
Vypracované otázky k skúške z NAIL062

Výroková a predikátová logika

Pojmy

1. Model vo výrokovej logike, pravidvostné funkcie výroku
Model jazyka P je libovolné pravdivostní ohodnocení v : P → {0, 1}. Množinu (všech) modelů jazyka P označíme
MP :

MP = {v | v : P → {0, 1}} = {0, 1}P

Pravdivostní funkce výroku φ v konečném jazyce P je funkce fφ,P : {0, 1}|P| → {0, 1} definovaná induktivně:

• je-li φ i-tý prvovýrok z P, potom fφ,P (x0, . . . , xn−1) = xi,

• je-li φ = (¬φ′), potom

fφ,P (x0, . . . , xn−1) = f¬ (fφ′,P (x0, . . . , xn−1))

• je-li (φ′□φ′′) kde □ ∈ {∧,∨,→,↔}, potom

fφ,P (x0, . . . , xn−1) = f□ (fφ′,P (x0, . . . , xn−1) , fφ′′,P (x0, . . . , xn−1)) .

2. Sémantické pojmy (pravdivosť, lživosť, nezávislosť, splniteľnosť) v logike vzhľadom
k teórii
Říkáme, že výrok φ(v jazyce P) je

• pravdivý, tautologie, platí (v logice/logicky), a píšeme |= φ, pokud platí v každém modelu ( jazyka
P),MP(φ) = MP

• lživý, sporný, pokud nemá žádný model, MP(φ) = ∅

• nezávislý, pokud platí v nějakém modelu, a neplatí v nějakém jiném modelu, tj. není pravdivý ani lživý,
∅ ⊊ MP(φ) ⊊ MP

• splnitelný, pokud má nějaký model, tj. není lživý, MP(φ) ̸= ∅.

Dále říkáme, že výroky φ,ψ (ve stejném jazyce P ) jsou (logicky) ekvivalentní, píšeme φ ∼ ψ pokud mají
stejné modely.

Mějme teorii T v jazyce P. Ríkáme, že výrok φ v jazyce P je

• pravdivý vT , důsledek T , platí vT , a píšeme T |= φ, pokud φ platí v každém modelu teorie T , neboli
MP(T ) ⊆ MP(φ),

• lživý vT , sporný vT , pokud neplatí v žádném modelu T , neboli MP(φ) ∩MP(T ) = MP(T, φ) = ∅

• nezávislý vT , pokud platí v nějakém modelu T , a neplatí v nějakém jiném modelu T , tj. není pravdivý v
T ani lživý v T, ∅ ⊊ MP(T, φ) ⊊ MP(T ),

• splnitelný vT , konzistentní s T , pokud platí v nějakém modelu T , tj. není lživý v T , MP(T, φ) ̸= ∅.

1



3. Ekvivalencia výrokov, resp. výrokových teórií, T-ekvivalencia
Výroky φ,ψ (ve stejném jazyce P ) jsou (logicky) ekvivalentní, píšeme φ ∼ ψ pokud mají stejné modely, tj.

A říkáme, že výroky φ,ψ (ve stejném jazyce P ) jsou ekvivalentní v T, T -ekvivalentní, píšeme φ ∼T ψ pokud
platí v týchž modelech T , tj. φ ∼T ψ právě když MP(T, φ) = MP(T, ψ).

4. Sémantické pojmy o teorii (sporná, bezsporná, kompletná, splniteľná)
Je-li T teorie v jazyce L a φ L-formule, potom říkáme, že φ je:

• pravdivá (platí) v T , značíme T |= φ, pokud A |= φ pro všechna A ∈ M(T ) (neboli: M(T ) ⊆ M(φ))

• lživá v T , pokud T |= ¬φ, t. pokud je lživá v každém modelu T (neboli: M(T ) ∩M(φ) = ∅),

• nezávislá v T , pokud není pravdivá v T ani lživá v T .

• Máme-li prázdnou teorii T = ∅ (tj.M(T ) = ML), potom teorii T vynecháváme, píšeme |= φ, a říkáme, že
φ je pravdivá (v logice), (logicky) platí, je tautologie; podobně pro ostatní pojmy.

• Teorie je sporná, jestliže v ní platí spor ⊥, který v predikátové logice můžeme definovat jako R (x1, . . . , xn)∧
¬R (x1, . . . , xn), kde R je libovolný (třeba první) relační symbol z jazyka nebo rovnost (nemá-li jazyk
relační symbol, musí být s rovností). Teorie je sporná, právě když v ní platí každá formule, nebo, ek-
vivalentně, právě když nemá žádný model. Jinak říkáme, že je teorie bezesporná (neplatí-li v ní spor,
ekvivalentně má-li alespoň jeden model).

Sentencím pravdivým v T říkáme důsledky T ; množina všech důsledků T v jazyce L je:

CsqL(T ) = {φ | φ je sentence a T |= φ}

Teorie je kompletní, je-li bezesporná a každá sentence je v ní bud’ pravdivá, nebo lživá.

5. Extenzia teórie (jednoduchá, konzervatívna), zodpovedajúce sémantické kritéria
Výroková

Mějme teorii T v jazyce P.

• Extenze teorie T je libovolná teorie T ′ v jazyce P′ ⊇ P splňující CsqP(T ) ⊆ CsqP′ (T ′),

• je to jednoduchá extenze, pokud P′ = P,

• je to konzervativní extenze, pokud CsqP(T ) = CsqP (T ′) = CsqP′ (T ′) ∩VFP.

Je-li T teorie v jazyce P a T ′ teorie v jazyce P′ obsahujícím jazyk P . Potom platí:

• T ′ je jednoduchou extenzí T , právě když P′ = P a MP (T ′) ⊆ MP(T ),

• T ′ je extenzí T , právě když MP′ (T ′) ⊆ MP′(T ). Uvažujeme tedy modely teorie T nad rozšířeným jazykem
P′.21 Jinými slovy, restrikce 22 libovolného modelu v ∈ MP′ (T ′) na původní jazyk P musí být modelem
T , mohli bychom psát v]P ∈ MP(T ) nebo:

{v ⌈P | v ∈ MP′ (T ′)} ⊆ MP(T )

• T’ je konzervativní extenzí T, pokud je extenzí a navíc platí, že každý model T (v jazyce P) lze nějak
expandovat (rozšířit) 23 na model T ′ (v jazyce P′), neboli každý model T (v jazyce P ) získáme restrikcí
nějakého modelu T ′ na jazyk P. Mohli bychom psát:

{v∥P | v ∈ MP′ (T ′)} = MP(T )

• T ′ je extenzí T a zároveň T je extenzí T ′, právě kdyż P′ = P a MP (T ′) = MP(T ), neboli T ′ ∼ T .

• Kompletní jednoduché extenze T jednoznačně až na ekvivalenci odpovídají modelům T . Sentencím prav-
divým v T říkáme důsledky T ; množina všech důsledků T v jazyce L je:
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CsqL(T ) = {φ | φ je sentence a T |= φ}

Predikátová

Mějme teorii T v jazyce L.

• Extenze teorie T je libovolná teorie T ′v jazyce L′ ⊇ L splňující CsqL(T ) ⊆ CsqL′ (T ′),

• je to jednoduchá extenze, pokud L′ = L,

• je to konzervativní extenze, pokud CsqL(T ) = CsqL (T ′) = CsqL′ (T ′) ∩ FmL, kde2 FmL značí množinu
všech formulí v jazyce L.

• Teorie T ′ (v jazyce L) je ekvivalentní teorii T , pokud je T ′ extenzí T a T extenzí T ′.

Mějme teorie T , T ′ v jazyce L. Potom:

• T ′ je extenze T , právě když ML (T ′) ⊆ ML(T ).

• T ′ je ekvivalentní s T , právě když ML (T ′) = ML(T ).

6. Tablo z teórie, tablo dôkaz
Výroková

Konečné tablo z teorie T je uspořádaný, položkami označkovaný strom zkonstruovaný aplikací konečně mnoha
následujících pravidel:

• jednoprvkový strom označkovaný libovolnou položkou je tablo z teorie T ,

• pro libovolnou položkou P na libovolné větvi V , můžeme na konec větve V připojit atomické tablo pro
položku P ,

• na konec libovolné větve můžeme připojit položku T α pro libovolný axiom teorie α ∈ T .

Tablo z teorie T je bud’ konečné, nebo i nekonečné: v tom případě vzniklo ve spočetně mnoha krocích.
Můžeme ho formálně vyjádřit jako sjednocení τ =

⋃
i≥0 τi, kde τi jsou konečná tabla z T, τ0 je jednoprvkové

tablo, a τi+1 vzniklo z τi v jednom kroku. Tablo pro položku P je tablo, které má položku P v kořeni.
Tablo důkaz výroku φ z teorie T je sporné tablo z teorie T s položkou Fφ v kořeni. Pokud existuje, je φ

(tablo) dokazatelný z T , píšeme T ⊢ φ. (Definujme také tablo zamítnutí jako sporné tablo s Tφ v kořeni. Pokud
existuje, je φ (tablo) zamítnutelný z T , tj. platí T ⊢ ¬φ.)

