
kofen atomického tabla. 4
— je typu ’vSichni’ a vSechny jeji vyskyty na V jsou na vétvi V' redukované.
e Vyskyt polozky P typu ’vSichni’ na vétvi V je ¢-ty, pokud ma na V pravé ¢ — 1 pfedkt oznacenych touto
polozkou, a i-ty vyskyt je redukovany na V', pokud
— polozka P méa (i 4 1)-ni vyskyt na V, a zaroveil
— na V se vyskytuje polozka Ty (x/t;) (je-li P = T(Vx)p(x) ) resp. F ¢ (z/t;) (je-li P = F(3x)¢(x)),
kde t; je i-ty konstantni Lo-term.
7. Kanonicky model
Je-li V bezesporna vétev dokonéeného tabla, potom kanonicky model pro V' je model definovany predpisem (pro

peP):

(p) = 1 pokud se na V vyskytuje polozka Tp,
YWPI =9 0 jinak.

Mg&jme teorii T v jazyce L = (F,R) a necht V je bezesporna vétev néjakého dokon¢eného tabla z teorie T'.
Potom kanonicky model pro V je Lo-struktura A = <A,]-'A U C’A,RA> definovana nésledovné: Je-li jazyk L
bez rovnosti, potom:

e Doména A je mnozina v8ech konstantnich Lo-termu.

e Pro kazdy n-arni relacni symbol R € R a "s s1,..., "s, "z A: ("s1”,..., " s,”) € R pravé kdyz na
vétvi V je polozka TR (s1,...,8n)

e Pro kazdy n-arni funkéni symbol f € F a"s s1,,..., "sn, z A :



FACS ) = (1, 50)

Specialné, pro konstantni symbol ¢ mame ¢* = "c". Funkci f# tedy interpretujeme jako vytvofeni’ nového
termu ze symbolu f a vstupnich termu Necht je L jazyk s rovnosti. Pfipomenme, Ze naSe tablo je nyni z teorie
T*, tj. z rozsifeni T o axiomy rovnosti pro L. Nejprve vytvorime kanonicky model B pro V jakoby byl L bez
rovnosti (jeho doména B je tedy mnoZina viech konstantnich Lo-termii). Dale definujeme relaci =2 stejné jako
pro ostatni rela¢ni symboly:

"sy "= B sy " pravé kdyz na vétvi V je polozka Ts; = so

Kanonicky model pro V potom definujeme jako faktorstrukturu A = B/ =5. Jak plyne z diskuze v Sekci
7.3, relace = B je opravdu kongruence struktury B, definice je tedy korektni, a relace = je identita na A.
Plati nasledujici jednoduché pozorovani:

Pozorovani 7.4.4. Pro kazdou formuli ¢ mame B = ¢ (kde symbol = je interpretovan jako binarni relace
=), pravé kdyz A = B/ =Pl= p(kde = je interpretovén jako identita).

8. Kongruencia struktuary, faktorstruktira, axiomy rovnosti.

Mégjme ekvivalenci ~ na mnoziné A, funkci f : A™ — A, a relaci R C A™. Rikame, 7e ~ je:

e kongruenci pro funkci f, pokud pro v8echna z;,y; € A takova, Ze z; ~ y;(1 < i <n) plati f (z1,...,25) ~
f - )
e kongruenci pro relaci R, pokud pro vSechna x;,y; € A takova, ze x; ~ y;(1 < i < n) plati R (z1,...,2,)

pravé kdyz R (y1,- .., Yn)-

Kongruence struktury A je ekvivalence ~ na mnoziné A, které je kongruenci pro viechny funkce a relace A.

Mgjme strukturu A a jeji kongruenci . Faktorstruktura (podilova struktura) A podle ~ je struktura A/ ~
Vv tém? jazyce, jejiz univerzum A/ ~ je mnozina v8ech rozkladovych t¥id A podle ~, a jejiz funkce a relace jsou
definované pomoci reprezentanti, tj :

o fA([xe .- [znll) = [fA (21, 2,)] _, pro kazdy (n-rni) funkeni symbol f, a

o RY~([x1]_,...,[xn].) pravé kdyz RA (z1,...,x,), pro kazdy (n-arni) relacéni symbol R.

Axiomy rovnosti pro jazyk L s rovnosti jsou nasledujict: (i) z = = (i) 21 = p1 A - A&y = Yy —
f(x1,...,zn) = f(y1,...,Yn) pro kazdy n-arni funkéni symbol f jazyka L (ili) 21 = y1 A -+ A2y = yp —
(R(x1,...,24) = R(y1,...,yn)) pro kazdy n-arni rela¢ni symbol R jazyka L vCetné rovnosti.

9. CNF a DNF, Hornov tvar, MnozZinova reprezentacia CNF, spliujice ohodnote-
nie.

e Literal £ je bud’ prvovyrok p nebo negace prvovyroku —p. Pro prvovyrok p oznaéme p° = —p a p' = p.
Je-li £ literal, potom ¢ oznacuje opaény literal k £. Je-li £ = p (pozitivni literal), potom £ = —p, je-li £ = —p
(negativni literal), potom ¢ = p

o Klauzule (clause) je disjunkce literalt C = £; V€3V ---V £,,. Jednotkova klauzule (unit clause) je samotny
literal (n = 1) a prazdnou klauzuli (n = 0) myslime L.

e Vyrok je v konjunktivni normalni formé (v CNF) pokud je konjunkei klauzuli. Prazdny vyrok v CNF je
T.

e Elementarni konjunkce je konjunkce literdla E = €1 A o A --- A 4,,. Jednotkova elementarni konjunkce je
samotny literal (n = 1). Prazdné elementarni konjunkce (n = 0) je T.

e Vyrok je v disjunktivni normélni formé (v DNF) pokud je disjunkei elementarnich konjunkei. Prazdny
vyrok v DNF je L. Nyni si ukdZeme dalsi fragment SATu fesitelny v polynomidlnim ¢ase, tzv. Horn-SAT
neboli problém splnitelnosti hornovskych vyrokt.

e Vyrok je v hornovsky (v Hornové tvaru), pokud je konjunkei hornovskych klauzuli, tj. klauzuli obsahujicich
nejvyse jeden pozitivni literal. Vyznam Hornovskych klauzuli vyplyva z ekvivalentniho vyjadieni ve formé
implikace:



“p1Vpe VeV ap, Vg~ (prAp2 A Apn) = q

Hornovské formule tedy dobfe modeluji systémy, kde splnéni urcitych podminek zarucuje splnéni jiné pod-
minky. Upozornéme, ze jednotkové klauzule £ je také hornovski. V kontextu logického programovani se ji rika
fakt, pokud je literal pozitivni, a cil pokud je negativni. Hornovské formule s alesponi jednim pozitivnim a
alespon jednim negativnim literdlem jsou pravidla.

V mnozinové reprezentaci odpovidaji modely mnozindm literald, které obsahuji pro kazdou vyrokovou
proménnou p pravé jeden z literalo p, —p :

° (éésteéné) ohodnoceni V je libovolnd mnozina literali, ktera je konzistentni, tj. neobsahuje dvojici
opacnych literala.

e Ohodnoceni je uplné, pokud obsahuje pozitivni nebo negativni literél pro kazdou vyrokovou proménnou.

e Ohodnoceni V spliiuje formuli S, piSeme V |= S, pokud V obsahuje néjaky literal z kazdé klauzule v S, tj.:

VN C #( pro kazdou C € S

10. Rezoluéne pravidlo, unifikicia, najvSeobecnejsia unifikacia

Mgjme konefnou mnozinu vyraza S = {Ej,...,E,}. Substituce o je unifikace pro S, pokud Ejoc = Eso =

--- = E,0, neboli So obsahuje jediny vyraz. Pokud existuje, potom fikame také, Ze S je unifikovatelna.
Unifikace pro S je nejobecnéjsi, pokud pro kazdou unifikaci 7 pro S existuje substituce A takova, ze 7 = o \.

V&imnéte si, Ze nejobecnéjsich unifikaci pro S muze byt vice, ale lisi se jen pfejmenovinim proménnych.
Mgjme klauzule C; a C5 s disjunktnimi mnozinami proménnych a necht’ jsou tvaru

01:C£U{A1,...,An}, CQZC&U{ﬁBl,...,ﬁBm}

kde n,m > 1 a mnoZinu vyrazi S = {A44,..., A, B1,..., By} lze unifikovat. Bud o nejobecngjsi unifikace
S. Rezolventa klauzuli Cy a Cs je nésledujici klauzule:

C=CloUCho

11. Rezoltc¢ny ddkaz a zamietnutie, rezolu¢ny strom

Rezoluéni dikaz (odvozeni) klauzule C z formule S je kone¢né posloupnost klauzuli Cy, C1, ..., C, = C takova,
ze pro kazdé i bud’ C; € S nebo C; je rezolventou néjakych C;,Cy kde j < i a k <.

Pokud rezolu¢ni dikaz existuje, fikdme, Ze C je rezoluci dokazatelna z S, a piSeme S g C. (Rezolu¢ni)
zamitnuti formule S je rezolu¢ni dikaz O z S, v tom pfipadé je S (rezoluci) zamitnutelna.

Rezoluéni strom klauzule C z formule S je kone¢ny binérni strom s vrcholy oznacenymi klauzulemi, kde

e v koreni je C,
e v listech jsou klauzule z S,

e v kazdém vnitinim vrcholu je rezolventa klauzuli ze synti tohoto vrcholu.
12. Linearna rezolicia, linearny dokaz, LI-rezolicia, LI-dokaz
Vyrokova

Linearni diikaz (rezoluci) klauzule C z formule S je kone¢na posloupnost

OO 01 Cn C
BO ) Bl PR Bn » Un+1

kde C; tikdme centralni klauzule, Cy je pocateéni, C, 41 = C je koncova, B; jsou boé¢ni klauzule, a plati:
e Cy € S, proi <n je Ciyq rezolventou C; a B;,

e Bye S, proi <njeB; €S nebo B; = C; pro néjaké j < i.



Linearni zamitnuti S je linearni dikaz O z S.

LI-rezoluce V obecném linearnim ditkazu mitize byt kazda nasledujici boéni klauzule bud axiom z S nebo
jedna z predchozich centralnich klauzuli. Pokud zakdzeme druhou moznost, budeme-li tedy pozadovat, aby
v8echny boc¢ni klauzule byly z S, dostaneme tzv. LI (linear-input) rezoluci:

LI-dukaz (rezoluci) klauzule C' z formule S je linearni dikaz

S s[5 ] e

ve kterém je kazda boé¢ni klauzule B; axiom z S. Pokud LI-dikaz existuje, fikame, ze je C' LI-dokazatelné z
S, a piseme S Fp; C. Pokud S Fp; O, je S LI-zamitnutelna.

Predikatova

Linearni diikaz (rezoluci) klauzule C z formule S je kone¢na posloupnost

Co Ch Chy
|:B0:|7|:Bl :|7"'7|:Bn:|acn+1

kde C; tikdme centralni klauzule, Cy je pocatecni, C,,+1 = C' je koncova, B; jsou bo¢ni klauzule, a plati:
e () je varianta klauzule z S, pro i < n je C;41 rezolventou C; a B;,

e By je varianta klauzule z S, pro ¢ < n je B; varianta klauzule z S nebo B; = C; pro néjaké j < i. Linearni
zamitnuti S je linearni dikaz OJ z S. Ll-dikaz je linearni dikaz, ve kterém je kazda bo¢ni klauzule B;
variantou klauzule z S. Pokud existuje LI-dikaz, fikime, Ze je C' LI-dokazatelna z S, a piSeme S bFp; C.
Pokud Sty O, je S LI-zamitnutelna.

13. Signattura a jazyk predikatovej logiky, Struktira daného jazyka

Signatura je dvojice (R, F), kde R, F jsou disjunktni mnoziny symbolt (rela¢ni a funkéni, ty zahrnuji konstantni)
spolu s danymi aritami (tj. danymi funkef ar: RU F — N ) a neobsahujici symbol >=’ (ten je rezervovany pro
rovnost).

Do jazyka patii néasledujici:

e spocetné mnoho proménnych zg,z1,xs,... (ale piSeme také z,y, z,...; mnoZzinu vech proménnych oz-
na¢ime Var),

e rela¢ni, funkéni a konstantni symboly ze signatury, a symbol = jde-li o jazyk s rovnosti,
e univerzalni a existenéni kvantifikdtory (Va), (3z) pro kazdou proménnou z € Var,
e symboly pro logické spojky —, A, V, —, <> a zavorky (,).
Struktura v signatute (R, F) je trojice A = <A,RA, .7-'“4>7 kde
e A je neprazdna mnozina, fikdme ji doména (také univerzum),
o RA = {RA |R € R} kde RA C A**(B) je interpretace rela¢niho symbolu R,
o FA = {fA | f € ]—'} kde f4: A*(F) 5 A je interpretace funkéniho symbolu f (specialné pro konstantni
symbol ¢ € F méame ¢ € A ).
14. Atomicka formule, formule, sentence, otvorené formule
Termy jazyka L jsou kone¢né napisy definované induktivneé:
e kazda proménna a kazdy konstantni symbol z L je term,
e je-li f funkéni symbol z L arity n a jsou-li ¢1,..., ¢, termy, potom napis f (t1,ta,...,t,) je také term.

Mnozinu v8ech termt jazyka L oznac¢ime Termy .

Atomicka formule jazyka L je népis R (t1,...,tn), kde R je n-arni rela¢ni symbol z L (véetné = jde-li o
jazyk s rovnosti) a t; € Termy,.

Formule jazyka L jsou kone¢né napisy definované induktivneé:



e kazda atomicka formule jazyka L je formule,
e je-li ¢ formule, potom (—¢) je také formule,
e jsou-li p, 1 formule, potom (p A ), (¢ V ), (v = ¥), a (¢ <> ¥) jsou také formule,

e je-li ¢ formule a x promé&nna, potom ((Vz)y) a ((3x)¢) jsou také formule.

Formule je oteviend, neobsahuje-li zadny kvantifikator, a uzaviena (neboli sentence), pokud nema zadnou
volnou proménnou.

15. Instance formule, substitovatel'nost, variant formule

Term ¢ je substituovatelny za proménnou z ve formuli ¢, pokud po simultaAnnim nahrazeni vSech volnych vyskyti
x ve ¢ za t nevznikne ve ¢ zadny vazany vyskyt proménné z t. V tom piipadé fikdme vzniklé formuli instance
o vznikla substituci ¢ za x, a oznadujeme ji p(x/t).

Ma-li formule ¢ podformuli tvaru (Qx)y a je-li y proménna, takova, ze

e y je substituovatelna za = do ¢ a

e y nemé volny vyskyt v 1, potom nahrazenim podformule (Qz)y formuli (Qy)i(z/y) vznikne varianta
formule ¢ v podformuli (Q)v.

16. Pravdivostna hodnota formuly v Struktare pri ohodnoteni, platnost formule v
Struktare

Hodnota termu t ve struktute A pri ohodnoceni e, kterou zna¢ime t[e], je dana induktivng:

e 27[e] = e(x) pro proménnou x € Var,

e cle] = ¢ pro konstantni symbol ¢ € F, a

e jellit= f(t1,...,t,) sloZeny term, kde f € F, potom:

tAle] = fA (t'fe], . 1 fe])

n

Mgjme formuli ¢ v jazyce L, strukturu .4 € M(L), a ohodnoceni proménnych e : Var — A. Pravdivostni
hodnota ¢ v A pfi ohodnoceni e, PHA(go)[e], je definovana induktivné podle struktury formule: Pro atomickou
formuli ¢ = R (ty,...,t,) mame

1 kud (¢[e],...,tA[e]) € RA,
PHA(cp)[e] _ { ?O u ( 1 [6] n[e])
0 jinak.

Specialng, je-li ¢ tvaru t; = to, potom PHA(p)[e] = 1 pravé kdyz (t{'[e], t3'e]) €=A, kde == je identita
na A, tj. pravé kdyz t{'[e] = t3'[e] (obé strany rovnosti jsou stejny prvek a € A ). Pravdivostni hodnota negace
je definovana takto:

PHA(=g)[e] = f- (PHA(p)[e]) = 1 — PH"(¢)]¢]
Obdobné pro binarni logické spojky, jsou-li p, ¢ a O € {A,V,—, <}, potom:

PH(¢0¢)[e] = fo (PH(¢2) [e], PHA(¥)) e])

Zbyva definovat pravdivostni hodnotu pro kvantifikatory, tj. formule tvaru (Qz)p. Budeme potiFebovat
néasledujici znaceni: Zménime-li v ohodnoceni e : Var — A hodnotu pro proménnou z na a, vysledné ohodnoceni
zapiSeme jako e(z/a). Plati tedy e(z/a)(x) = a. Pravdivostni hodnotu pro (Qz)¢ definujeme takto:

PHA((v)g)[e] = min (PHA(¢)[e(x/a)])

PHA((32)¢)[e] = max (PHA(¢)[e(z/a)))

Mgjme formuli ¢ a strukturu A (ve stejném jazyce).



e Je-li e ohodnoceni a PH”(p)[e] = 1, potom Fikéme, Ze ¢ plati v A pii ohodnoceni e, a piSeme A = ¢e].
(V opa¢ném piipadé fikame, Ze ¢ neplati v.A pii ohodnoceni e, a piSeme A £ ple].)

e Pokud ¢ plati v A pii kazdém ohodnoceni e : Var — A, potom Ffikdme, Ze ¢ je pravdiva (plati) vA, a
piseme A = .

e Pokud A = —¢, tj. ¢ neplati v A pii zadném ohodnoceni (pro kazdé e mame AV = ¢[e] ), potom je ¢
1ziva v.A.20

Shriime nékolik jednoduchych vlastnosti, nejprve tykajicich se platnosti pii ohodnoceni. Bud’ A struktura,
©, 1 formule, a e ohodnoceni.

o A= -yle] prave kdyz A = ole],
A= (e AP)[e] prave kdyz A |= gle] a A = le],
Al (pV)le] prave kdyz A = ple] nebo A = le],
A (¢ — v)[e] prave kdyz plati: jestlize A |= ple] potom A = le],
(
(

)
A E (¢ < ¢)e] pravé kdyz plati: A = ple] praveé kdyz A | ¢[e],
o A= (Vz)ple] pravé kdyz A = ple(x/a)] pro viechna a € A,

A = (3x)ple] praveé kdyz A = ple(z/a)] pro néjaké a € A.

Je-1li term t substituovatelny za proménnou = do formule ¢, potom

A = o(x/t)]e] prave kdyz A = ple(z/a)] pro a = t4[e].

Je-li ¢ varianta ¢, potom A = ¢le] pravé kdyz A |= 1[e].

17. Kompletna tedria v predikatovej logike, elementarna ekvivalencia

Teorie je kompletni, je-li bezesporna a kaZzda sentence je v ni bud pravdiva, nebo 1Ziva.
Struktury A, B (v témz jazyce) jsou elementarné ekvivalentni, pokud v nich plati tytéZ sentence. Znacime
A=B.

Teorie je kompletni, pravé kdyz méa pravé jeden model az na elementarni ekvivalenci.

18. Podstruktira, generovana podstruktira, expanzia a redukt Struktiry

Mgjme strukturu A = <A, RA,]-'A> v signatute (R, F). Struktura B = <B,RB7 fB> je (indukovand) podstruk-
tura A, zna¢ime B C A, jestlize

e )£ABCA
e RB = RAN B*®) pro kazdy relacni symbol R € R,

o fB=fAnN (Bar(f) X B) pro kazdy funkéni symbol f € F (tj. funkce fB je restrikce f* na mnozinu B, a
jeji vystupy jsou vSechny také z B ),

e specialné, pro kazdy konstantni symbol ¢ € F méame ¢ = ¢* € B.

Mgjme strukturu A = <A,RA,]-'A> a neprazdnou podmnozinu X C A. Ozna¢me jako B nejmensi podm-
nozinu A, ktera obsahuje mnozinu X a je uzaviena na vSechny funkce struktury A (tj. také obsahuje vSechny
konstanty). Potom o podstruktute A[B fikame, Ze je generovana mnozinou X, a znaéime ji A(X).

Mgjme jazyky L C L', L-strukturu A, a L’-strukturu A’ na stejné domén& A = A’. JestliZe je interpretace
kazdého symbolu [rela¢niho, funkéniho, konstantniho| stejna [relace, funkce, konstanta] v .Aiv A’ potom Fikame,
Ze struktura A’ je expanzi struktury A do jazyka L’ (také fikame, Ze je L’-expanzi) a Ze struktura A je reduktem
struktury A’ na jazyk L (také fikame, %e je L-reduktem).



19. Definovatelnost v struktire

Mgjme formuli ¢ (21, ...,z,) a strukturu A v tém? jazyce. Mnozina definovana formuli ¢ (21, ..., z,) ve struk-
tute A, znacime oA (z1,...,x,), je:

ot (z1,.. . x0) = {(a1,...,a,) € A" | A= @le(z1/ar, ..., xn/an)]}

Zkracené totéz zapiSeme také jako

@) ={ae A" | A ple(z/a)]}.
Mgjme formuli p(z, ), kde |Z| = n a |g| = k, strukturu A v temz jazyce, a k-tici prvki b € A*. Mnozina
definovana formuli (Z, ) s parametry b ve strukture A, znagime p*°(z, ), je:

e (z,5) = {ae A" | A le(z/a, 5/b)]}

20. Extenze o definice

Mame-li L-teorii T a L’-teorii T, potom fekneme, Ze T’ je extenzi T o definice, pokud vznikla z T postupnou
extenzi o definice rela¢nich a funkénich (pfip. konstantnich) symbola.

Mgjme teorii T a formuli ¢ (x1,...,x,) v jazyce L. Oznacme jako L' rozsireni jazyka L o novy n-arni rela¢ni
symbol R. Extenze teorie T o definici R formuli 9 je L’-teorie:

T =TU{R(z1,...,2n) <> ¥ (21,...,25)}

Mg&jme teorii T a formuli 9 (x1,...,%,,y) v jazyce L. Ozna¢me jako L’ rozSirineni jazyka L o novy n-arni
funké¢éni symbol f. Necht v teorii T' plati:

e axiom existence (Fy)¢ (z1,...,%n,Yy),

e axiom jednoznacnosti ¢ (z1,...,2Zn,y) A (21,...,2Zn,2) = y = 2. Potom extenze teorie T o definici f
formuli v je L’-teorie:

T/:Tu{f($1,...,$n):wa(.ﬁl,...,$n,y)}

Konstantni symbol je specidlnim pfipadem funkéniho symbolu arity 0 . Plati tedy stejna tvrzeni. Axiomy
existence a jednoznacnosti jsow: (Jy)v(y) a ¥(y) A¥(z) = y = z. A extenze o definici konstantniho symbolu ¢
formuli ¢(y) je teorie T" =T U{c=y < ¥(y)}.

21. Prenexna normalna forma, Skolemov variant

Formule ¢ je v prenexni normalni formé (PNF), je-li tvaru

(lel) oo (ann) SD/

kde @Q; je kvantifikator (V nebo 3 ) a formule ¢’ je oteviena. Formuli ¢’ potom fikadme oteviené jadro ¢ a
(Q1z1) ... (Qnzy) je kvantifikitorovy prefix.
Mgéjme L-sentenci ¢ v PNF, a necht vSechny jeji vazané proménné jsou riizné. Necht’ existencéni kvantifikatory

z prefixu ¢ jsou (3y1),...,(Jy,) (v tomto poradi), a necht pro kazdé i jsou (Va1),...,(V,,) pravé viechny
univerzéalni kvantifikitory pfedchéazejici kvantifikator (Jy;) v prefixu .

Ozna¢me L' rozsifeni L o nové n;-arni funkéni symboly fi,. .., fn, kde symbol fl je arity m;, pro kazdé 1.
Skolemova varianta sentence ¢ je L’-sentence pg vznikla z ¢ tak, ze pro kazdé i =1,...,n :

e odstranime z prefixu kvantifikator (Jy;), a

e substituujeme za proménnou y; term f; (z1,...,2n,).

Tomuto procesu fikdme také skolemizace.
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22. Izomorfizmus Struktir, izomorfné spektrum, w-kategoricka teéria

Mgjme struktury A, B jazyka L = (R, F). Izomorfismus A a B (nebo > A na ’) je bijekce h : A — B spliujici
néasledujici vlastnosti:

e Pro kazdy ( n-arni) funkéni symbol f € F a pro v8echna a; € A plati:

h(fA (a1, .. an)) = fB (h(a1),...,h(ay))
(Specialng, je-li ¢ € F konstantni symbol, plati h (cA) =cB)

e Pro kazdy ( n-arni) relaéni symbol R € R a pro v8echna a; € A plati:

R (aq, ..., an) prave kdyz RP (h(a1),...,h(an))

Pokud existuje, fikame, ze A a B jsou izomorfni (nebo ’ A je izomorfni s B via h ’) a pieme A ~ B ( nebo
A ~p, B). Automorfismus A je izomorfismus A na A

Izomorfni spektrum teorie T je pocet I(k,T) modeli T kardinality x aZ na izomorfismus, pro kazdou kardi-
nalitu k (vCetné transfinitnich). Teorie T je r-kategoricka, pokud I(x,T) = 1.

Nadéle néas bude zajimat jen pfipad k = w, totiZ teorie s jedinym spocetné nekoneénym modelem (aZ na
izomorfismus).