• Tablo je sporné, pokud je každá jeho větev sporná.

• Větev je sporná, pokud obsahuje položky T ψ a F ψ pro nějaký výrok ψ, jinak je bezesporná.

• Tablo je dokončené, pokud je každá jeho větev dokončená.

• Větev je dokončená, pokud

– je sporná, nebo

– je každá její položka na této větvi redukovaná a zároveň obsahuje položku T α pro každý axiom α ∈ T

• Položka P je redukovaná na větvi V procházející touto položkou, pokud

– je tvaru Tp resp. Fp pro nějakou výrokovou proměnnou p ∈ P, nebo

– při konstrukci tabla již došlo k jejímu rozvoji na V , tj. vyskytuje se na V jako kořen atomického
tabla.

Predikátová

Konečné tablo z teorie T je uspořádaný, položkami označkovaný strom zkonstruovaný aplikací konečně
mnoha následujících pravidel:
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• jednoprvkový strom označkovaný libovolnou položkou je tablo z teorie T ,

• pro libovolnou položkou P na libovolné větvi V , můžeme na konec větve V připojit atomické tablo pro
položku P , přičemž je-li P typu ’svědek’, můžeme použít jen pomocný konstantní symbol ci ∈ C, který se
na větvi V dosud nevyskytuje (pro položky typu ’všichni’ můžeme použít libovolný konstantní LC-term
ti ),

• na konec libovolné větve můžeme připojit položku T α pro libovolný axiom teorie α ∈ T .

Tablo z teorie T je bud’ konečné, nebo i nekonečné: v tom případě vzniklo ve spočetně mnoha krocích.
Můžeme ho formálně vyjádřit jako sjednocení τ =

⋃
i≥0 τi, kde τi jsou konečná tabla z T, τ0 je jednoprvkové

tablo, a τi+1 vzniklo z τi v jednom kroku. Tablo pro položku P je tablo, které má položku P v kořeni.
Tablo důkaz sentence φ z teorie T je sporné tablo z teorie T s položkou Fφ v kořeni. Pokud existuje, je

φ (tablo) dokazatelná z T , píseme T ⊢ φ. (Definujme také tablo zamítnutí jako sporné tablo s T φ v kořeni.
Pokud existuje, je φ (tablo) zamítnutelná z T , tj. platí T ⊢ ¬φ.)

• Tablo je sporné, pokud je každá jeho větev sporná.

• Větev je sporná, pokud obsahuje položky T ψ a F ψ pro nějakou sentenci ψ, jinak je bezesporná.

• Tablo je dokončené, pokud je každá jeho větev dokončená.

• Větev je dokončená, pokud

– je sporná, nebo

– je každá položka na této větvi redukovaná a zároveň větev obsahuje položku T α pro každý axiom
α ∈ T .

• Položka P je redukovaná na větvi V procházející touto položkou, pokud

– není typu ’všichni’ a při konstrukci tabla již došlo k jejímu rozvoji na V , tj. vyskytuje se na V jako
kořen atomického tabla. 4

– je typu ’všichni’ a všechny její výskyty na V jsou na větvi V redukované.

• Výskyt položky P typu ’všichni’ na větvi V je i-tý, pokud má na V právě i− 1 předků označených touto
položkou, a i-tý výskyt je redukovaný na V , pokud

– položka P má (i+ 1)-ní výskyt na V , a zároveň

– na V se vyskytuje položka Tφ (x/ti) (je-li P = T(∀x)φ(x) ) resp. F φ (x/ti) (je-li P = F(∃x)φ(x)),
kde ti je i-tý konstantní LC-term.

7. Kanonický model
Je-li V bezesporná větev dokončeného tabla, potom kanonický model pro V je model definovaný předpisem (pro
p ∈ P) :

v(p) =

{
1 pokud se na V vyskytuje položka Tp,
0 jinak.

Mějme teorii T v jazyce L = ⟨F ,R⟩ a nechť V je bezesporná větev nějakého dokončeného tabla z teorie T .
Potom kanonický model pro V je LC-struktura A =

〈
A,FA ∪ CA,RA〉 definovaná následovně: Je-li jazyk L

bez rovnosti, potom:

• Doména A je množina všech konstantních LC-termů.

• Pro každý n-ární relační symbol R ∈ R a "s s1, . . ., "s n " z A : (”s1”, . . . , " sn”) ∈ RA právě když na
větvi V je položka TR (s1, . . . , sn)

• Pro každý n-ární funkční symbol f ∈ F a "s s1, , . . ., "s nn z A :
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fA (”s1”, . . . , ”sn”) = ”f (s1, . . . , sn) ”

Speciálně, pro konstantní symbol c máme cA = "c". Funkci fA tedy interpretujeme jako ’vytvoření’ nového
termu ze symbolu f a vstupních termů Necht je L jazyk s rovností. Připomeňme, že naše tablo je nyní z teorie
T ∗, tj. z rozšíření T o axiomy rovnosti pro L. Nejprve vytvoříme kanonický model B pro V jakoby byl L bez
rovnosti (jeho doména B je tedy množina všech konstantních LC-termů). Dále definujeme relaci =B stejně jako
pro ostatní relační symboly:

"s1 "= B "s2 " právě když na větvi V je položka Ts1 = s2
Kanonický model pro V potom definujeme jako faktorstrukturu A = B/ =B . Jak plyne z diskuze v Sekci

7.3 , relace = B je opravdu kongruence struktury B, definice je tedy korektní, a relace =A je identita na A.
Platí následující jednoduché pozorování:

Pozorování 7.4.4. Pro každou formuli φ máme B |= φ (kde symbol = je interpretován jako binární relace
=B

)
, právě když A = B/ =B |= φ(kde = je interpretován jako identita).

8. Kongruencia štruktúry, faktorštruktúra, axiomy rovnosti.
Mějme ekvivalenci ∼ na množině A, funkci f : An → A, a relaci R ⊆ An. Říkáme, že ∼ je:

• kongruencí pro funkci f , pokud pro všechna xi, yi ∈ A taková, že xi ∼ yi(1 ≤ i ≤ n) platí f (x1, . . . , xn) ∼
f (y1, . . . , yn)

• kongruencí pro relaci R, pokud pro všechna xi, yi ∈ A taková, že xi ∼ yi(1 ≤ i ≤ n) platí R (x1, . . . , xn)
právě když R (y1, . . . , yn).

Kongruence struktury A je ekvivalence ∼ na množině A, která je kongruencí pro všechny funkce a relace A.
Mějme strukturu A a její kongruenci . Faktorstruktura (podílová struktura) A podle ∼ je struktura A/ ∼

v témž jazyce, jejíž univerzum A/ ∼ je množina všech rozkladových tříd A podle ∼, a jejíž funkce a relace jsou
definované pomocí reprezentantů, tj :

• fA/∼ ([x1]∼ , . . . , [xn]∼) =
[
fA (x1, . . . , xn)

]
∼, pro každý (n-ární) funkční symbol f , a

• RA/∼ ([x1]∼ , . . . , [xn]∼) právě když RA (x1, . . . , xn), pro každý (n-ární) relační symbol R.

Axiomy rovnosti pro jazyk L s rovností jsou následující: (i) x = x (ii) x1 = y1 ∧ · · · ∧ xn = yn →
f (x1, . . . , xn) = f (y1, . . . , yn) pro každý n-ární funkční symbol f jazyka L (iii) x1 = y1 ∧ · · · ∧ xn = yn →
(R (x1, . . . , xn) → R (y1, . . . , yn)) pro každý n-ární relační symbol R jazyka L včetně rovnosti.

9. CNF a DNF, Hornov tvar, Množinová reprezentácia CNF, splňujúce ohodnote-
nie.

• Literál ℓ je bud’ prvovýrok p nebo negace prvovýroku ¬p. Pro prvovýrok p označme p0 = ¬p a p1 = p.
Je-li ℓ literál, potom ℓ̄ označuje opačný literál k ℓ. Je-li ℓ = p (pozitivní literál), potom ℓ̄ = ¬p, je-li ℓ = ¬p
(negativní literál), potom ℓ̄ = p

• Klauzule (clause) je disjunkce literálů C = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓn. Jednotková klauzule (unit clause) je samotný
literál (n = 1) a prázdnou klauzulí (n = 0) myslíme ⊥.

• Výrok je v konjunktivní normální formě (v CNF) pokud je konjunkcí klauzulí. Prázdný výrok v CNF je
⊤.

• Elementární konjunkce je konjunkce literálů E = ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓn. Jednotková elementární konjunkce je
samotný literál (n = 1). Prázdná elementární konjunkce (n = 0) je ⊤.

• Výrok je v disjunktivní normální formě (v DNF) pokud je disjunkcí elementárních konjunkcí. Prázdný
výrok v DNF je ⊥. Nyní si ukážeme další fragment SATu řešitelný v polynomiálním čase, tzv. Horn-SAT
neboli problém splnitelnosti hornovských výroků.