23. Axiomatizovatel'nost, koneéna axiomatizovatel'nost, otvorena axiomatizovatel'nost
Mgjme tiidu struktur K € My v néjakém jazyce L. Rikame, ze K je

e axiomatizovatelna, pokud existuje L-teorie T takova, ze My (T) = K,

e konec¢né axiomatizovatelné, pokud je axiomatizovatelna kone¢nou teorii, a

e oteviené axiomatizovatelna, pokud je axiomatizovatelna otevienou teorii.

O L-teorii T’ fikame, Ze je konecn& resp. oteviené axiomatizovatelna, pokud to plati o t¥idé modela K =

M (T").

24. Rekurzivna axiomatizacia, rekurzivna axiomatizovatel'nost, rekurzivne spocetna
kompletacia

Teorie T je rekurzivné axiomatizovana, pokud existuje algoritmus, ktery pro kazdou vstupni formuli ¢ dobéhne
a odpovi, zda ¢ € T

Trida L-struktur K C My, je rekurzivné axiomatizovatelna, pokud existuje rekurzivné axiomatizovana L-
teorie T takova, ze K = M (T). Teorie T' je rekurzivné axiomatizovatelna, pokud je rekurzivné axiomatizo-
vateln4 t¥ida jejich modeld, neboli pokud je T ekvivalentni néjaké rekurzivné axiomatizované teorii.

Rekneme, Ze teorie T méa rekurzivné spoletnou kompletaci, pokud (n&jakda) mnoZzina aZ na ekvivalenci
v8ech jednoduchych kompletnich extenzi teorie T je rekurzivné spocetnd, tj. existuje algoritmus, ktery pro
danou vstupni dvojici pfirozenych ¢isel (i, j) vypiSe na vystup i-ty axiom j-té extenze (v néjakém pevné daném
usporadani), nebo odpovi, Ze takovy axiom uZ neexistuje.

25. Rozhodnutel'na a ¢iastoéne rozhodnutelna teéria
O teorii T fikame, Ze je
e rozhodnutelna, pokud existuje algoritmus, ktery pro kazdou vstupni formuli ¢ dobéhne a odpovi, zda

T = o,

e Castefné rozhodnutelna, pokud existuje algoritmus, ktery pro kazdou vstupni formuli:
e pokud T = ¢, dobéhne a odpovi "ano",

e pokud T [~ ¢, bud nedob&hne, nebo dob&hne a odpovi "ne".

Necht T je rekurzivné axiomatizovanéd. Potom:

1. T je Gastecné rozhodnutelna,

2. je-li T navic kompletni, potom je rozhodnutelna.
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Lahké otazky

1. Mnozinu modelov nad koneénym jazykom je moZné axiomatizovat vyrokom v
CNF, vyrokom v DNF

Mégjme kone¢ny jazyk P a libovolnou mnozinu modeli M C Mp. Potom existuje vyrok ¢opnrpv DNF a vyrok
wenF v CNF takovy, ze M = Mp (¢pnr) = Mp (penr). Konkrétneé:

pone =\ A\ P

veM peP
oo = A NV FT = A\
veM pEP vé€ M peP

Kazda elementarni konjunkce popisuje jeden model. Vyrok ¢cnr je dudlni k vyroku ¢pyp sestrojenému
pro doplnék M’ = M. Nebo mitizeme dokazat p¥imo: modely klauzule C, = V,ep p =¥ jsou vSechny modely
kromé v, M¢ = Mp\{v}, tedy kazda klauzule v konjunkci zakazuje jeden nemodel.

Mnoziny logickych spojek {—, A, V}Ia{—, —} jsou univerzalni. Dakaz. M&me funkei f : {0,1}" — {0,1},
resp. mnoZinu modeli M = f~1[1] € {0,1}". N&§ jazyk bude P = {pi,...,p,}. Pokud by mnoZna M
obsahovala jediny model, napt. v = (1,0, 1,0) mohli bychom ji reprezentovat vyrokem ¢, = p; A —pa A ps A —py,
ktery fikd 'musim byt model v ’. Pro obecny model v bychom vyrok ¢, zapsali takto:

n
o =pi Aps A Ap = A" = \ o'
i=1 peP

kde zavadime nasledujici uzitecné znaceni: p*®) je vyrok p pokud v(p) = 1, a vyrok —p pokud v(p) = 0
Obsahuje-li mnozina M vice modelt, fekneme 'musim byt alespoii jeden z modeli z M

ev=\ o=\ Ap'®

veM veM peP

Ziejmé plati Mp (0pr) = M neboli f,,, p = f. (Pokud M = (), potom z definice \/, c,, @, = L).

2. Algebra vyrokov bezspornej tedrie nad kone¢nym jazykom je izomorfna potencnej
algebre

uvazujeme mnoZinu ekvivalen¢nich tfid na mnoziné vSech vyrokt VFp, kterou oznaéime VFp/ ~. Prvky této
mnoZziny jsou mnoziny ekvivalentnich vyrokt, napf. [p = ¢j~ ={p = ¢,-pV¢,~(pA—q),~pVqVyg,...}. A
méme zobrazeni h : VFp/ ~— P (Mp) (kde P(X) je mnoZina viech podmnozin X ) definované piedpisem:

h(lpl~) = M(e)

tj. tfidé ekvivalentnich vyroku pfifadime mnozinu modelt libovolného z nich. Je snadné ovéfit, ze toto
zobrazeni je korektné definované (nezalezi na tom, jaky vyrok z tfidy ekvivalence jsme si vybrali) a prosté, a
7e je-li jazyk P koneény, je h dokonce bijekce. (Ovéite!) Na mnoZziné VF 5/ ~ miizeme zavést operace =, A,V
pomoci predpisu

—[el~ = [Fel~
(el A ]~ = [ A~
(ol V[l = oV Yln
tedy vybereme reprezentanta resp. reprezentanty, a provedeme operaci s nimi, napt. ’konjunkce’ tiid
[p—ql~ algV-r]. je:

[p— g~ NlgV-rle=[p—q A(gV-r)

Pridame-li také konstanty 1= [1]. a T = [T]~, dostavame (matematickou) strukturu 26

AVp = (VFp/ ~; =, AV, L, T)

které fikame algebra vyroku jazyka P.
Zobrazeni h : VFp/ ~— P (Mp) je tedy zobrazeni z algebry vyrokit AVp na potenéni algebru
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P (MP) = <P (MP) ;=M U, (Z)a MF‘>

a je-li jazyk kone¢ny, je to bijekce. Toto zobrazeni 'zachovava’ operace a konstanty, tj. plati (L) = 0, h(T) =
Mp, a

h(=lelw) = h([¢l~) = M(p) = Mp\M(p)
h([el~ A l~) = h([el~) MR ([$]~) = M(p) N M(y)
h(lel~ v [Y]~) = h([e]~) U ([$]~) = M(p) UM(Y)
Takovému zobrazeni fikdme homomorfismus Booleovych algeber, a je-li to bijekce, jde o izomorfismus.
Poznamka 2.5.2. Tyto vztahy miZzeme také vyuzit pfi hledani modelt: naptiklad pro vyrok ¢ — (=9 A x)
plati (s vyuzitim toho, ze M (¢ — ¢') = M (=p V ¢')) :

h
h

M(p = (=% A x)) = M(p) U (M() N M(x))

Vsechny predchozi tvahy mutzeme také relativizovat vzhledem k dané teorii T' v jazyce P, a to tak, Ze
ekvivalenci ~ nahradime T-ekvivalenci ~7 a mnoZinu modelt jazyka Mp nahradime mnoZinou modeld teorie
Mp(T'). Dostavame:

h(L)
h(T) = M(T)

h (2[e]~r) = M(T)OAM(T, ¢)
h([@lnr A [Y]ar) = M(T, ) N M(T', ¥)
h([@lnr V [¥]nr) = M(T, @) UM(T, )

Vyslednou algebru vyrokt vzhledem k teorii T' oznacime AVp(T). Algebra vyroki jazyka je tedy totéz co
algebra vyroki vzhledem k préazdné teorii. Z technickych divoda potiebujeme, aby M(T) byla neprazdna, tj.
T musi byt bezesporna. Shriime naSe tvahy:

Dausledek 2.5.3. Je-li T bezesporna teorie nad koneénym jazykem P, potom je algebra vyroka AVp(T')
izomorfni potenéni algebre P (Mp(T) ) prostfednictvim zobrazeni h ([¢]~,) = M (T, ¢)

[T
ZZ§

3. 2-SAT, Algoritmus implika¢ného grafu, jeho korektnost

Vyrok ¢ je v k-CNF, pokud je v CNF a kazda klauzule ma nejvyse k literali. Problému k-SAT se pta, zda je
dany k-CNF formule splnitelna. Pro k£ > 3 je k-SAT nadéle NP-uplny, kazdou CNF formuli lze zakdédovat do
3-CNF formule.

Implikacni graf 2-CNF vyroku ¢ je zaloZeny na myslence, ze 2-klauzuli ¢, V ¢5 (kde 1, ¢ jsou literaly) lze
chéapat jako dvojici implikaci: £; — 5 a f5 — {1 -* Napiiklad, z klauzule —p; V po vzniknou implikace p; — po a
také , —-po — —p1. Tedy pokud p; plati v n&jakém modelu, musi platit i p, a pokud po neplati, nesmi platit ani
p1. Jednotkovou klauzuli £ mtzeme také vyjadiit pomoci implikace jako ¢ — ¢, nap¥. z p; dostavame —p; — p;.

Implikaéni graf G, je tedy orientovany graf, jehoz vrcholy jsou vSechny literaly (proménné z Var(yp) a jejich
negace) a hrany jsou dané implikacemi popsanymi vyse:

o V(Gy) ={p,~w|p € Var(p)}
o E(Gy) ={(l1,62), (l2,41) | €1V €y je Klauzule o} U{(Z,) | £ je jednotkové klauzule ¢}

V naSem piikladé mame mnozinu vrcholi

|4 (gtp) = {p17p27p37p47p57 —P1, P2, 7P3, P4, _‘p5}

a hrany jsou:

(gtp) {(plaPQ) (_'p27 _‘pl) P (p27 _‘p3) 5 (pS, _‘PQ) P (_‘Pl,pB) ) (_'pl’npl) 5 (_‘PS, _‘p4) 5
(P4, p3) , (p1,p5) , (—ps, 1), (4P2,p5) » (-5, p2) s (-1, 1) 5 (P4 —Pa) }

3.2.1 Silné souvislé komponenty Nyni musime najit komponenty silné souvislosti ° tohoto grafu. V naSem
piikladé dostavame nasledujici komponenty: C1 = {ps},C2 = {-ps},C3 = {=p1, “p2, p3},C3 = {p1,p2, "p3},
Co = {ps},C1 = {-pa}
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Vgechny literaly v jedné komponenté musi byt ohodnoceny stejné. Pokud bychom tedy nasli dvojici opa¢nych
literaltt v jedné komponenté, znamena to, Ze vyrok je nesplnitelny. V opacném piipadé vidy muzeme najit
splijici ohodnoceni.

Pii hledani spliiujictho ohodnoceni (pokud nam nestaéi informace, Ze vyrok je splnitelny) potom postupu-
jeme tak, ze vezmeme nejlevéjsi dosud neohodnocenou komponentu, ohodnotime ji 0 , opa¢nou komponentu
ohodnotime 1, a postup opakujeme dokud zbyva né&jaka ® Silna souvislost znamena, Ze existuje orientovani
cesta zu do v i z v do u, neboli kazdé dva vrcholy v jedné komponenté leZi v orientovaném cyklu. A naopak,
kazdy orientovany cyklus lezi uvnitt néjaké komponenty. neohodnocenéd komponenta. Napiiklad, topologické
usporadani na Obrazku 3.3 odpovidd modelu v = (1,1,0,0,1) Na zavér shrneme nase uvahy do nasledujiciho
tvrzeni: Tvrzeni 3.2.2. Vyrok ¢ je splnitelny, pravé kdyz zadné silné souvisla komponenta vG, neobsahuje
dvojici opa¢nych literala ¢, ¢.

Dukaz. Kazdy model, neboli spliiujici ohodnoceni, musi ohodnotit vSechny literdly ze stejné komponenty
stejnou hodnotou. ( V opaéném piipadé by nutné existovala implikace ¢; — f5, kde ¢1v modelu plati ale ¢y
neplati.) V jedné komponenté tedy nemohou byt opacéné literaly. Naopak piedpokladejme, Ze zadna komponenta
neobsahuje dvojici opa¢nych literalo, a ukazme, Ze potom existuje model. Ozna¢me GZ graf vznikly z G,
kontrakef silné souvislych komponent. Tento graf je acyklicky, zvolme néjaké topologické usporadani. Model
zkonstruujeme tak, ze zvolime prvni dosud neohodnocenou komponentu v nasem topologickém uspofadani,
vSechny literaly v ni obsazené ohodnotime 0 , a opac¢né literaly ohodnotime 1. Takto pokracujeme dokud nejsou
v8echny komponenty ohodnoceny.