• Výrok je v hornovský (v Hornově tvaru), pokud je konjunkcí hornovských klauzulí, tj. klauzulí obsahujících
nejvýše jeden pozitivni literál. Význam Hornovských klauzulí vyplývá z ekvivalentního vyjádření ve formě
implikace:
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¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn ∨ q ∼ (p1 ∧ p2 ∧ · · · ∧ pn) → q

Hornovské formule tedy dobře modelují systémy, kde splnění určitých podmínek zaručuje splnění jiné pod-
mínky. Upozorněme, že jednotková klauzule ℓ je také hornovská. V kontextu logického programování se jí říká
fakt, pokud je literál pozitivní, a cíl pokud je negativní. Hornovské formule s alespoň jedním pozitivním a
alespoň jedním negativním literálem jsou pravidla.

V množinové reprezentaci odpovídají modely množinám literálů, které obsahují pro každou výrokovou
proměnnou p právě jeden z literálo p,¬p :

• (Částečné) ohodnocení V je libovolná množina literálů, která je konzistentní, tj. neobsahuje dvojici
opačných literálů.

• Ohodnocení je úplné, pokud obsahuje pozitivní nebo negativní literál pro každou výrokovou proměnnou.

• Ohodnocení V splňuje formuli S, píšeme V |= S, pokud V obsahuje nějaký literál z každé klauzule v S, tj.:

V ∩ C ̸= ∅ pro každou C ∈ S

10. Rezolúčne pravidlo, unifikácia, najvšeobecnejšia unifikácia
Mějme konečnou množinu výrazů S = {E1, . . . , En}. Substituce σ je unifikace pro S, pokud E1σ = E2σ =
· · · = Enσ, neboli Sσ obsahuje jediný výraz. Pokud existuje, potom říkáme také, že S je unifikovatelná.

Unifikace pro S je nejobecnější, pokud pro každou unifikaci τ pro S existuje substituce λ taková, že τ = σλ.
Všimněte si, že nejobecnějších unifikací pro S může být více, ale liší se jen přejmenováním proměnných.

Mějme klauzule C1 a C2 s disjunktními množinami proměnných a necht’ jsou tvaru

C1 = C ′
1 ⊔ {A1, . . . , An} , C2 = C ′

2 ⊔ {¬B1, . . . ,¬Bm}

kde n,m ≥ 1 a množinu výrazů S = {A1, . . . , An, B1, . . . , Bm} lze unifikovat. Buď σ nejobecnější unifikace
S. Rezolventa klauzulí C1 a C2 je následující klauzule:

C = C ′
1σ ∪ C ′

2σ

11. Rezolúčny dôkaz a zamietnutie, rezolučný strom
Rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost klauzulí C0, C1, . . . , Cn = C taková,
že pro každé i bud’ Ci ∈ S nebo Ci je rezolventou nějakých Cj , Ck kde j < i a k < i.

Pokud rezoluční důkaz existuje, říkáme, že C je rezolucí dokazatelná z S, a píšeme S ⊢R C. (Rezoluční)
zamítnutí formule S je rezoluční důkaz □ z S, v tom případě je S (rezolucí) zamítnutelná.

Rezoluční strom klauzule C z formule S je konečný binární strom s vrcholy označenými klauzulemi, kde

• v koreni je C,

• v listech jsou klauzule z S,

• v každém vnitřním vrcholu je rezolventa klauzulí ze synů tohoto vrcholu.

12. Lineárna rezolúcia, lineárny dôkaz, LI-rezolúcia, LI-dôkaz
Výroková

Lineární důkaz (rezolucí) klauzule C z formule S je konečná posloupnost[
C0

B0

]
,

[
C1

B1

]
, . . . ,

[
Cn

Bn

]
, Cn+1

kde Ci říkáme centrální klauzule, C0 je počáteční, Cn+1 = C je koncová, Bi jsou boční klauzule, a platí:

• C0 ∈ S, pro i ≤ n je Ci+1 rezolventou Ci a Bi,

• B0 ∈ S, pro i ≤ n je Bi ∈ S nebo Bi = Cj pro nějaké j < i.
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Lineární zamítnutí S je lineární důkaz □ z S.
LI-rezoluce V obecném lineárním důkazu může být každá následující boční klauzule buď axiom z S nebo

jedna z předchozích centrálních klauzulí. Pokud zakážeme druhou možnost, budeme-li tedy požadovat, aby
všechny boční klauzule byly z S, dostaneme tzv. LI (linear-input) rezoluci:

LI-důkaz (rezolucí) klauzule C z formule S je lineární důkaz[
C0

B0

]
,

[
C1

B1

]
, . . . ,

[
Cn

Bn

]
, C

ve kterém je každá boční klauzule Bi axiom z S. Pokud LI-důkaz existuje, říkáme, že je C LI-dokazatelná z
S, a píšeme S ⊢LI C. Pokud S ⊢LI □, je S LI-zamítnutelná.

Predikátová

Lineární důkaz (rezolucí) klauzule C z formule S je konečná posloupnost[
C0

B0

]
,

[
C1

B1

]
, . . . ,

[
Cn

Bn

]
, Cn+1

kde Ci říkáme centrální klauzule, C0 je počáteční, Cn+1 = C je koncová, Bi jsou boční klauzule, a platí:

• C0 je varianta klauzule z S, pro i ≤ n je Ci+1 rezolventou Ci a Bi,

• B0 je varianta klauzule z S, pro i ≤ n je Bi varianta klauzule z S nebo Bi = Cj pro nějaké j < i. Lineární
zamítnutí S je lineární důkaz □ z S. LI-důkaz je lineární důkaz, ve kterém je každá boční klauzule Bi

variantou klauzule z S. Pokud existuje LI-důkaz, říkáme, že je C LI-dokazatelná z S, a píšeme S ⊢LI C.
Pokud S ⊢LI □, je S LI-zamítnutelná.

13. Signatúra a jazyk predikátovej logiky, štruktúra daného jazyka
Signatura je dvojice ⟨R,F⟩, kde R,F jsou disjunktní množiny symbolů (relační a funkční, ty zahrnují konstantní)
spolu s danými aritami (tj. danými funkcí ar: R∪ F → N ) a neobsahující symbol ’=’ (ten je rezervovaný pro
rovnost).

Do jazyka patří následující:

• spočetně mnoho proměnných x0, x1, x2, . . . (ale píšeme také x, y, z, . . . ; množinu všech proměnných oz-
načíme Var),

• relační, funkční a konstantní symboly ze signatury, a symbol = jde-li o jazyk s rovností,

• univerzální a existenční kvantifikátory (∀x), (∃x) pro každou proměnnou x ∈ Var,

• symboly pro logické spojky ¬,∧,∨,→,↔ a závorky (,).

Struktura v signatuře ⟨R,F⟩ je trojice A =
〈
A,RA,FA〉, kde

• A je neprázdná množina, říkáme jí doména (také univerzum),

• RA =
{
RA | R ∈ R

}
kde RA ⊆ Aar(R) je interpretace relačního symbolu R,

• FA =
{
fA | f ∈ F

}
kde fA : Aar(R) → A je interpretace funkčního symbolu f (speciálně pro konstantní

symbol c ∈ F máme cA ∈ A ).

14. Atomická formule, formule, sentence, otvorené formule
Termy jazyka L jsou konečné nápisy definované induktivně:

• každá proměnná a každý konstantní symbol z L je term,

• je-li f funkční symbol z L arity n a jsou-li t1, . . . , tn termy, potom nápis f (t1, t2, . . . , tn) je také term.

Množinu všech termů jazyka L označíme TermL.
Atomická formule jazyka L je nápis R (t1, . . . , tm), kde R je n-ární relační symbol z L (včetně = jde-li o

jazyk s rovností) a ti ∈ TermL.
Formule jazyka L jsou konečné nápisy definované induktivně:
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• každá atomická formule jazyka L je formule,

• je-li φ formule, potom (¬φ) je také formule,

• jsou-li φ,ψ formule, potom (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), a (φ↔ ψ) jsou také formule,

• je-li φ formule a x proměnná, potom ((∀x)φ) a ((∃x)φ) jsou také formule.

Formule je otevřená, neobsahuje-li žádný kvantifikátor, a uzavřená (neboli sentence), pokud nemá žádnou
volnou proměnnou.

15. Instance formule, substitovateľnosť, variant formule
Term t je substituovatelný za proměnnou x ve formuli φ, pokud po simultánním nahrazení všech volných výskyti
x ve φ za t nevznikne ve φ žádný vázaný výskyt proměnné z t. V tom případě říkáme vzniklé formuli instance
φ vzniklá substitucí t za x, a označujeme ji φ(x/t).

Má-li formule φ podformuli tvaru (Qx)ψ a je-li y proměnná, taková, že

• y je substituovatelná za x do ψ a

• y nemá volný výskyt v ψ, potom nahrazením podformule (Qx)ψ formulí (Qy)ψ(x/y) vznikne varianta
formule φ v podformuli (Qx)ψ.

16. Pravdivostná hodnota formuly v štruktúre pri ohodnotení, platnosť formule v
štruktúre
Hodnota termu t ve struktuře A pri ohodnocení e, kterou značíme tA[e], je dána induktivně:

• xA[e] = e(x) pro proměnnou x ∈ Var,

• cA[e] = cA pro konstantní symbol c ∈ F , a

• je-li t = f (t1, . . . , tn) složený term, kde f ∈ F , potom:

tA[e] = fA
(
tA1 [e], . . . , t

A
n [e]

)
Mějme formuli φ v jazyce L, strukturu A ∈ M(L), a ohodnocení proměnných e : Var → A. Pravdivostni

hodnota φ v A při ohodnocení e, PHA(φ)[e], je definována induktivně podle struktury formule: Pro atomickou
formuli φ = R (t1, . . . , tn) máme

PHA(φ)[e] =

{
1 pokud

(
tA1 [e], . . . , t

A
n [e]

)
∈ RA,

0 jinak.

Speciálně, je-li φ tvaru t1 = t2, potom PHA(φ)[e] = 1 právě kdyz
(
tA1 [e], t

A
2 [e]

)
∈=A, kde =−A je identita

na A, tj. právě když tA1 [e] = tA2 [e] (obě strany rovnosti jsou stejný prvek a ∈ A ). Pravdivostní hodnota negace
je definována takto:

PHA(¬φ)[e] = f¬
(
PHA(φ)[e]

)
= 1− PHA(φ)[e]

Obdobně pro binární logické spojky, jsou-li φ,ψ a □ ∈ {∧,∨,→,↔}, potom:

PHA(φ□ψ)[e] = f□
(
PHA(φ)[e],PHA(ψ)[e]

)
Zbývá definovat pravdivostní hodnotu pro kvantifikátory, tj. formule tvaru (Qx)φ. Budeme potřebovat

následující značení: Změníme-li v ohodnocení e : Var → A hodnotu pro proměnnou x na a, výsledné ohodnocení
zapíšeme jako e(x/a). Platí tedy e(x/a)(x) = a. Pravdivostní hodnotu pro (Qx)φ definujeme takto:

PHA((∀x)φ)[e] = min
a∈A

(
PHA(φ)[e(x/a)]

)
PHA((∃x)φ)[e] = max

a∈A

(
PHA(φ)[e(x/a)]

)
Mějme formuli φ a strukturu A (ve stejném jazyce).
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• Je-li e ohodnocení a PHA(φ)[e] = 1, potom říkáme, že φ platí v A při ohodnocení e, a píšeme A |= φ[e].
(V opačném případě říkáme, že φ neplatí vA při ohodnocení e, a píšeme A ̸|= φ[e].)

• Pokud φ platí v A při každém ohodnocení e : Var → A, potom říkáme, že φ je pravdivá (platí) vA, a
píšeme A |= φ.

• Pokud A |= ¬φ, tj. φ neplatí v A při žádném ohodnocení (pro každé e máme A∀ = φ[e] ), potom je φ
lživá vA.20

Shrňme několik jednoduchých vlastností, nejprve týkajících se platnosti při ohodnocení. Bud’ A struktura,
φ,ψ formule, a e ohodnocení.

• A = ¬φ[e] právě když A ̸|= φ[e],

• A |= (φ ∧ ψ)[e] právě když A |= φ[e] a A |= ψ[e],

• A |= (φ ∨ ψ)[e] právě když A |= φ[e] nebo A |= ψ[e],

• A |= (φ→ ψ)[e] právě když platí: jestliže A |= φ[e] potom A |= ψ[e],

• A |= (φ↔ ψ)[e] právě když platí: A |= φ[e] právě když A |= ψ[e],

• A |= (∀x)φ[e] právě když A |= φ[e(x/a)] pro všechna a ∈ A,

• A |= (∃x)φ[e] právě když A |= φ[e(x/a)] pro nějaké a ∈ A.

• Je-li term t substituovatelný za proměnnou x do formule φ, potom

A |= φ(x/t)[e] právě když A |= φ[e(x/a)] pro a = tA[e].

• Je-li ψ varianta φ, potom A |= φ[e] právě když A |= ψ[e].

17. Kompletná teória v predikátovej logike, elementárna ekvivalencia
Teorie je kompletní, je-li bezesporná a každá sentence je v ní buď pravdivá, nebo lživá.

Struktury A,B (v témž jazyce) jsou elementárně ekvivalentní, pokud v nich platí tytéž sentence. Značíme
A ≡ B.

Teorie je kompletní, právě když má právě jeden model až na elementární ekvivalenci.

18. Podštruktúra, generovaná podštruktúra, expanzia a redukt štruktúry
Mějme strukturu A =

〈
A,RA,FA〉 v signatuře ⟨R,F⟩. Struktura B =

〈
B,RB,FB〉 je (indukovaná) podstruk-

tura A, značíme B ⊆ A, jestliže

• ∅ ≠ B ⊆ A

• RB = RA ∩Bar(R) pro každý relační symbol R ∈ R,

• fB = fA ∩
(
Bar(f) ×B

)
pro každý funkční symbol f ∈ F (tj. funkce fB je restrikce fA na množinu B, a

její výstupy jsou všechny také z B ),

• speciálně, pro každý konstantní symbol c ∈ F máme cB = cA ∈ B.

Mějme strukturu A =
〈
A,RA,FA〉 a neprázdnou podmnožinu X ⊆ A. Označme jako B nejmenší podm-

nožinu A, která obsahuje množinu X a je uzavřená na všechny funkce struktury A (tj. také obsahuje všechny
konstanty). Potom o podstruktuře A⌈B říkáme, že je generovaná množinou X, a značíme ji A⟨X⟩.

Mějme jazyky L ⊆ L′, L-strukturu A, a L′-strukturu A′ na stejné doméně A = A′. Jestliže je interpretace
každého symbolu [relačního, funkčního, konstantního] stejná [relace, funkce, konstanta] v A i v A′ potom říkáme,
že struktura A′ je expanzí struktury A do jazyka L′ (také říkáme, že je L′-expanzí) a že struktura A je reduktem
struktury A′ na jazyk L (také říkáme, že je L-reduktem).
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19. Definovateľnosť v štruktúre
Mějme formuli φ (x1, . . . , xn) a strukturu A v témž jazyce. Množina definovaná formulí φ (x1, . . . , xn) ve struk-
tuře A, značíme φA (x1, . . . , xn), je:

φA (x1, . . . , xn) = {(a1, . . . , an) ∈ An | A |= φ [e (x1/a1, . . . , xn/an)]}

Zkráceně totéž zapíšeme také jako

φA(x̄) = {ā ∈ An | A |= φ[e(x̄/ā)]} .

Mějme formuli φ(x̄, ȳ), kde |x̄| = n a |ȳ| = k, strukturu A v témž jazyce, a k-tici prvků b̄ ∈ Ak. Množina
definovaná formulí φ(x̄, ȳ) s parametry b̄ ve struktuře A, značíme φA,b̄(x̄, ȳ), je:

φA,b̄(x̄, ȳ) =
{
ā ∈ An | A |= φ[e(x̄/ā, ȳ/b̄)]

}
20. Extenze o definice
Máme-li L-teorii T a L′-teorii T ′, potom řekneme, že T ′ je extenzi T o definice, pokud vznikla z T postupnou
extenzí o definice relačních a funkčních (příp. konstantních) symbolů.

Mějme teorii T a formuli ψ (x1, . . . , xn) v jazyce L. Označme jako L′ rozšírení jazyka L o nový n-ární relační
symbol R. Extenze teorie T o definici R formuli ψ je L′-teorie:

T ′ = T ∪ {R (x1, . . . , xn) ↔ ψ (x1, . . . , xn)}

Mějme teorii T a formuli ψ (x1, . . . , xn, y) v jazyce L. Označme jako L′ rozšírínení jazyka L o nový n-ární
funkční symbol f . Nechť v teorii T platí:

• axiom existence (∃y)ψ (x1, . . . , xn, y),

• axiom jednoznačnosti ψ (x1, . . . , xn, y) ∧ ψ (x1, . . . , xn, z) → y = z. Potom extenze teorie T o definici f
formuli ψ je L′-teorie:

T ′ = T ∪ {f (x1, . . . , xn) = y ↔ ψ (x1, . . . , xn, y)}

Konstantní symbol je speciálním případem funkčního symbolu arity 0 . Platí tedy stejná tvrzení. Axiomy
existence a jednoznačnosti jsou: (∃y)ψ(y) a ψ(y) ∧ ψ(z) → y = z. A extenze o definici konstantního symbolu c
formulí ψ(y) je teorie T ′ = T ∪ {c = y ↔ ψ(y)}.