Pro¢ v takto ziskaném modelu plati vyrok ¢ ? Kdyby ne, neplatila by néktera z klauzuli. Jednotkova
klauzule ¢ musi platit, nebot v grafu G, mame hranu ¢ — (. Stejna hrana je i v grafu komponent, tedy £
predchazi v topologickém uspofadani komponentu obsahujici £. Pti konstrukei modelu jsme museli ohodnotit £
diive nez ¢, tedy £ = 0 a £ = 1. Podobng, 2-klauzule ¢, V l5 také musi platit: mame hrany ¢; — ly a o — £;.
Pokud jsme ¢; ohodnotili dfive nez £, museli jsme kviili hrané ¢, — f5 ohodnotit ¢; = 0, tedy ¢; plati. Podobné&
pokud jsme ohodnotili nejdiive £, musi byt fo =0 a f5 = 1.

4. Horn-SAT, Algoritmus jednotkovej propagacie, jeho korektnost

Horn-SAT neboli problém splnitelnosti hornovskych vyroki. Vyrok je v hornovsky (v Hornové tvaru), pokud je
konjunkei hornovskych klauzuli, tj. klauzuli obsahujicich nejvyse jeden *pozitivni literal. Vyznam Hornovskych
klauzuli vyplyva z ekvivalentniho vyjadreni ve formé implikace:

p1V pa VeV opp Vg~ (prApe A Apn) =g

Polynomialni algoritmus pro feSeni problému Horn-SAT je zaloZeny na jednoduché myslence jednotkové
propagace: Pokud nas vyrok obsahuje jednotkovou klauzuli, vime, jak musi byt ohodnocenena vyrokova proménnéa
obsazena v této klauzuli.

@ =(=p1 Vp2) A(=p1V —p2 Vps) A (=ps V —pa) A (—ps V —pa) A pa

N&s vyrok ¢ obsahuje jednotkovou klauzuli py. Vime tedy, Ze v kazdém jeho modelu v € M(y) musi platit
v (psg) = 1. To ale znamena, Ze v libovolném modelu vyroku ¢:

e kazda klauzule obsahujici pozitivni literal p4 je splnéna, mtzeme ji tedy z vyroku odstranit,
e negativni literdl —p4 nemuze byt splnén, muzeme ho tedy odstranit ze vSech klauzuli, které ho obsahuji.

Tomu kroku se iika jednotkova propagace. Vysledkem je nésledujici zjednoduSeny vyrok, ktery oznaéime
P+ (obecné ¢’ mame-li jednotkovou klauzuli £ ):

@l = (=p1 Vp2) A(—p1 V —p2 V p3) A (—p3 V —ps) A —ps

Vysledny vyrok uz neobsahuje jednotkovou klauzuli. To ale znamena, Ze kazdé klauzule obsahuje alespon
dva literaly, a nejvySe jeden z nich muZe byt pozitivni! (Zde potfebujeme hornovskost vyroku.) Protoze
kazda klauzule obsahuje negativni literal, sta¢i ohodnotit vSechny zbyvajici proménné 0 , a vyrok bude splnén:
v (p1) = v (p2) = v (p3) = 0. Dostavame tedy model v = (0,0,0,1,1).

Algoritmus (Horn-SAT). vstup: vyrok ¢ v Hornové tvaru, vystup: model ¢ nebo informace, Ze ¢ neni
splnitelny

1. Pokud ¢ obsahuje dvojici opa¢nych jednotkovych klauzuli ¢, ¢, neni splnitelny.

2. Pokud ¢ neobsahuje zadnou jednotkovou klauzuli, je splnitelny, ohodnot vSechny zbyvajici proménné O .
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3. Pokud ¢ obsahuje jednotkovou klauzuli ¢, ohodnot literal £ hodnotou 1 , proved’ jednotkovou propagaci,
nahrad’ ¢ vyrokem ¢, a vrat’ se na zacatek.

5. Algoritmus DPLL pre rieSenie SAT

Algoritmus pouziva jednotkovou propagaci spolu s nésledujicim pozorovanim: Rekneme, ze literal ¢ ma Cisty
vyskyt v, pokud se vyskytuje ve ¢, ale opaény literal £ se ve ¢ nevyskytuje. Mame-li literal s istym vyskytem,
miZeme jeho hodnotu nastavit na 1, a splnit (a odstranit) tak vSechny klauzule, které ho obsahuji. Pokud vyrok
neumime takto zjednodusit, rozvétvime vypocet dosazenim obou moznych hodnot pro vybranou vyrokovou
proménnou. Jinymi slovy, v dalsim kroku bychom provedli jednotkovou propagaci r, odstranili jednotkovou
klauzuli r, a ze zbyvajici jednotkové klauzule —r bychom odstranili literal —r, ¢imz by vznikla prazdna klauzule,
ktera je nesplnitelné.
Algoritmus (DPLL). vstup: vyrok ¢ v CNF, vystup: model ¢ nebo informace, Ze ¢ nenf splnitelny

1. Dokud ¢ obsahuje jednotkovou klauzuli ¢, ohodnot’ literal £ hodnotou 1 , proved’ jednotkovou propagaci,
a nahrad’ ¢ vyrokem ¢°.

2. Dokud existuje literal ¢, ktery ma ve ¢ ¢isty vyskyt, ohodnot £ hodnotou 1 , a odstran klauzule obsahujici
L.

3. Pokud ¢ neobsahuje zadnou klauzuli, je splnitelny.
4. Pokud ¢ obsahuje prazdnou klauzuli, neni splnitelny.

5. Jinak zvol dosud neohodnocenou vyrokovou proménnou p, a zavolej algoritmus rekurzivné na ¢ A p a na
@ A p.

6. Veta o konstantach

Méjme formuli ¢ v jazyce L s volnymi proménnymi x1,...,Z,. Oznac¢me L’ rozgifeni jazyka o nové konstantnf
symboly c1,...,c, a bud’ T stejné teorie jako T ale v jazyce L’. Potom plati:

T | ¢ prave kdyzT" = ¢ (z1/c1,. .., @0/ cp)

Dtikaz. Tvrzeni sta¢i dokdzat pro jednu volnou proménnou x a jednu konstantu ¢, indukci se snadno
rozsirii na n konstant.

Piedpokladejme nejprve, ze ¢ plati v kazdém modelu teorie 7. Chceme ukazat, ze ¢(x/c) plati v kazdém
modelu A’ teorie T'. Vezméme tedy takovy model A’ a libovolné ohodnoceni e : Var — A a ukazme, Ze

A= p(x/c)le]

Oznac¢me jako A redukt A’ na jazyk L (‘zapomeneme’ konstantu C‘A/>. Vsimnéte si, ze A je model teorie
T (axiomy T jsou tytéz jako 7", neobsahuji symbol ¢ ) tedy v ném plati ¢. Protoze dle predpokladu plati
A = @le'] pro libovolné ohodnoceni ¢, plati i pro ohodnoceni e (x/c““/> ve kterém ohodnotime proménnou

z interpretaci konstantntho symbolu ¢ ve strukture A’, mame tedy A = ¢ [e (I/A'A,)}. To ale znamena, Ze

A" E p(z/c)le], coz jsme chtéli dokazat. Naopak, predpokladejme, Ze p(x/c) plati v kazdém modelu teorie T’
a ukaZme, Ze ¢ plati v kazdém modelu A teorie T. Zvolme tedy takovy model A a néjaké ohodnoceni e : Var
— A a ukazme, ze A = ¢[e]

Ozna¢me jako A’ expanzi A do jazyka L', kde konstantni symbol ¢ interpretujeme jako prvek ¢4 = e(x).
Protoze dle pfedpokladu plati A’ | ¢(z/c)[e/] pro vSechna ohodnoceni €', plati i A" = p(x/c)le], coz ale
znamena, ze A" = ¢le]. (Nebot’ e = e(z/c) a A" = ¢(x/c)[e(x/c)] plati prave kdyz A" |= ple(x/c)].) Formule
© ale neobsahuje ¢ (zde pouZivame, Ze ¢ je novy), mame tedy i A = ¢le].

7. Vlastnosti extenzie o definicie

Je-li T extenze teorie T o definice, potom plati:

e KaZzdy model teorie T lze jednoznacéné expandovat na model T”.

e T’ je konzervativni extenze T
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e Pro kazdou L’-formuli ¢’ existuje L-formule ¢ takova, ze T | ¢’ <> .

Pro kazdou L'-formuli ¢’ existuje L-formule ¢ takova, ze T’ = ¢’ <> ¢. Dikaz. Sta¢i dokizat pro formuli ¢’
s jedinym vyskytem symbolu f; je-li vyskytu vice, aplikujeme postup induktivné, v pfipadé vnorenych vyskytu
v jednom termu f(... f(...)...) postupujeme od vnitinich k vngjsim.

Oznac¢me ¢* formuli vzniklou z¢’ nahrazenim termu f (¢1,...,t,) novou proménnou z. Formuli ¢ zkonstru-
ujeme takto:

(32) (0" AW (x1/t1, .. 20 /tn,y/2))

kde v’ je varianta 1) zarucujici substituovatelnost viech termit. M&jme model A teorie T” a ohodnoceni e.
Oznaéme a = fA (t1,...,t,) [e]. Diky existenci a jednoznaénosti plati:

AEY (x1/t1,. .., 20 /tn,y/2) [¢] prave kdyZ e(z) = a

Mame tedy A | ¢le], pravé kdyz A = ¢*[e(z/a)], pravé kdyz A = ¢'[e]. To plati pro libovolné ohodnocent
e, tedy A = ¢’ <+ ¢ pro kazdy model 77, tedy T' |= ¢’ +> . Extenze o definice Mame-1i L-teorii T' a L’-teorii
T’, potom fekneme, Ze T" je extenzi T o definice, pokud vznikla z T postupnou extenzi o definice rela¢nich
a funkénich (pfip. konstantnich) symboli. Vlastnosti, které jsme dokazali o extenzich o jeden symbol (at uz
rela¢ni nebo funkéni), se snadno rozsirii indukei na vice symbola: Disledek 6.7.11. 77 je konzervativni extenze
T.

8. Vztah definovatelnych mnozin a automorfizmov

Je-li D C A™ definovatelna ve struktufe A, potom pro kazdy automorfismus h € Aut(A) plati h[D] = D(kdeh[D]
znaci {(h(a) | a € D}).

Je-li D definovatelna s parametry b, plati totéz pro automorfismy identické na b, tj. takové, éeh(é) = 5(
neboli h (b;) = b; pro vSechna 7). )

Diikaz. UkéZeme jen verzi s parametry. Necht D = (%, ). Potom pro kazdé a € A™ plati nasledujici
ekvivalence:

9. Tablo metéda v jazyku s rovnostou

Axiomy rovnosti pro jazyk L s rovnosti jsou nasledujici:
l.z=x
2.z =y AN ANy =Yn — f(21,...,20) = [ (Y1,...,Yn) pPro kazdy n-arni funkéni symbol f jazyka L,

oz =mn A ANty =yn = (R(x1,...,2n) = R(y1,...,Yn)) pro kazdy n-arni rela¢ni symbol R jazyka
L v&etné rovnosti. Z axiomi (i) a ( iii ) tedy plyne, Ze relace = A je ekvivalence na A, a axiomy (ii) a
(iii) vyjadiuji, ze = “# je kongruenci A. V tablo metodé v piipadé jazyka s rovnosti implicitné pfidame
v8echny axiomy rovnosti:

Definice 7.3.4 (Tablo dikaz s rovnosti). Je-li T teorie v jazyce L s rovnosti, potom oznaime jako T*
roz§ifeni teorie T' o generalni uzavéry axiomu rovnosti pro jazyk L. Tablo dikaz z teorie T je tablo dikaz z T,
podobné pro tablo zamitnuti (a obecné jakékoliv tablo).

10. Veta o kompaktnosti a jej aplikacie

Teorie ma model, pravé kdyz kazda jeji kone¢na ¢ast mé model.

Dikaz. Kazdy model teorie T je zjevné modelem kazdé jeji ¢asti. Druhou implikaci dokdZeme nepfimym
diikazem: Predpokladejme, Ze T nem4 model, tj. je sporna, a najdéme kone¢nou ¢ast 7' C T, ktera je také
Sporna.
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ProtoZe je T sporna, plati T +_L (zde potiebujeme Vétu o uplnosti). Potom existuje koneény tablo dukaz 7
vyroku L z T. Konstrukce tohoto diikkazu ma jen koneéné mnoho kroki, pouzili jsme tedy jen kone¢né mnoho
axiomt z T. Definujeme-li 77" = {a € T' | T « je polozka v tablu 7}, potom 7 je také tablo dikaz sporu z teorie
T'. Teorie T' je tedy sporna kone¢nd ¢ast T.