21. Prenexná normálna forma, Skolemov variant
Formule φ je v prenexní normální formě (PNF), je-li tvaru

(Q1x1) . . . (Qnxn)φ
′

kde Qi je kvantifikátor (∀ nebo ∃ ) a formule φ′ je otevřená. Formuli φ′ potom říkáme otevřené jádro φ a
(Q1x1) . . . (Qnxn) je kvantifikátorový prefix.

Mějme L-sentenci φ v PNF, a necht všechny její vázané proměnné jsou různé. Necht’ existenční kvantifikátory
z prefixu φ jsou (∃y1) , . . . , (∃yn) (v tomto pořadí), a nechť pro každé i jsou (∀x1) , . . . , (∀xni

) právě všechny
univerzální kvantifikátory předcházející kvantifikátor (∃yi) v prefixu φ.

Označme L′ rozšíření L o nové ni-ární funkční symboly f1, . . . , fn, kde symbol fi je arity ni, pro každé i.
Skolemova varianta sentence φ je L′-sentence φS vzniklá z φ tak, že pro každé i = 1, . . . , n :

• odstraníme z prefixu kvantifikátor (∃yi), a

• substituujeme za proměnnou yi term fi (x1, . . . , xni
).

Tomuto procesu říkáme také skolemizace.
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22. Izomorfizmus štruktúr, izomorfné spektrum, ω-kategorická teória
Mějme struktury A,B jazyka L = ⟨R,F⟩. Izomorfismus A a B (nebo ’ A na ’) je bijekce h : A → B splñující
následující vlastnosti:

• Pro každý ( n-ární) funkční symbol f ∈ F a pro všechna ai ∈ A platí:

h
(
fA (a1, . . . , an)

)
= fB (h (a1) , . . . , h (an))

(Speciálně, je-li c ∈ F konstantní symbol, platí h
(
cA

)
= cB.)

• Pro každý ( n-ární) relační symbol R ∈ R a pro všechna ai ∈ A platí:

RA (a1, . . . , an) právě když RB (h (a1) , . . . , h (an))

Pokud existuje, říkáme, že A a B jsou izomorfní (nebo ’ A je izomorfní s B via h ’) a píšeme A ≃ B ( nebo
A ≃h B). Automorfismus A je izomorfismus A na A

Izomorfní spektrum teorie T je počet I(κ, T ) modelů T kardinality κ až na izomorfismus, pro každou kardi-
nalitu κ (včetně transfinitních). Teorie T je κ-kategorická, pokud I(κ, T ) = 1.

Nadále nás bude zajímat jen případ κ = ω, totiž teorie s jediným spočetně nekonečným modelem (až na
izomorfismus).

23. Axiomatizovateľnosť, konečná axiomatizovateľnosť, otvorená axiomatizovateľnosť
Mějme třídu struktur K ⊆ ML v nějakém jazyce L. Říkáme, že K je

• axiomatizovatelná, pokud existuje L-teorie T taková, že ML(T ) = K,

• konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií, a

• otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií.

O L-teorii T ′ říkáme, že je konečně resp. otevřeně axiomatizovatelná, pokud to platí o třídě modelů K =
ML (T ′).

24. Rekurzívna axiomatizácia, rekurzívna axiomatizovateľnosť, rekurzívne spočetná
kompletácia
Teorie T je rekurzivně axiomatizovaná, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne
a odpoví, zda φ ∈ T .

Třída L-struktur K ⊆ ML je rekurzivně axiomatizovatelná, pokud existuje rekurzivně axiomatizovaná L-
teorie T taková, že K = ML(T ). Teorie T ′ je rekurzivně axiomatizovatelná, pokud je rekurzivně axiomatizo-
vatelná třída jejích modelů, neboli pokud je T ′ ekvivalentní nějaké rekurzivně axiomatizované teorii.

Řekneme, že teorie T má rekurzivně spočetnou kompletaci, pokud (nějaká) množina až na ekvivalenci
všech jednoduchých kompletních extenzí teorie T je rekurzivně spočetná, tj. existuje algoritmus, který pro
danou vstupní dvojici přirozených čísel (i, j) vypíše na výstup i-tý axiom j-té extenze (v nějakém pevně daném
uspořádání), nebo odpoví, že takový axiom už neexistuje.

25. Rozhodnuteľná a čiastočne rozhodnuteľná teória
O teorii T říkáme, že je

• rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne a odpoví, zda
T |= φ,

• částečně rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli:

• pokud T |= φ, doběhne a odpoví "ano",

• pokud T ̸|= φ, buď nedoběhne, nebo doběhne a odpoví "ne".

Nechť T je rekurzivně axiomatizovaná. Potom:

1. T je částečně rozhodnutelná,

2. je-li T navíc kompletní, potom je rozhodnutelná.
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Ľahké otázky

1. Množinu modelov nad konečným jazykom je možné axiomatizovať výrokom v
CNF, výrokom v DNF
Mějme konečný jazyk P a libovolnou množinu modelů M ⊆ MP. Potom existuje výrok φDNFv DNF a výrok
φCNF v CNF takový, že M = MP (φDNF) = MP (φCNF). Konkrétně:

φDNF =
∨
v∈M

∧
p∈P

pv(p)

φCNF =
∧
v∈M̄

∨
p∈P

pv(p) =
∧
v/∈M

∨
p∈P

p1−v(p)

Každá elementární konjunkce popisuje jeden model. Výrok φCNF je duální k výroku φ′
DNF sestrojenému

pro doplněk M ′ = M̄ . Nebo můžeme dokázat přímo: modely klauzule Cv =
∨

p∈P p
1−v(p) jsou všechny modely

kromě v, MC = MP \{v}, tedy každá klauzule v konjunkci zakazuje jeden nemodel.
Množiny logických spojek {¬,∧,∨}a{¬,→} jsou univerzální. Důkaz. Mějme funkci f : {0, 1}n → {0, 1},

resp. množinu modelů M = f−1[1] ⊆ {0, 1}n. Náš jazyk bude P = {p1, . . . , pn}. Pokud by množina M
obsahovala jediný model, např. v = (1, 0, 1, 0) mohli bychom ji reprezentovat výrokem φv = p1∧¬p2∧p3∧¬p4,
který říká ’musím být model v ’. Pro obecný model v bychom výrok φv zapsali takto:

φv = pv11 ∧ pv22 ∧ · · · ∧ pvnn =

n∧
i=1

p
v(pi)
i =

∧
p∈P

pv(p)

kde zavádíme následující užitečné značení: pv(p) je výrok p pokud v(p) = 1, a výrok ¬p pokud v(p) = 0
Obsahuje-li množina M více modelů, řekneme ’musím být alespoň jeden z modelů z M ’:

φM =
∨
v∈M

φv =
∨
v∈M

∧
p∈P

pv(p)

Zřejmě platí MP (φM ) =M neboli fφM ,P = f . (Pokud M = ∅, potom z definice
∨

v∈M φv = L).

2. Algebra výrokov bezspornej teórie nad konečným jazykom je izomorfná potenčnej
algebre
uvažujeme množinu ekvivalenčních tříd na množině všech výroků VFP, kterou označíme VFP/ ∼. Prvky této
množiny jsou množiny ekvivalentních výroků, např. [p → q]∼ = {p → q,¬p ∨ q,¬(p ∧ ¬q),¬p ∨ q ∨ q, . . .}. A
máme zobrazení h : VFP/ ∼→ P (MP) (kde P(X) je množina všech podmnožin X ) definované předpisem:

h ([φ]∼) = M(φ)

tj. třídě ekvivalentních výroků přiřadíme množinu modelů libovolného z nich. Je snadné ověřit, že toto
zobrazení je korektně definované (nezáleží na tom, jaký výrok z třídy ekvivalence jsme si vybrali) a prosté, a
že je-li jazyk P konečný, je h dokonce bijekce. (Ověřte!) Na množině VFF̄ / ∼ můžeme zavést operace ¬,∧,∨
pomocí předpisu

¬[φ]∼ = [¬φ]∼
[φ]∼ ∧ [ψ]∼ = [φ ∧ ψ]∼
[φ]∼ ∨ [ψ]∼ = [φ ∨ ψ]∼

tedy vybereme reprezentanta resp. reprezentanty, a provedeme operaci s nimi, např. ’konjunkce’ tříd
[p→ q]∼ a [q ∨ ¬r]∼ je:

[p→ q]∼ ∧ [q ∨ ¬r]∼ = [(p→ q) ∧ (q ∨ ¬r)]∼
Přidáme-li také konstanty ⊥= [⊥]∼ a ⊤ = [⊤]∼, dostáváme (matematickou) strukturu 26