Aplikace kompaktnosti Nésledujici jednoduchou aplikaci Véty o kompaktnosti miizete chapat jako Sablonu,
kterou nésleduje i mnoho dal$ich, slozitéjsich aplikaci této véty.

Disledek: Spocetné nekonecny graf je bipartitni, pravé kdyz je kazdy jeho koneény podgraf bipartitni.

Diukaz. Kazdy podgraf bipartitniho grafu je zjevné také bipartitni. UkaZzme opacnou implikaci. Graf je
bipartitni, pravé kdyz je obarvitelny 2 barvami. Ozna¢me barvy 0,1 .

Sestrojime vyrokovou teorii T' v jazyce P = {p, | v € V(G)}, kde hodnota vyrokové proménné p, reprezentuje
barvu vrcholu v.

T ={pu = —po [ {u,v} € E(G)}

Ziejmé plati, ze G je bipartitni, pravé kdyz T ma model. Podle Véty o kompaktnosti stac¢i ukizat, ze kazda
kone¢na ¢ast T ma model. Vezméme tedy konecnou 7V C T. Bud’ G’ podgraf G indukovany na mnoZiné
vrcholi, o kterych se zminuje teorie 77,tj.V (G') = {v € V(G) | py, € Var (I")}. Protoze je T’ kone¢na, je G’
také kone¢ny, a podle pfedpokladu je 2-obarvitelny. Libovolné 2-obarveni V (G’) ale uréuje model teorie T”.

Slovo kompaktnost pochézi z kompaktnich (tj. omezenych a uzavrenych) mnozin v Euklidovskych prostorech,
ve kterych lze z kazdé posloupnosti vybrat konvergentni podposloupnost. Miizete si pfedstavit posloupnost
zvétsujicich se koneénych ¢asti ’konvergujici” k nekone¢nému celku.

V predikatovej

Dtikaz. Model teorie je zifejmé modelem kazdé jeji ¢asti. Naopak, pokud T nemé model, je sporna, tedy
T 1. Vezméme néjaky koneény tablo dikaz 1 z T. K jeho konstrukeci sta¢i koneéné mnoho axiomu 7T, ty tvori
kone¢nou podteorii 77 C T', kterd neméa model.

11. Veta o korektnosti rezoliicie vo vyrokovej logike

Je-li formule S rezoluci zamitnutelna, potom je S nesplnitelné.

Dikaz. Necht’ S Fr O a vezméme néjaky rezolu¢ni dikaz Cy, C4,...,C, = 0. Predpokladejme pro spor,
Ze S je splniteln4, tedy V |= S pro né&jaké ohodnoceni V. Indukei podle i dokdZzeme, ze V = C;. Pro i = 0 to
plati, nebot Cy € S. Pro ¢ > 0 méame dva piipady:

e C; € S, v tom pfipadé V |= C; plyne z pfedpokladu, ze V |= S,
e C; je rezolventou Cj, Cy, kde j, k < i : z indukéniho pfedpokladu vime V = C; a V |= Ci, V = C; plyne

z korektnosti rezolu¢niho pravidla.

12. Veta o korektnosti rezoliicie v predikatovej logike

Pokud je CNF formule S rezoluci zamitnutelna, potom je nesplnitelné.

Ditkaz. Vime, ze S br O, vezméme tedy n&jaky rezoluéni dikaz O z S. Kdyby existoval model A = S,
diky korektnosti rezolu¢niho pravidla bychom mohli dokazat indukei podle délky dukazu, ze i A = O, coz ale
neni mozné.

13. Suvislost stromu dosiahnutia a splnitelnosti CNF formule
Je-li S formule a /¢ literal, potom dosazenim ¢ do S myslime formuli:
St={C\{t}|1¢CeS}
Zde shrneme nékolik jednoduchych faktt o dosazeni:
e S je vysledkem jednotkové propagace aplikované na S U {{/}}.
e Pokud S neobsahovala literal ¢ ani £, potom S = S.

e Pokud S obsahovala jednotkovou klauzuli {£}, potom O € S, tedy S* je sporna.
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S je splnitelna, pravé kdyz je splnitelna S¢ nebo S.

Diikaz. Mé&jme ohodnoceni V |= S, to nemiize obsahovat £ i £ (musi byt konzistentni); bez tijmy na obecnosti
piedpokladejme, ze £ ¢ V, a ukazme, 7e V = S*. Vezméme libovolnou klauzuli v S*. Ta je tvaru C\{¢} pro
klauzuli C' € S (neobsahujici literdl ¢ ). Vime, Ze V |= C, protoze ale V) neobsahuje £, muselo ohodnoceni V
splnit n&jaky jiny literdl C, takze platii V = C\{¢}

Naopak, piedpokladejme Ze existuje ohodnoceni V spliujici S* (opét bez Gjmy na obecnosti). ProtoZe se
¢ (ani ¢ ) nevyskytuje vS¥, plati také V\{¢} = S*. Ohodnoceni V' = (V\{f}) U {¢} potom splituje kazdou
klauzuli C € S : pokud ¢ € C, potom £ € C NV a CNV' # 0, jinak C NV = (C\{f}) NV # 0 nebot
V\{f} = O\{¢} € S*. Overili jsme, 7e V' |= S, tedy S je splnitelna.

14. Unifika¢ny algoritmus (korektnost)

Algoritmus (Unifika¢ni algoritmus).
e vstup: kone¢na mnozina vyrazi S # (),

e vystup: nejobecné&jsi unifikace o pro S nebo informace, Ze S neni unifikovatelna (0) nastav Sy := S, 0g :=
0,k :=0 (1) pokud |Sk| = 1, vrat’ o = g¢o1 - - - 0k (2) zjisti, zda v D (S) existuje proménna z a term ¢
neobsahujici  (3) pokud ano, nastav o1 := {z/t}, Sp+1 := Spokt1,k := k+ 1, a jdi na (1) (4) pokud
ne, odpovéz, Ze S neni unifikovatelnd Poznamka 8.4.11. Hled4ni proménné = a termu tv kroku (2) muze
byt relativné vypocetné narocné.

Tvrzeni 8.4.13. Unifika¢ni algoritmus je korektni. Pro kazdy vstup S skonéi v kone¢né mnoha krocich, a je-li
S unifikovatelné, odpovi nejobecnégjsi unifikaci o, jinak odpovi, Ze S neni unifikovatelna. Je-li S unifikovatelna,
potom pro sestrojenou nejobecnéjsi unifikaci o navic plati, Ze je-li 7 libovolné unifikace, potom 7 = o7.

15. Nestandardny model prirodzenych cisel

Necht N = (N, S,+,-,0,<) je standardni model pfirozenych ¢isel. Oznafme Th(N) mnozinu vSech sentenci
pravdivych ve struktufe N (tzv. teorii struktury N ). Pro n € N definujme n-ty numeral jako term n =
S(S(---(S(0)--+)), kde S je aplikovano n-krat.

Vezméme novy konstantni symbol ¢ a vyjadieme, Ze je ostie vétsi nez kazdy n-ty numeral:

T=Th(N)U{n <c|neN}

V&imnéte si, Ze kazda koneéné ¢ast teorie T' ma model. Z véty o kompaktnosti tedy plyne, Ze i teorie T' mé
model. Rikdme mu nestandardni model (ozna¢me ho A ). Plati v ném tytéz sentence, které plati ve standardnim
modelu, ale zaroveni obsahuje prvek ¢, ktery je vétsi nez kazdé n € N (¢imZ zde myslime hodnotu termu n v
nestandardnim modelu A).

16. Kompletné jednoduché extenzie DeLO*
Teorie uspotradani je teorie v jazyce usporadani L = (<) s rovnosti, jejiz axiomy jsou:
T={z<u,

r<yNy<z—x=y,
r<yANy<z—ox<z}

Témto axiomum fikdme reflexivita, antisymetrie, tranzitivita. Modely T jsou L-struktury <S,§S >, ve
kterych plati axiomy T, tzv. (Castetn8) uspofadané mmnoziny. Napi: A = (N,<), B = (P(X),C) pro
X ={0,1,2}

e Formule z < y V y < z (linearita) plati v A, ale neplati v B, nebot neplati nap¥. p¥i ohodnoceni kde
e(z) = {0}, e(y) = {1} (piSeme B [~ ¢[e] ). Je tedy nezévisla v T

e Sentence (3z)(Vy)(y < x) (oznafme ji ¢ ) je pravdiva vB a lziva vA, piseme B = ¢, A = —1. Je tedy
také nezavisla v T

e Formule (z <yAy<zAz<z)— (r=yAy==z) (oznafme ji x ) je pravdiva vT', piseme T |= x. Totéz
plati pro jeji generalni uzavér (Va)(Vy)(vz)x.

Teorie hustého linearniho usporadani (DeLO*) je extenze teorie uspofadani o nasledujici axiomy:
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e axiom linearity (nékdy se mu ¥ika také dichotomie):

r<yVy<cz

e axiom hustoty

r<yA-z=y— (F)(z<zAz2<yA-z=cANz=y)

Tvrzeni 9.1.6. Mé&me sentence ¢ = (Jz)(Vy)(r < y) a ¢ = (Fz)(Vy)(y < z) vyjadiujici existenci minimal-
nfho resp. maximélniho prvku. Nasledujici ¢tyfi teorie jsou pravé vSechny kompletni jednoduché extenze teorie
DeLO*:

e DeLO = DeLO* U{—¢, -1}
e DeLOT = DeLO* U {—¢, v}
e DeLO™ = DeLO™ U {p, )}

e DeLOE = DeLO* U{¢p, v} Staci ukézat, Ze tyto tyfi teorie jsou kompletni. Potom uZ je zFejmé, Ze
zadn4 dalsi kompletni jednoduché extenze DeLO* nemtzZe existovat. Kompletnost plyne z faktu, Ze jsou
w-kategorické, tj. maji jediny spocetny model az na izomorfismus.

17. Existencia spocetného algebraicky uzavreného telesa

Je-li L spocetny jazyk s rovnosti, potom ke kazdé nekonecné L-struktufe existuje elementarné ekvivalentni
spocetné nekone¢na struktura.

Dikaz. Méjme nekone¢nou L-strukturu A. Najdeme spocetné nekonecnou strukturu B = A. Protoze v.A
neplati pro zadné n € N sentence vyjadiujici ’existuje nejvyse n prvki’ (coZ lze pomoci rovnosti snadno zapsat),
neplati tato sentence ani v B, B tedy nemuze byt kone¢na struktura.

Téleso A je algebraicky uzaviené, pokud kaZzdy polynom nenulového stupné v ném maé koten. Téleso realnych
¢isel R neni algebraicky uzaviené, nebot x? + 1 nema v R kofen, stejné tak téleso Q ( v ném neméa kofen ani
P 2). Téleso komplexnich ¢&isel C algebraicky uzaviené je, je ale nespocetné.

Algebraickou uzavienost lze vyjadiit pomoci nasledujicich sentenci v,,, pro kazdé n > 0 :

(Vap—1)...(Vao) Fy) (y" + 21 -y 421y +20) =0

kde y* je zkratka za term y -y - --- -y (kde - je aplikovano (k — 1)-krat). Disledek: Existuje spocetné
algebraicky uzaviené téleso. Diikaz. Existuje spofetné nekonecna struktura .4 elementarné ekvivalentni télesu
C. Protoze C je téleso a spliiuje sentence 1, pro vSechna n > 0, je i A algebraicky uzaviené téleso.

18. Telesa charakteristiky 0 nie st koneéne axiomatizovatel'né

Méjme titdu struktur K C My, a uvazme takeé jeji doplnék K = M\ K. Potom K je kone¢né axiomatizovatelna,
pravé kdyz KiK jsou axiomatizovatelné.

Staci ukazat, ze K (t&lesa nenulové charakteristiky) neni axiomatizovatelna, coz dokdZeme sporem. Necht’
existuje teorie S takova, ze M(S) = K. Potom teorie S’ = S UT’ ma model, nebot’ kazd4 jeji kone¢na ¢ast ma
model: staéi vzit t&leso prvociselné charakteristiky vétsi nez jakékoliv p z axiomu T” tvaru —pl = 0. Necht A je
model S’. Potom je i A € M(S) = K. Zaroven je ale A € M (T") = K, coZ je spor.

19. Kritérium otvorenej axiomatizovatel'nosti

Pokud je teorie T oteviené axiomatizovatelna, potom je kazda podstruktura modelu T' také modelem T'. Necht
T’ je oteviena axiomatizace T. M&jme model A = T" a podstrukturu B C A. Pro kazdou formuli ¢ € T" plati
B = ¢ (nebot’ ¢ je oteviend), tedy i B = T".

Uved’'me nékolik piikladi:

e Teorie DelLO neni oteviené axiomatizovatelna, napiiklad zZadné kone¢na podstruktura modelu DeLO
nemize byt husta.

e Teorie téles neni oteviené axiomatizovatelnd, podstruktura Z C Q télesa celych ¢&isel neni télesem, v Z
neexistuje inverzni prvek vici nasobeni k &islu 2 .
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e Pro dané n € N jsou nejvyse n-prvkové grupy oteviené axiomatizovatelné(podgrupy jsou jisté také nejvyse
n-prvkové). Jako otevienou axiomatizaci lze vzit néasledujici extenzi (oteviené) teorie grup T :

TU \/ Ti =Ty
1<i<j<n+1

20. Rekurzivne axiomatizovana teoéria je ¢iastoéne rozhodnutelna, kompletna je
rozhodnutel'na

O teorii T fikdme, Ze je

e rozhodnutelna, pokud existuje algoritmus, ktery pro kazdou vstupni formuli ¢ dobéhne a odpovi, zda
T,

e Castefné rozhodnutelna, pokud existuje algoritmus, ktery pro kazdou vstupni formuli:
e pokud T | ¢, dobéhne a odpovi "ano",

e pokud T £ ¢, bud’ nedob&hne, nebo dobéhne a odpovi "ne".

Teorie T je rekurzivné axiomatizovana, pokud existuje algoritmus, ktery pro kazdou vstupni formuli ¢
dobéhne a odpovi, zda ¢ € T.
Necht T je rekurzivné axiomatizovana. Potom:

1. T je ¢astecné rozhodnuteln4,

2. je-li T navic kompletni, potom je rozhodnutelna. Dikaz. Algoritmem ukazujicim ¢asteénou rozhodnutel-
nost je konstrukce systematického tabla pro F ¢.# Pokud ¢ v T plati, konstrukce skoné&i v kone¢né mnoha
krocich a snadno ovéfime, Ze je tablo sporné, jinak ale skoné¢it nemusi.

Je-li T kompletni, vime, ze T F ¢ pravé kdyz T ¥ . Budeme tedy paralelné konstruovat tablo pro Fp a
tablo pro Ty (dikaz a zamitnuti ¢ z T ): jedna z konstrukei po koneéné mnoha krocich skonéi.

21. Teéria konec¢nej Struktiry v koneénom jazyku s rovnostou je rozhodnutel'na

Mgjme L-strukturu A. Teorie struktury A, znacime Th(.A) je mnoZzina viech L-sentenci platnych v A :

Th(A) = {¢ | ¥ je L-sentence a A |= ¢}

Je-li A koneéna struktura v koneéném jazyce s rovnosti, potom je teorie Th(.A) rekurzivné axiomatizovatelna.

Diikaz. Ocislujme prvky domény jako A = {aq,...,a,}. Teorii Th(A) lze axiomatizovat jedinou sentenci,
kter4 je tvaru "existuje pravé n prvka aq,...,a, spliujicich pravé ty zakladni vztahy o funk¢énich hodnotéch a
relacich, které plati ve struktuie A ".

22. Godelové vety o netiplnosti a ich désledky (bez dokazu)

(Prvni véta o netplnosti). Pro kazdou bezespornou rekurzivné axiomatizovanou extenzi T" Robinsonovy arit-
metiky existuje sentence, které je pravdiva v N, ale neni dokazatelna v T

(Druha véta o nedplnosti). Pro kazdou bezespornou rekurzivné axiomatizovanou extenzi T Peanovy arit-
metiky plati, Zze Cr neni dokazatelna v T.

Tazké otazky

1. Veta o korektnosti tablo metédy vo vyrokovej logike

Je-li vyrok ¢ tablo dokazatelny z teorie T, potom je ¢ pravdivy vT,tj. TFHp =T | ¢.

Dikaz. DokaZzeme sporem. Predpokladejme, Ze ¢ v T neplati, tj. existuje protipfiklad: model v € M(T), ve
kterém ¢ neplati. Protoze je ¢ dokazatelna z T, existuje tablo dikaz ¢ z T, coz je sporné tablo z T' s polozkou
Fo v kofeni. Model v se shoduje s polozkou Fyp
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1. Shoduje-li se model teorie T s polozkou v kofeni tabla z teorie T', potom se shoduje s nékterou vétvi.
Diitkaz. Mg&jme tablo 7 = (J,5, 7 z teorie T' a model v € M(T) shodujici se s kofenem 7, tedy s
(jednoprvkovou) vétvi Vo v (jednoprvkovém) 79. Indukei podle i (podle krokt v pii konstrukei tabla)
najdeme posloupnost Vo C V5 C ... takovou, Ze V; je vétev v tablu 7; shodujici se s modelem v, a V; 11 je
prodlouzenim V;. Pozadovana vétev tabla 7 je potom V = J,~, Vi.

Pokud ;41 vzniklo z 7; bez prodlouzeni vétve V;, definujeme V;11 = V;.

Pokud ;41 vzniklo z 7; pfipojenim polozky T « (pro néjaky axiom a € T ) na konec vétve V,
definujeme V;;1 jako tuto prodlouzenou vétev. Protoze v je model T, plati v ném axiom «, tedy
shoduje se i s novou polozkou T a.

Necht’ 7,41 vzniklo z 7; pfipojenim atomického tabla pro néjakou polozku P na konec vétve V.
Protoze se model v shoduje s polozkou P (kter4 lezi na vétvi V; ), shoduje se i s kofenem pfipojeného
atomického tabla, a proto se shoduje i s nékterou z jeho vétvi. (Tuto vlastnost snadno ovéfime pro
v8echna atomicka tabla.) Definujeme V41 jako prodlouZzeni V; o tuto vétev atomického tabla.

Vsechny vétve jsou ale sporné, véetné V. Takze V obsahuje polozky T v a F ¢ (pro néjaky vyrok ¢ ), a
model v se s t&€mito polozkami shoduje. Mame tedy v |= ¢ a zaroven v k- 1, coZ je spor.

2. Veta o korektnosti tablo met6dy v predikatovej logike

Je-li sentence ¢ tablo dokazatelna z teorie T, potom je ¢ pravdiva vT,tj.T F o = T | ¢.

Diukaz. Predpokladejme pro spor, ze T [~ ¢, tj. existuje A € M(T) takovy, ze A [~ ¢. Protoze T F ¢,
existuje sporné tablo z T' s F ¢ v koteni. Model A se shoduje s Fop, 1ze tedy expandovat do jazyka L¢ tak, ze
se expanze shoduje s n&jakou vétvi V.

1. Dikaz. Mgéjme tablo 7 = |

;>0 Ti z teorie T a model A € Mg (T) shodujici se s kofenem 7, tedy s

(jednoprvkovou) vétvi Vov (jednoprvkovém) 79. Indukei podle i najdeme posloupnost vétvi V; a expanzi
A; modelu A o konstanty ¢* € C vyskytujici se na V; takovych, ze V; je vétev v tablu 7; shodujici se s
modelem A;, V;1 je prodlouZenim V;, a A;y1 je expanzi A4; (mohou si byt i rovny). Pozadovana vétev
tabla 7 je potom V = J,,Vi. Expanzi modelu A do jazyka Lc ziskdme jako ’limitu’ expanzi A;, tj.
vyskytuje-li se symbol ¢ € C' na V, vyskytuje se na néjaké z vétvi V; a interpretujeme ho stejné jako v.A;
(ostatni pomocné symboly interpretujeme libovolng).

Pokud 711 vzniklo z 7; bez prodlouzeni vétve V;, definujeme V; 11 =V; a A;11 = A;.

Pokud 7;41 vzniklo z 7; pfipojenim polozky T « (pro né&jaky axiom « € T ) na konec vétve V;,
definujeme V;y; jako tuto prodlouZenou vétev a A;11 = A; (nepfidali jsme zadny novy pomocny
konstantni symbol). ProtoZe A;;1 je modelem T, plati v ném axiom «, tedy shoduje se i s novou
polozkou Ta.

Necht 7;41 vzniklo z 7; pfipojenim atomického tabla pro néjakou polozku P na konec vétve V.
ProtoZe se model A; shoduje s polozkou P (ktera lezi na vétvi V; ), shoduje se i s kofenem pfipojeného
atomického tabla.

Pokud jsme pripojili atomické tablo pro logickou spojku, poloZime A;,1 = A; (nepfidali jsme novy
pomocny symbol). ProtoZe A;11 se shoduje s koFenem atomického tabla, shoduje se i s nékterou z
jeho vétvi (stejné jako ve vyrokové logice); definujeme V;1; jako prodlouzeni V; o tuto vétev.

Je-li polozka P typu ’svédek’: Pokud je P = T(3z)p(x), potom A; = (x)p(x), tedy existuje a € A
takové, ze A; = p(z)[e(x/a)]. Vétev Vi1 definujeme jako prodlouzeni V; o nové pridanou polozku
Ty(z/c) a model A;,; jako expanzi A;o konstantu ¢ = a. P¥ipad P = F(Vz)p(z) je obdobny.

Je-li polozka P typu ’'vSichni’, vétev V;;; definujeme jako prodlouzeni V; o atomické tablo. Nové
pridana polozka je Ty(xz/t) nebo Fy(x/t) pro ndjaky Lo-term t. Predpokladejme, Ze jde o prvni
z téchto dvou moznosti, pro druhou je dukaz analogicky. Model A;;1 definujeme jako libovolnou
expanzi A; o nové konstanty vyskytujici se v t. Protoze A; = (Vaz)p(x), plati 1 A;11 E (Va)p(x) a
tedy i A;41 | ¢(z/t); model A; 1 se tedy shoduje s vétvi V;.

Vsechny vétve jsou ale sporné.
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3. Veta o tplnosti tablo metédy vo vyrokovej logike

Je-li vyrok ¢ pravdivy v teorii T, potom je tablo dokazatelny z T, tj.T = o = T F .

Diikaz. UkaZzeme, Ze libovolné dokoncené (tedy napf. i systematické) tablo z T' s polozkou Fev kofeni je
nutné sporné. Dikaz provedeme sporem: kdyby takové tablo nebylo sporné, existovala by v ném bezesporna
(dokonc¢ena) vétev V. Uvazme kanonicky model v pro tuto vétev. ProtoZe je V' dokonéené, obsahuje T « pro
vSechny axiomy « € T. Model v se shoduje se vSemi polozkami na V, spliiuje tedy vSechny axiomy a mame

vET.

1. Diakaz. Ukizeme, ze kanonicky model v se shoduje se v8emi polozkami P na vétvi V', a to indukci podle
struktury vyroku v polozce. Nejprve zaklad indukce:

e Je-li P = Tp pro ndjaky prvovyrok p € P, mame podle definice v(p) = 1;v se s P shoduje.

e Je-li P = Fp, potom se na vétvi V nemuze vyskytovat polozka Tp, jinak by V byla sporna. Podle
definice mame v(p) = 0 a v se s P opét shoduje. Nyni indukéni krok. Rozebereme dva pfipady,
ostatni se dokazi obdobné.

e Necht P = Ty A 1. Protoze je V' dokoncené vétev, je na ni polozka P redukované. To znamena, Ze
se na V vyskytuji i polozky T ¢ a T 1. Podle indukéniho pfedpokladu se s nimi model v shoduje,
tedy v = @ a v = 1. TakZze platiiv = ¢ A a v se shoduje s.

e Necht P = Fp A 1. Protoze je P na V redukovana, vyskytuje se na V polozka F¢ nebo polozka Fi).
Plati tedy v £ ¢ nebo v [ 9, z ¢ehoZ plyne v = ¢ A1) a v se shoduje s P.

Protoze se ale v shoduje i s polozkou Fy v kofeni, mame v F~ ¢, coz znamenam, ze T [~ 1, spor. Tablo tedy
muselo byt sporné, tj. byt tablo dikazem ¢ z T.

4. Veta o uplnosti tablo metédy v predikatovej logike

Je-li sentence ¢ pravdiva v teorii T, potom je tablo dokazatelna z T,tj.T = p = T F .

Dikaz provedeme sporem: kdyby takové tablo nebylo sporné, existovala by v ném bezesporna (dokon¢en4)
vétev V. UvaZme kanonicky model A pro tuto vétev, a ozname jako A’ jeho redukt na jazyk L. ProtoZe je V
dokoncené, obsahuje T « pro v8echny axiomy o € T. Model A se shoduje se vSemi polozkami na V', spliiuje
tedy vSechny axiomy a mame i A" = T.