AVP = ⟨VFP/ ∼;¬,∧,∨,⊥,⊤⟩

které říkáme algebra výroků jazyka P.
Zobrazení h : VFP/ ∼→ P (MP) je tedy zobrazení z algebry výroků AVP na potenční algebru
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P (MP) = ⟨P (MP) ;−,∩,∪, ∅,MP⟩

a je-li jazyk konečný, je to bijekce. Toto zobrazení ’zachovává’ operace a konstanty, tj. platí h(⊥) = ∅, h(⊤) =
MP, a

h (¬[φ]∼) = h ([φ]∼) = M(φ) = MP\M(φ)

h ([φ]∼ ∧ [ψ]∼) = h ([φ]∼) ∩ h ([ψ]∼) = M(φ) ∩M(ψ)

h ([φ]∼ ∨ [ψ]∼) = h ([φ]∼) ∪ h ([ψ]∼) = M(φ) ∪M(ψ)

Takovému zobrazení říkáme homomorfismus Booleových algeber, a je-li to bijekce, jde o izomorfismus.
Poznámka 2.5.2. Tyto vztahy můžeme také využít při hledání modelů: například pro výrok φ → (¬ψ ∧ χ)
platí (s využitím toho, že M(φ→ φ′) =M (¬φ ∨ φ′)) :

M(φ→ (¬ψ ∧ χ)) = M(φ) ∪ (M(ψ) ∩M(χ))

Všechny předchozí úvahy můžeme také relativizovat vzhledem k dané teorii T v jazyce P, a to tak, že
ekvivalenci ∼ nahradíme T -ekvivalencí ∼T a množinu modelů jazyka MP nahradíme množinou modelů teorie
MP(T ). Dostáváme:

h(⊥) = ∅,
h(⊤) = M(T )

h (¬[φ]∼T
) = M(T )\M(T, φ)

h ([φ]∼T
∧ [ψ]∼T

) = M(T, φ) ∩M(T, ψ)

h ([φ]∼T
∨ [ψ]∼T

) = M(T, φ) ∪M(T, ψ)

Výslednou algebru výroků vzhledem k teorii T označíme AVP(T ). Algebra výroků jazyka je tedy totéž co
algebra výroků vzhledem k prázdné teorii. Z technických důvodů potřebujeme, aby M(T ) byla neprázdná, tj.
T musí být bezesporná. Shrňme naše úvahy:

Důsledek 2.5.3. Je-li T bezesporná teorie nad konečným jazykem P, potom je algebra výroků AVP(T )
izomorfní potenční algebre P (MP(T) ) prostřednictvím zobrazení h ([φ]∼T

) = M(T, φ)

3. 2-SAT, Algoritmus implikačného grafu, jeho korektnosť
Výrok φ je v k-CNF, pokud je v CNF a každá klauzule má nejvýše k literálů. Problému k-SAT se ptá, zda je
daný k-CNF formule splnitelná. Pro k ≥ 3 je k-SAT nadále NP-úplný, každou CNF formuli lze zakódovat do
3-CNF formule.

Implikační graf 2-CNF výroku φ je založený na myšlence, že 2-klauzuli ℓ1 ∨ ℓ2 (kde ℓ1, ℓ2 jsou literály) lze
chápat jako dvojici implikací: ℓ1 → ℓ2 a ℓ2 → ℓ1 · 4 Například, z klauzule ¬p1∨p2 vzniknou implikace p1 → p2 a
také , ¬p2 → ¬p1. Tedy pokud p1 platí v nějakém modelu, musí platit i p2, a pokud p2 neplatí, nesmí platit ani
p1. Jednotkovou klauzuli ℓ můžeme také vyjádřit pomocí implikace jako ℓ̄→ ℓ, např. z p1 dostáváme ¬p1 → p1.

Implikační graf Gφ je tedy orientovaný graf, jehož vrcholy jsou všechny literály (proměnné z Var(φ) a jejich
negace) a hrany jsou dané implikacemi popsanými výše:

• V (Gφ) = {p,¬p | p ∈ Var(φ)}

• E (Gφ) =
{(
ℓ1, ℓ2

)
,
(
ℓ2, ℓ1

)
| ℓ1 ∨ ℓ2 je klauzule φ} ∪ {(ℓ̄, ℓ) | ℓ je jednotková klauzule φ}

V našem příkladě máme množinu vrcholů

V (Gφ) = {p1, p2, p3, p4, p5,¬p1,¬p2,¬p3,¬p4,¬p5}

a hrany jsou:

E (Gφ) = {(p1, p2) , (¬p2,¬p1) , (p2,¬p3) , (p3,¬p2) , (¬p1, p3) , (¬p3, p1) , (¬p3,¬p4) ,
(p4, p3) , (p1, p5) , (¬p5,¬p1) , (¬p2, p5) , (¬p5, p2) , (¬p1, p1) , (p4,¬p4)}

3.2.1 Silně souvislé komponenty Nyní musíme najít komponenty silné souvislosti 5 tohoto grafu. V našem
příkladě dostáváme následující komponenty: C1 = {p4} , C2 = {¬p5} , C3 = {¬p1,¬p2, p3} , C3 = {p1, p2,¬p3},
C2 = {p5} , C1 = {¬p4}
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Všechny literály v jedné komponentě musí být ohodnoceny stejně. Pokud bychom tedy našli dvojici opačných
literálů v jedné komponentě, znamená to, že výrok je nesplnitelný. V opačném případě vždy můžeme najít
splňující ohodnocení.

Při hledání splňujícího ohodnocení (pokud nám nestačí informace, že výrok je splnitelný) potom postupu-
jeme tak, že vezmeme nejlevější dosud neohodnocenou komponentu, ohodnotíme ji 0 , opačnou komponentu
ohodnotíme 1, a postup opakujeme dokud zbývá nějaká 5 Silná souvislost znamená, že existuje orientovaná
cesta zu do v i z v do u, neboli každé dva vrcholy v jedné komponentě leží v orientovaném cyklu. A naopak,
každý orientovaný cyklus leží uvnitř nějaké komponenty. neohodnocená komponenta. Například, topologické
uspořádání na Obrázku 3.3 odpovídá modelu v = (1, 1, 0, 0, 1) Na závěr shrneme naše úvahy do následujícího
tvrzení: Tvrzení 3.2.2. Výrok φ je splnitelný, právě když žádná silně souvislá komponenta vGφ neobsahuje
dvojici opačných literálů ℓ, ℓ̄.

Důkaz. Každý model, neboli splňující ohodnocení, musí ohodnotit všechny literály ze stejné komponenty
stejnou hodnotou. ( V opačném případě by nutně existovala implikace ℓ1 → ℓ2, kde ℓ1v modelu platí ale ℓ2
neplatí.) V jedné komponentě tedy nemohou být opačné literály. Naopak předpokládejme, že žádná komponenta
neobsahuje dvojici opačných literálo, a ukažme, že potom existuje model. Označme G∗

φ graf vzniklý z Gφ

kontrakcí silně souvislých komponent. Tento graf je acyklický, zvolme nějaké topologické uspořádání. Model
zkonstruujeme tak, že zvolíme první dosud neohodnocenou komponentu v našem topologickém uspořádání,
všechny literály v ní obsažené ohodnotíme 0 , a opačné literály ohodnotíme 1. Takto pokračujeme dokud nejsou
všechny komponenty ohodnoceny.

Proč v takto získaném modelu platí výrok φ ? Kdyby ne, neplatila by některá z klauzulí. Jednotková
klauzule ℓ musí platit, nebot v grafu Gφ máme hranu ℓ̄ → ℓ. Stejná hrana je i v grafu komponent, tedy ℓ̄
předchází v topologickém uspořádání komponentu obsahující ℓ. Při konstrukci modelu jsme museli ohodnotit ℓ̄
dříve než ℓ, tedy ℓ̄ = 0 a ℓ = 1. Podobně, 2-klauzule ℓ1 ∨ ℓ2 také musí platit: máme hrany ℓ1 → ℓ2 a ℓ2 → ℓ1.
Pokud jsme ℓ1 ohodnotili dřive než ℓ2, museli jsme kvůli hraně ℓ1 → ℓ2 ohodnotit ℓ1 = 0, tedy ℓ1 platí. Podobně
pokud jsme ohodnotili nejdříve ℓ2, musí být ℓ2 = 0 a ℓ2 = 1.

4. Horn-SAT, Algoritmus jednotkovej propagácie, jeho korektnosť
Horn-SAT neboli problém splnitelnosti hornovských výroků. Výrok je v hornovský (v Hornově tvaru), pokud je
konjunkcí hornovských klauzulí, tj. klauzulí obsahujících nejvýše jeden *pozitivní literál. Význam Hornovských
klauzulí vyplývá z ekvivalentního vyjádření ve formě implikace:

¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn ∨ q ∼ (p1 ∧ p2 ∧ · · · ∧ pn) → q

Polynomiální algoritmus pro řešení problému Horn-SAT je založený na jednoduché myšlence jednotkové
propagace: Pokud náš výrok obsahuje jednotkovou klauzuli, víme, jak musí být ohodnocenena výroková proměnná
obsažená v této klauzuli.