1. Dikaz. Nejprve uvazme jazyky bez rovnosti. UkaZeme indukeci podle struktury sentenci v polozkach,
7e kanonicky model A se shoduje se vSemi polozkami P na vétvi V. Zaklad indukce, tj. pripad, kdy
@ =R(s1,...,5,) je atomicka sentence, je jednoduchy: Je-li na V polozka T ¢, potom (s1,...,s,) € R4
plyne pfimo z definice kanonického modelu, méame tedy A = ¢. Je-li na V polozka Fe, potom na V' neni
polozka Tp(V je bezespornd), (s1,...,s,) ¢ RA, a A [~ ¢ Nyni indukéni krok. Rozebereme jen nékolik
piipadi, ostatni se dokézi obdobné. Pro logické spojky je dikaz zcela stejny jako ve vyrokové logice,
napifklad je-li P = Fp A 9, potom protoze je P na V redukovana, vyskytuje se na V polozka F¢ nebo
polozka F 4. Plati tedy AVp nebo AV, z éehoZ plyne AVp A a A se shoduje s P.

e Mame-li polozku typu "vsichni", napiiklad P = T(Va)e(x) (pfipad P = F(3z)e(x) je obdobny),
potom jsou na V i polozky T'¢(z/t) pro kazdy konstantni Lo-term, tj. pro kazdy prvek " ¢ " € A.
Dle indukéniho pfedpokladu je A | ¢(x/t) pro kazdé "t" € A, tedy A = (Vz)p(z)

e Mame-li polozku typu "svédek", napiiklad P = T(3Jz)p(z) (pfipad P = F(Vz)p(z) je obdobny),
potom je na V i polozka T'w(x/c) pro n&jaké " ¢ " € A. Dle indukéniho predpokladu je A = p(z/c),
tedy 1 A = (Fz)p(x).

Je-li jazyk s rovnosti, mame kanonicky model A = B/ = B, dikaz vyse plati pro B

ProtoZe se ale A shoduje i s polozkou Fy v kofeni, plati i A" £ ¢, coZ znamena, ze A" € My (T)\M(p),
tedy T [~ ¢, a to je spor. Tablo tedy muselo byt sporné, tj. byt tablo dikazem ¢ z T.

5. Veta o konec¢nosti sporu, dosledky o konec¢nosti a systemati¢nosti dékazov

Je-li 7 = J;5 7i sporné tablo, potom existuje n € N takové, Ze 7, je sporné kone¢né tablo. Diikaz. Uvazme
mnozinu S vSech vrchola stromu 7, které nad sebou (ve stromovém uspofadani) neobsahuji spor, tj. dvojici
polozek T, Fi.
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Kdyby mnozina S byla nekone¢na, podle Koénigova lemmatu (Nekone¢ny, kone¢né vétvici strom mé nekoned-
nou vétev. ) pouzitého na podstrom 7 na mnoZiné S bychom méli nekone¢nou, bezespornou vétev v S. To by
ale znamenalo, Ze mame i bezespornou vétev v 7, coZ je ve sporu s tim, Ze 7 je sporné. (Podrobng&ji: Vétev na S
by byla podvétvi ngjaké vétve V v 7, ktera je spornd, tj. obsahuje néjakou (konkrétni) spornou dvojici polozek,
ktera ale existuje uz v néjakém koneéném prefixu V.)

Mnozina S je tedy konecna. To znamena, ze existuje d € N takové, ze cela S lezi v hloubce nejvyse d. Kazdy
vrchol na drovni d + 1 mé tedy nad sebou spor. Zvolme n tak, ze 7, uz obsahuje vSechny vrcholy 7 z prvnich
d + 1 urovni: kazda vétev 7, je tedy sporné.

Dusledek Pokud pfi konstrukci tabla nikdy neprodluzujeme sporné vétve, napr. pro systematické tablo,
potom sporné tablo je kone¢né. Disledek Pokud T F ¢, potom existuje i kone¢ny tablo dukaz ¢ z T

Dausledek Systemati¢nost dikazt). Pokud T F ¢, potom systematické tablo je (kone¢nym) tablo dikazem ¢
z T. K diikazu budeme potfebovat dvé fakta: pokud je ¢ dokazatelna z T', potom v T plati (V&ta o korektnosti),
tj. nemuze existovat protiptiklad. A dale pokud by systematické tablo mélo bezespornou vétev, znamenalo by
to, Ze existuje protiptiklad (to je klitem k Vé&t& o taplnosti).

Diukaz 7 dikazu o uplnosti také dostavame ’systematicnost dikazi’, tj. Ze dikaz muzeme vzdy hledat
konstrukei systematického tabla: Pokud T | ¢, tak je i systematické tablo pro polozku F¢ nutné sporné, a je
tedy tablo diukazem @zT.

6. Veta o tplnosti rezolicie vo vyrokovej logike

Je-li S nesplnitelna, je rezoluci zamitnutelna (tj. S Fr O). Dikaz. Je-li S nekoneéna, ma kone¢nou nesplnitel-
nou ¢ast S’. Rezoluéni zamitnuti S’ je také rezoluénim zamitnutim S.

1. Teorie m& model, pravé kdyz kazda jeji koneéna ¢ast ma model. Diakaz. Kazdy model teorie T je zjevné
modelem kazdé jeji ¢asti. Druhou implikaci dokdzeme nepfimym dtikazem: Pfedpokladejme, Zze T nema
model, tj. je sporné, a najdéme kone¢nou ¢ast T C T, ktera je také sporna. ProtoZe je T' sporné, plati
T 1. Pokud T F ¢, potom existuje i konecny tablo dikaz ¢ z T. Konstrukce tohoto dikazu mé jen
kone¢né mnoho krokt, pouzili jsme tedy jen kone¢né mnoho axiomt z T'. Definujeme-li 77 = {a € T | T «
je polozka v tablu 7}, potom 7 je také tablo dikaz sporu z teorie T". Teorie T” je tedy spornéa kone¢na ¢ast
T. Dikaz provedeme indukci podle po¢tu proménnych v S. Je-li | Var(S)| = 0, jedind moZné nesplnitelna
formule bez proménnych je S = {0} a mame jednokrokovy dikaz S g 0. Jinak vyberme p € Var(S). S
je splnitelna, pravé kdy# je splnitelna S* nebo S¢. Mé&jme ohodnoceni V |= S, to nemiize obsahovat ¢ i ¢
(musf byt konzistentni); bez jmy na obecnosti pfedpokladejme, ze £ ¢ V, a ukazme, ze V |= S*. Vezméme
libovolnou klauzuli v S¢. Ta je tvaru C\{¢} pro klauzuli C € S (neobsahujici literal £ ). Vime, ze V |= C,
protoZe ale V neobsahuje £, muselo ohodnoceni V splnit n&jaky jiny literdl C, takze plati i V = C\{f}
Predpokladejme tedy, ze S je koneéna. Naopak, piedpokladejme Ze existuje ohodnoceni V splitujici S*
(opét bez Gjmy na obecnosti). Protoze se £ (ani ¢ ) nevyskytuje v.S¢, plati také V\{/} = S¢. Ohodnoceni
V' = (V\{¢}) U {¢} potom spliiuje kazdou klauzuli C € S : pokud £ € C, potom £ € C NV a C NV # 0,
jinak NV’ = (C\{£})NV' # 0 nebot V\{€} = C\{f} € S*. Ovrili jsme, ze V' |= 3, tedy S je splniteln4.

Tedy SP i SP nesplnitelné. Maji o jednu proménnou ménég, tedy podle indukéniho piedpokladu existuji
rezolu¢ni stromy T pro SP g O a T” pro S? Fx 0. R R

Ukazeme, jak ze stromu T vyrobit rezoluéni strom T pro S kg —p. Analogicky vyrobime T’ pro Skrpa
potom uZ snadno vyrobime rezolu¢ni strom pro S Fr O : ke kofeni O pfipojime kofeny stroma T a T jako
levého a pravého syna (tj. v poslednim kroku rezoluéniho dikazu ziskame O rezoluci z {—p} a {p}).

Zbyva ukazat konstrukci stromu T : mnozina vrchold i uspofadani jsou stejné, zménime jen nékteré klauzule
ve vrcholech, a to pridanim literalu —p. Na kazdém listu stromu T je néjaka klauzule C' € SP, a bud’ je C' € S,
nebo neni, ale C U {—p} € S. V prvnim p¥ipadé nechame label stejny. Ve druhém ptipadé pfidame do C a do
v8ech klauzuli nad timto listem literal —p. V listech jsou nyni jen klauzule z S, v kofeni jsme [J zménili na —p.
A kazdy vnitini vrchol je nadale rezolventou svych synu.

7. Veta o tplnosti LI-rezolicie pre vyrokové Hornove formule

Je-li Hornova formule T splnitelna, a TU{G} je nesplnitelna pro cil G, potom TU{G} 1; O, a to LI-zamitnutim,
které zacina cilem G.

Diikaz (konstrukei LI-zamitnuti) provedeme indukei podle poétu proménnych v 7.

Vime, Ze je-li Hornova formule S nesplnitelna a O ¢ S, potom obsahuje fakt i cil. Ditkaz. Neobsahuje-li
fakt, mizeme ohodnotit v8echny proménné 0 ; neobsahuje-li cil, ohodnotime 1. Potom T obsahuje fakt {p} pro
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né&jakou vyrokovou proménnou p. Protoze T'U{G} je nesplnitelna, je nesplnitelna také (TU{G})P = TP U{GP},
kde GP = G\{—p}

Pokud G? = 0O, potom G = {-p},O je rezolventa G a {p} € T, a mame jednokrokové LI-zamitnuti 7" (to je
baze indukce).

Jinak je formule T? splnitelna (stejnym ohodnocenim jako T', nebot to musi obsahovat p kvuli faktu {p},
tedy neobsahuje —p ) a ma méné proménnych nez T. Tedy podle indukéniho pfdpokladu existuje LI-odvozeni
OzT? U {GP} zatinajici GP = G\{—p}.

Hledané LI-zamitnuti TU{G} zaéinajici G zkonstruujeme (podobné jako v ditkazu Véty o aplnosti rezoluce)
pfidanim literdlu —p do vSech list1, které uz nejsou v T'U {G} (tedy vznikly odebranim —p, a do v8ech vrcholu
nad nimi. Tim ziskdme T'U {G} k1 —p, na zavér pfidame bocni klauzuli {p} a odvodime [J.

8. Veta o uplnosti rezolucie v predikatovej logike (Lifting lemma)

Je-li CNF formule S nesplnitelna, potom je zamitnutelna rezoluci.

(Zékladni instance). Mé&jme otevienou formuli ¢ ve volnych proménnych xq, ..., z,. Rekneme, Ze instance
o (x1/t1,...,2n/tn) je zakladni (ground) instance, jsou-li viechny termy ¢1,...,t, konstantni (ground).

(Lifting lemma). M&jme klauzule C; a Cs s disjunktni mnoZinou proménnych. Jsou-li C7 a C5 zékladni
instance klauzuli C; a Cy a je-li C* je rezolventou C§ a (5, potom existuje rezolventa C' klauzuli C a Cs
takova, ze C* je zakladni instanci C. Z lifting lemma pak: Mé&jme CNF formuli S a ozna¢me jako S* mnozinu
v8ech jejich zékladnich instanci. Pokud S* Fr C* ('na trovni vyrokové logiky’) pro n&jakou zakladni klauzuli
C*, potom existuje klauzule C' a zakladni substituce o takova, ze C* = Co a S Fr C ('na trovni predikatové
logiky’).

Dikaz. Ozna¢me jako S* mnozinu vSech zakladnich instanci klauzuli z S. ProtoZe je S nesplnitelna, je diky
Herbrandové vété nesplnitelna i S*. Z véty o uplnosti vyrokové rezoluce vime, ze S* Fr O ('na trovni vyrokové
logiky’). Z Lifting lemmatu postavame klauzuli C' a zékladni substituci o takové, ze Co = 0 a S Fr C ('na
arovni predikatové logiky’). Ale protoZe prazdna klauzule O je instanci C', musi byt C' = 0. Tim jsme nasli
rezolu¢ni zamitnuti S +r O.

9. Skolemova veta

Kazda teorie méa otevienou konzervativni extenzi.
(Skolemova varianta). Meé&jme L-sentenci ¢ v PNF, a necht v8echny jeji vazané proménné jsou riazné.

Necht existen¢ni kvantifikitory z prefixu ¢ jsou (Jy1),...,(3y,) (v tomto poradi), a necht pro kazdé i jsou
(Vx1), ..., (Va,,) pravé viechny univerzalni kvantifikitory predchazejici kvantifikator (Jy;) v prefixu .

Lemma: Mé&jme L-sentenci ¢ = (V1) ... (Va,) (Jy)1 a necht’ ¢’ je sentence

(Vep) ... (Vo) (y/ f (21, ..., 20))

kde f je novy funkéni symbol. Potom: (i) L-redukt kazdého modelu ¢’ je modelem ¢, a (ii) kazdy model ¢
lze expandovat na model ¢’. Dikaz. Nejprve dokazme ¢ast (i): Mé&jme model A’ = ¢’ a necht A je jeho redukt
na jazyk L. Pro kazdé ohodnoceni proménnych e plati A = ¢[e(y/a)] pro a = (f (x4, ... ,xn))A/ le], tedy A = ¢

Nyni ¢ast (ii): Protoze A = ¢, existuje funkce f4 : A™ — A takova, Ze pro kazdé ohodnoceni proménnych
e plati A = vle(y/a)], kde a = fA (e (x1),...,e(z,)). To znamena, 7e expanze struktury A vznikla pidanim
funkce f4 je modelem ¢’

Ditkaz. Mé&jme L-teorii T. Kazdy axiom nahradime jeho generalnim uzavérem (neni-li to uz sentence) a
prevedeme do PNF, tim ziskdme ekvivalentni teorii 7. Nyni nahradime kaZdy axiom teorie T’ jeho Skolemovou
variantou. Tim ziskdme teorii 7" v rozsiiném jazyce L’. Z Lemmatu pak plyne, Ze L-redukt kazdého modelu 7"
je modelem T”, tedy T" je extenzi T”, a Ze kazdy model T” lze expandovat do jazyka L’ na model T”, tedy jde
o konzervativni extenzi. Teorie T” je axiomatizovana univerzalnimi sentencemi, odstranime-li kvantifikdtorové
prefixy (tj. vezmeme-li jadra axiomu), ziskdme otevienou teorii 7", ktera ekvivalentni s T a tedy je také
konzervativni extenzi T.

10. Herbrandova veta

Méjme otevienou teorii T' v jazyce L bez rovnosti a s alesponl jednim konstantnim symbolem. Potom bud’
ma T Herbrandiv model, nebo existuje koneéné mnoho zakladnich instanci axioma 7', jejichz konjunkce je
nesplnitelna.

(Herbrandav model). Mgéjme jazyk L = (R,F) s alespoii jednim konstantnim symbolem. L-struktura
A= <A,RA,.7:A> je Herbrandiv model, jestliZe:
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e A je mnoZina vSech konstantnich L-termu (tzv. Herbrandovo univerzum), a

e pro kazdy n-arni funkéni symbol f € F a konstantni termy " ¢1”,..., " t,,” € A plati:

f.A (77t1’?’ . 77’tn77) — 77f(t1’ . ’tn) ”
A _

e Specialné, pro kazdy konstantni symbol ¢ € F je ¢ c

Diikaz. Ozna¢me jako Tyrouna mnoZzinu vSech zakladnich instanci axomi teorie T. Zkonstruujeme systemat-
ické tablo z teorie Tgrouna s polozkou F L v kofeni, ale z jazyka L, bez rozsifeni o pomocné konstantni symboly
na jazyk L¢ - Pokud tablo obsahuje bezespornou vétev, potom je kanonicky model pro tuto vétev (opét bez
pridani pomocnych konstantnich symboli) Herbrandovym modelem T'. V opa¢ném pfipadé mame tablo diikaz
sporu, tedy teorie Tground , @ tim padem i T, je nesplnitelnd. ProtoZe je tablo dikaz koneény, pouzili jsme v
ném jen koneéné mnoho zakladnich instanci axiomi oground € Tground. Jejich konjunkce je tedy nesplnitelna.

11. Lowenheim-Skolemova veta vratane variatnu s rovnostou, jej dosledky

Je-li L spocetny jazyk bez rovnosti, potom kazda bezesporna L-teorie mé spocetné nekoneény model.

Ditkaz. Vezméme néjaké dokondené (napt. systematické) tablo z teorie T' s polozkou F L v kofeni. Protoze
T je bezesporna, neni v ni dokazatelny spor, tedy tablo musi obsahovat bezespornou vétev. Hledany spocetné
nekoneény model je L-redukt kanonického modelu pro tuto vétev.

Tato véta ma nasledujici jednoduchy dusledek: Disledek 1. Je-li L spocetny jazyk bez rovnosti, potom ke
kazdé L-struktufe existuje elementarné ekvivalentni spocetné nekoneéna struktura.

Dukaz. Méjme L-strukturu A. Teorie Th(A) je bezesporna (méa model A), tedy dle LéwenheimSkolemovy
mé spocetné nekoneény model B |= Th(A). To ale znamena, ze B = A.

V jazyce bez rovnosti tedy nemuzeme vyjadfit napriklad 'model mé pravé 42 prvkd’. V dikazu Lowenheim-
Skolemovy véty jsme sestrojeny model ziskali jako kanonicky model pro bezespornou vétev tabla z T pro polozku
F L. Stejnym zpiisobem se dokaze nasledujici verze pro jazyky s rovnosti, staci faktorizovat dle relace = 4 :

Véta (Léwenheim-Skolemova s rovnosti). Je-li L spocetny jazyk s rovnosti, potom kazda bezesporna L-teorie
mé spocetny model (tj. kone¢ny, nebo spocetné nekonecny). I tato verze ma snadny dusledek pro konkrétni
struktury: Duisledek 2. Je-li L spocetny jazyk s rovnosti, potom ke kazdé nekonecné L-struktufe existuje
elementarné ekvivalentni spocetné nekoneéné struktura.

Dikaz. Mé&jme nekonecnou L-strukturu A. Stejné jako v diikazu Dusledku 1. najdeme spocetné nekone¢nou
strukturu B = A. Protoze v A neplati pro zadné n € N sentence vyjadfujici ’existuje nejvyse n prvka’ (coz lze
pomoci rovnosti snadno zapsat), neplati tato sentence ani v B, B tedy nemuZe byt kone¢na struktura.

12. Vztah izomorfizmu a elementarnej ekvivalencie

Mgjme struktury A, B jazyka L = (R, F). Izomorfismus A a B (nebo ’ A na B’) je bijekce h : A — B spliujici
nasledujici vlastnosti:

e Pro kazdy (n-arni) funkéni symbol f € F a pro v8echna a; € A plati:

h(fA(ah...,an)) = fB(h(a),...,h(an))

(Specialng, je-li ¢ € F konstantni symbol, plati h (CA) =cB)

e Pro kazdy (n-arni) relaéni symbol R € R a pro v8echna a; € A plati:

R (ayq, ..., an) prave kdyz RP (h(a1),...,h(an))

Pokud existuje, fikime, Ze A a B jsou izomorfni (nebo ’ A je izomorfni s B via h ’) a piSeme A ~ B (nebo
A~ B). Automorfismus A je izomorfismus A na A

Struktury A, B (v témz jazyce) jsou elementarné ekvivalentni, pokud v nich plati tytéz sentence. Zna&ime
A=B.

Mgjme struktury A, B jazyka L = (R,F). Bijekce h : A — B je izomorfismus A a B, pravé kdyz plati
nasledujici: (i) pro kazdy L-term ¢ a ohodnoceni proménnych e : Var — A :

h (t1e]) = tPle o h]
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(ii) pro kazdou L-formuli ¢ a ohodnoceni proménnych e : Var — A :

A= ple] pravekdyz B = pleo h)

Dikaz. Je-li h izomorfismus, vlastnosti snadno dokdzeme indukci podle struktury termu resp. formule.
Naopak, je-li h bijekce splijici (i) a (ii), dosazenim t = f (x1,...,2,) resp. ¢ = R(x1,...,x,) dostavame
vlastnosti z definice izomorfismu.

Jako okamzity dusledek dostéavame fakt, Ze izomorfni struktury jsou elementérné ekvivalentni: DusledekPokud
A~ B, potom A= B

13. w-kategorické kritérium kompletnosti

Mgéjme w-kategorickou teorii T' ve spoCetnem jazyce L. Je-li

e [ bez rovnosti, nebo

e [ s rovnosti a T nema kone¢né modely, potom je T" kompletni. Dikaz. Pro jazyk bez rovnosti vime
z dusledku Léwenheim-Skolemovy véty, Ze kazdy model je elementéarné ekvivalentni néjakému spocetné
nekoneénému modelu. Ten je ale az na izomorfizmus jediny, takZe vSechny modely jsou elementarné
ekvivalentni, coz je sémantickd definice kompletnosti.

Mame-li jazyk s rovnosti, pouzijeme podobné dusledek LS véty pro rovnost a dostaneme, ze vSechny
nekone¢né modely jsou elementarné ekvivalentni.

14. Neaxiomatizovatelnost koneé¢nych modelov

Pokud m4 teorie libovolné velké kone¢né modely, potom ma4 i nekone¢ny model. V' tom pifipadé neni t¥ida vSech
jejich koneénych modeli axiomatizovatelné.

Dikaz. Je-li jazyk bez rovnosti, stac¢i vzit kanonicky model pro nékterou bezespornou vétev v tablu z T' pro
polozku F L ( T je bezesporna, nebot ma model(y), tedy tablo neni sporné). Mé&jme jazyk s rovnosti a ozna¢me
jako T’ nésledujici extenzi teorie T do jazyka rozsifeného o spo¢etné mnoho novych konstantnich symbolt ¢; :

T/:TU{ﬁCi:Cj|i7éj€N}

KaZd4a konec¢n4 ¢ast teorie 7 ma model: necht k je nejvétsi takové, Ze symbol ¢, se vyskytuje v T”. Potom
sta¢i vzit libovolny alespoii (k + 1)-prvkovy model T a interpretovat konstanty cy, ..., c, jako navzajem rtzné
prvky tohoto modelu.

Dle véty o kompaktnosti ma potom i T/ model. Ten je nutné nekoneény. Jeho redukt na ptvodni jazyk
(zapomenuti konstant cg“ ) je nekoneénym modelem T'.

15. Veta o konec¢nej axiomatizovatelnosti

Mé&jme t¥idu struktur K C Mz, a uvazme také jeji doplnék K = M\ K. Potom K je kone¢né axiomatizovatelna,
pravé kdyz KiK jsou axiomatizovatelné.

Dikaz. Je-li K kone¢né axiomatizovatelna, potom je axiomatizovatelnd i koneéné mmnoha sentencemi
©1,...,9n (nahradime formule jejich generalnimi uzavéry). Jako axiomatizaci K stadi vzit sentenci 1) =
—(p1 Apa A+ A py). Ziejmé plati M(¢)) = K.

Naopak, necht 7' a S jsou teorie takové, ze M(T) = K a M(S) = K. Uvazme teorii T U S. Tato teorie je
sporné, nebot:

M(TUS)=M(T)NM(S)=KNK =10
Podle véty o kompaktnosti existuji koneéné podteorie T C T a S’ C S takové, Ze:
P=M(T"US")=M(T")NM(S")

Nyni si v§imnéme, Ze plati

M(T) € M(T") € M (") € M(S) = M(T)

tim jsme dokazali, ze M (T) = M (T"), tj. teorie T" je hledanou kone¢nou axiomatizaci K.
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16. Rekurzivne axiomatizovana tedria s rekurzivne spocetnou kompletaciou je
rozhodnutel'na

Pokud je teorie T rekurzivné axiomatizovana a mé rekurzivné spoc¢etnou kompletaci, potom je T rozhodnutelna.

Diikaz. Pro danou sentenci ¢ bud’ T F ¢, nebo existuje protipiiklad A ~ ¢, tedy kompletni jednoduchéa
extenze T; teorie T takova, ze T; ¥ . 7 kompletnosti ale plyne, ze T; - —p. N&§ algoritmus bude paralelné
konstruovat tablo dikaz ¢ z T a (postupng) tablo dikazy —¢ ze vSech kompletnich jednoduchych extenzi
Ty, Ty, ... teorie T.® Vime, Ze alespoii jedno z paralelné konstruovanych tabel je sporné, a mizeme predpokladat,
ze kone¢né (neprodluzujeme-li sporné vétve tabla), tedy algoritmus ho po kone¢né mnoha krocich zkonstruuje.

17. Nerozhodnutel'nost predikatovej logiky

Neexistuje algoritmus, ktery by pro danou vstupni formuli ¢ rozhodl, zda je logicky platna.

Hilbertuv desaty problém: "Naleznéte algoritmus, ktery po kone¢né mmnoha krocich uré¢i, zda dana Dio-
fanticka rovnice s libovolnym poétem proménnych a celo¢iselnymi koeficienty mé celoc¢iselné ¥&Seni." (Neexis-
tuje)

Dtkaz. Uvazme formuli ¢ tvaru

(Fz1) ... Cxn)p (1, y2n) = q(T1,...,2p)

kde p a ¢ jsou polynomy s pfirozenymi koeficienty. Plati:

N |= ¢ pravé kdyz Q F ¢

Ozna¢me jako g konjunkci (generalnich uzaveért) viech axiomi Q). Z¥ejmé Q F ¢, pravé kdyz g F ¢, coz
plati praveé kdyz F g — ¢. Dle Véty o tplnosti je to ale ekvivalentni = ¢g — ¢. Dostavame tedy nasledujici
ekvivalenci:

N = ¢ pravé kdyz F g — ¢

To znamené, Zze pokud existoval algoritmus rozhodujici logickou platnost, mohli bychom rozhodovat i exis-
tenci prirozeného feseni rovnice p (x1,...,x,) = q(z1,...,2,), neboli Hilbertiv desaty problém by byl rozhod-
nutelny. Coz by byl spor.
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