φ = (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p3 ∨ ¬p4) ∧ (¬p5 ∨ ¬p4) ∧ p4
Náš výrok φ obsahuje jednotkovou klauzuli p4. Víme tedy, že v každém jeho modelu v ∈ M(φ) musí platit

v (p4) = 1. To ale znamená, že v libovolném modelu výroku φ:

• každá klauzule obsahující pozitivní literál p4 je splněna, můžeme ji tedy z výroku odstranit,

• negativní literál ¬p4 nemůže být splněn, můžeme ho tedy odstranit ze všech klauzulí, které ho obsahují.

Tomu kroku se říká jednotková propagace. Výsledkem je následující zjednodušený výrok, který označíme
φp4 (obecně φℓ máme-li jednotkovou klauzuli ℓ ):

φp4 = (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p3 ∨ ¬p4) ∧ ¬p5
Výsledný výrok už neobsahuje jednotkovou klauzuli. To ale znamená, že každá klauzule obsahuje alespoň

dva literály, a nejvýše jeden z nich může být pozitivní! (Zde potřebujeme hornovskost výroku.) Protože
každá klauzule obsahuje negativní literál, stačí ohodnotit všechny zbývající proměnné 0 , a výrok bude splněn:
v (p1) = v (p2) = v (p3) = 0. Dostáváme tedy model v = (0, 0, 0, 1, 1).

Algoritmus (Horn-SAT). vstup: výrok φ v Hornově tvaru, výstup: model φ nebo informace, že φ není
splnitelný

1. Pokud φ obsahuje dvojici opačných jednotkových klauzulí ℓ, ℓ̄, není splnitelný.

2. Pokud φ neobsahuje žádnou jednotkovou klauzuli, je splnitelný, ohodnot všechny zbývající proměnné 0 .
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3. Pokud φ obsahuje jednotkovou klauzuli ℓ, ohodnot literál ℓ hodnotou 1 , proved’ jednotkovou propagaci,
nahrad’ φ výrokem φℓ, a vrat’ se na začátek.

4.

5. Algoritmus DPLL pre riešenie SAT
Algoritmus používá jednotkovou propagaci spolu s následujícím pozorováním: Řekneme, že literál ℓ má čistý
výskyt vφ, pokud se vyskytuje ve φ, ale opačný literál ℓ̄ se ve φ nevyskytuje. Máme-li literál s čistým výskytem,
můžeme jeho hodnotu nastavit na 1 , a splnit (a odstranit) tak všechny klauzule, které ho obsahují. Pokud výrok
neumíme takto zjednodušit, rozvětvíme výpočet dosazením obou možných hodnot pro vybranou výrokovou
proměnnou. Jinými slovy, v dalším kroku bychom provedli jednotkovou propagaci r, odstranili jednotkovou
klauzuli r, a ze zbývající jednotkové klauzule ¬r bychom odstranili literál ¬r, čímž by vznikla prázdná klauzule,
která je nesplnitelná.

Algoritmus (DPLL). vstup: výrok φ v CNF, výstup: model φ nebo informace, že φ není splnitelný

1. Dokud φ obsahuje jednotkovou klauzuli ℓ, ohodnot’ literál ℓ hodnotou 1 , proved’ jednotkovou propagaci,
a nahrad’ φ výrokem φℓ.

2. Dokud existuje literál ℓ, který má ve φ čistý výskyt, ohodnot ℓ hodnotou 1 , a odstran klauzule obsahující
ℓ.

3. Pokud φ neobsahuje žádnou klauzuli, je splnitelný.

4. Pokud φ obsahuje prázdnou klauzuli, není splnitelný.

5. Jinak zvol dosud neohodnocenou výrokovou proměnnou p, a zavolej algoritmus rekurzivně na φ ∧ p a na
φ ∧ ¬p.

6. Veta o konštantách
Mějme formuli φ v jazyce L s volnými proměnnými x1, . . . , xn. Označme L′ rozšíření jazyka o nové konstantní
symboly c1, . . . , cn a bud’ T’ stejná teorie jako T ale v jazyce L′. Potom platí:

T |= φ právě kdyžT ′ |= φ (x1/c1, . . . , xn/cn)

Důkaz. Tvrzení stačí dokázat pro jednu volnou proměnnou x a jednu konstantu c, indukcí se snadno
rozšíríí na n konstant.

Předpokládejme nejprve, že φ platí v každém modelu teorie T . Chceme ukázat, že φ(x/c) platí v každém
modelu A′ teorie T ′. Vezměme tedy takový model A′ a libovolné ohodnocení e : Var → A a ukažme, že
A′ |= φ(x/c)[e]

Označme jako A redukt A′ na jazyk L (’zapomeneme’ konstantu cA
′
)
. Všimněte si, že A je model teorie

T (axiomy T jsou tytéž jako T ′, neobsahují symbol c ) tedy v něm platí φ. Protože dle předpokladu platí
A |= φ [e′] pro libovolné ohodnocení e′, platí i pro ohodnocení e

(
x/cA

′
)

ve kterém ohodnotíme proměnnou

x interpretací konstantního symbolu c ve struktuře A′, máme tedy A |= φ
[
e
(
x/AA′

)]
. To ale znamená, že

A′ |= φ(x/c)[e], což jsme chtěli dokázat. Naopak, předpokládejme, že φ(x/c) platí v každém modelu teorie T ′

a ukažme, že φ platí v každém modelu A teorie T . Zvolme tedy takový model A a nějaké ohodnocení e : Var
→ A a ukažme, že A |= φ[e]

Označme jako A′ expanzi A do jazyka L′, kde konstantní symbol c interpretujeme jako prvek cA
′
= e(x).

Protože dle předpokladu platí A′ |= φ(x/c) [e′] pro všechna ohodnocení e′, platí i A′ |= φ(x/c)[e], což ale
znamená, že A′ |= φ[e]. (Nebot’ e = e(x/c) a A′ |= φ(x/c)[e(x/c)] platí právě když A′ |= φ[e(x/c)].) Formule
φ ale neobsahuje c (zde používáme, že c je nový), máme tedy i A |= φ[e].

7. Vlastnosti extenzie o definície
Je-li T ′ extenze teorie T o definice, potom platí:

• Každý model teorie T lze jednoznačně expandovat na model T ′.

• T ′ je konzervativni extenze T .
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• Pro každou L′-formuli φ′ existuje L-formule φ taková, že T ′ |= φ′ ↔ φ.

Pro kazdou L′-formuli φ′ existuje L-formule φ taková, že T ′ |= φ′ ↔ φ. Důkaz. Stačí dokázat pro formuli φ′

s jediným výskytem symbolu f ; je-li výskytů více, aplikujeme postup induktivně, v případě vnořených výskytů
v jednom termu f(. . . f(. . .) . . .) postupujeme od vnitřních k vnějším.

Označme φ∗ formuli vzniklou zφ′ nahrazením termu f (t1, . . . , tn) novou proměnnou z. Formuli φ zkonstru-
ujeme takto:

(∃z) (φ∗ ∧ ψ′ (x1/t1, . . . , xn/tn, y/z))

kde ψ′ je varianta ψ zaručující substituovatelnost všech termů. Mějme model A teorie T ′ a ohodnocení e.
Označme a = fA (t1, . . . , tn) [e]. Díky existenci a jednoznačnosti platí:

A |= ψ′ (x1/t1, . . . , xn/tn, y/z) [e] právě když e(z) = a

Máme tedy A |= φ[e], právě když A |= φ∗[e(z/a)], právě když A |= φ′[e]. To platí pro libovolné ohodnocení
e, tedy A = φ′ ↔ φ pro každý model T ′, tedy T ′ |= φ′ ↔ φ. Extenze o definice Máme-li L-teorii T a L′-teorii
T ′, potom řekneme, že T ′ je extenzí T o definice, pokud vznikla z T postupnou extenzí o definice relačních
a funkčních (příp. konstantních) symbolů. Vlastnosti, které jsme dokázali o extenzích o jeden symbol (at už
relační nebo funkční), se snadno rozšíríi indukcí na více symbolů: Důsledek 6.7.11. T ′ je konzervativni extenze
T .

8. Vzťah definovateľných množín a automorfizmov
Je-li D ⊆ An definovatelná ve struktuře A, potom pro každý automorfismus h ∈ Aut(A) platí h[D] = D(kdeh[D]
značí {(h(ā) | ā ∈ D}).

Je-li D definovatelná s parametry b̄, platí totéž pro automorfismy identické na b̄, tj. takové, žeh(b̄) = b̄ (
neboli h (bi) = bi pro všechna i).

Důkaz. Ukážeme jen verzi s parametry. Nechł D = φA,b̄(x̄, ȳ). Potom pro každé ā ∈ An platí následující
ekvivalence:

ā ∈ D ⇔ A |= φ[e(x̄/ā, ȳ/b̄)]

⇔ A = φ[(e ◦ h)(x̄/ā, ȳ/b̄)]
⇔ A = φ[e(x̄/h(ā), ȳ/h(b̄))]

⇔ A = φ[e(x̄/h(ā), ȳ/b̄)]

⇔ h(ā) ∈ D.

9. Tablo metóda v jazyku s rovnosťou
Axiomy rovnosti pro jazyk L s rovností jsou následující:

1. x = x

2. x1 = y1 ∧ · · · ∧ xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn) pro každý n-ární funkční symbol f jazyka L,

3. x1 = y1 ∧ · · · ∧ xn = yn → (R (x1, . . . , xn) → R (y1, . . . , yn)) pro každý n-ární relační symbol R jazyka
L včetně rovnosti. Z axiomů (i) a ( iii ) tedy plyne, že relace = A je ekvivalence na A, a axiomy (ii) a
(iii) vyjadřují, že = A je kongruencí A. V tablo metodě v případě jazyka s rovností implicitně přidáme
všechny axiomy rovnosti:

Definice 7.3.4 (Tablo důkaz s rovností). Je-li T teorie v jazyce L s rovností, potom označme jako T ∗

rozšíření teorie T o generální uzávěry axiomů rovnosti pro jazyk L. Tablo důkaz z teorie T je tablo důkaz z T ∗,
podobně pro tablo zamítnutí (a obecně jakékoliv tablo).

10. Veta o kompaktnosti a jej aplikácie
Teorie má model, právě když každá jeji konečná část má model.

Důkaz. Každý model teorie T je zjevně modelem každé její části. Druhou implikaci dokážeme nepřímým
důkazem: Předpokládejme, že T nemá model, tj. je sporná, a najděme konečnou část T ′ ⊆ T , která je také
sporná.
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Protože je T sporná, platí T ⊢⊥ (zde potřebujeme Větu o úplnosti). Potom existuje konečný tablo důkaz τ
výroku ⊥ z T . Konstrukce tohoto důkazu má jen konečně mnoho kroků, použili jsme tedy jen konečně mnoho
axiomů z T . Definujeme-li T ′ = {α ∈ T | T α je položka v tablu τ}, potom τ je také tablo důkaz sporu z teorie
T ′. Teorie T ′ je tedy sporná konečná část T .

Aplikace kompaktnosti Následující jednoduchou aplikaci Věty o kompaktnosti můžete chápat jako šablonu,
kterou následuje i mnoho dalších, složitějších aplikací této věty.

Důsledek: Spočetně nekonečný graf je bipartitní, právě když je každý jeho konečný podgraf bipartitní.
Důkaz. Každý podgraf bipartitního grafu je zjevně také bipartitní. Ukažme opačnou implikaci. Graf je

bipartitní, právě když je obarvitelný 2 barvami. Označme barvy 0,1 .
Sestrojíme výrokovou teorii T v jazyce P = {pv | v ∈ V (G)}, kde hodnota výrokové proměnné pv reprezentuje

barvu vrcholu v.

T = {pu → ¬pv | {u, v} ∈ E(G)}

Zřejmě platí, že G je bipartitní, právě když T má model. Podle Věty o kompaktnosti stačí ukázat, že každá
konečná část T má model. Vezměme tedy konečnou T ′ ⊆ T . Bud’ G’ podgraf G indukovaný na množině
vrcholů, o kterých se zmiňuje teorie T ′, tj.V (G′) = {v ∈ V (G) | pv ∈ Var (T ′)}. Protože je T ′ konečná, je G′

také konečný, a podle předpokladu je 2-obarvitelný. Libovolné 2-obarvení V (G′) ale určuje model teorie T ′.
Slovo kompaktnost pochází z kompaktních (tj. omezených a uzavrených) mnozin v Euklidovských prostorech,

ve kterých lze z každé posloupnosti vybrat konvergentní podposloupnost. Můžete si představit posloupnost
zvětšujících se konečných částí ’konvergující’ k nekonečnému celku.

V predikátovej

Důkaz. Model teorie je zřejmě modelem každé její části. Naopak, pokud T nemá model, je sporná, tedy
T ⊢⊥. Vezměme nějaký konečný tablo důkaz ⊥ z T . K jeho konstrukci stačí konečně mnoho axiomů T , ty tvoří
konečnou podteorii T ′ ⊆ T , která nemá model.

11. Veta o korektnosti rezolúcie vo výrokovej logike
Je-li formule S rezolucí zamítnutelná, potom je S nesplnitelná.

Důkaz. Necht’ S ⊢R □ a vezměme nějaký rezoluční důkaz C0, C1, . . . , Cn = □. Předpokládejme pro spor,
že S je splnitelná, tedy V |= S pro nějaké ohodnocení V. Indukcí podle i dokážeme, že V |= Ci. Pro i = 0 to
platí, nebot C0 ∈ S. Pro i > 0 máme dva případy:

• Ci ∈ S, v tom případě V |= Ci plyne z předpokladu, že V |= S,

• Ci je rezolventou Cj , Ck, kde j, k < i : z indukčního předpokladu víme V |= Cj a V |= Ck, V |= Ci plyne
z korektnosti rezolučního pravidla.

12. Veta o korektnosti rezolúcie v predikátovej logike
Pokud je CNF formule S rezolucí zamítnutelná, potom je nesplnitelná.

Důkaz. Víme, že S ⊢R □, vezměme tedy nějaký rezoluční důkaz □ z S. Kdyby existoval model A |= S,
díky korektnosti rezolučního pravidla bychom mohli dokázat indukcí podle délky důkazu, že i A |= □, což ale
není možné.

13. Súvislosť stromu dosiahnutia a splniteľnosti CNF formule
Je-li S formule a ℓ literál, potom dosazením ℓ do S myslíme formuli:

Sℓ = {C\{ℓ̄} | l /∈ C ∈ S}

Zde shrneme několik jednoduchých faktů o dosazení:

• Sℓ je výsledkem jednotkové propagace aplikované na S ∪ {{ℓ}}.

• Pokud S neobsahovala literál ℓ ani ℓ̄, potom Sℓ = S.

• Pokud S obsahovala jednotkovou klauzuli {ℓ̄}, potom □ ∈ Sℓ, tedy Sℓ je sporná.
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S je splnitelná, právě když je splnitelná Sℓ nebo S ℓ̄.
Důkaz. Mějme ohodnocení V |= S, to nemůže obsahovat ℓ i ℓ̄ (musí být konzistentní); bez újmy na obecnosti

předpokládejme, že ℓ̄ /∈ V, a ukažme, že V |= Sℓ. Vezměme libovolnou klauzuli v Sℓ. Ta je tvaru C\{ℓ̄} pro
klauzuli C ∈ S (neobsahující literál ℓ ). Víme, že V |= C, protože ale V neobsahuje ℓ̄, muselo ohodnocení V
splnit nějaký jiný literál C, takže platí i V ≡ C\{ℓ̄}

Naopak, předpokládejme že existuje ohodnocení V splňující Sℓ (opět bez újmy na obecnosti). Protože se
ℓ̄ (ani ℓ ) nevyskytuje vSℓ, platí také V\{ℓ̄} |= Sℓ. Ohodnocení V ′ = (V\{ℓ̄}) ∪ {ℓ} potom splňuje každou
klauzuli C ∈ S : pokud ℓ ∈ C, potom ℓ ∈ C ∩ V ′ a C ∩ V ′ ̸= ∅, jinak C ∩ V ′ = (C\{ℓ̄}) ∩ V ′ ̸= ∅ nebot
V\{ℓ̄} |= C\{ℓ̄} ∈ Sℓ. Ověřili jsme, že V ′ |= S, tedy S je splnitelná.

14. Unifikačný algoritmus (korektnosť)
Algoritmus (Unifikační algoritmus).

• vstup: konečná množina výrazů S ̸= ∅,

• výstup: nejobecnější unifikace σ pro S nebo informace, že S není unifikovatelná (0) nastav S0 := S, σ0 :=
∅, k := 0 (1) pokud |Sk| = 1, vrat’ σ = σ0σ1 · · ·σk (2) zjisti, zda v D (Sk) existuje proměnná x a term t
neobsahující x (3) pokud ano, nastav σk+1 := {x/t}, Sk+1 := Skσk+1, k := k + 1, a jdi na (1) (4) pokud
ne, odpověz, že S není unifikovatelná Poznámka 8.4.11. Hledání proměnné x a termu tv kroku (2) může
být relativně výpočetně náročné.

Tvrzení 8.4.13. Unifikační algoritmus je korektní. Pro každý vstup S skončí v konečně mnoha krocích, a je-li
S unifikovatelná, odpoví nejobecnější unifikaci σ, jinak odpoví, že S neni unifikovatelná. Je-li S unifikovatelná,
potom pro sestrojenou nejobecnější unifikaci σ navíc platí, že je-li τ libovolná unifikace, potom τ = στ .

15. Neštandardný model prirodzených čísel
Nechť N = ⟨N, S,+, ·, 0,≤⟩ je standardní model přirozených čísel. Označme Th(N) množinu všech sentencí
pravdivých ve struktuře N (tzv. teorii struktury N ). Pro n ∈ N definujme n-tý numerál jako term n =
S(S(· · · (S(0) · · · )), kde S je aplikováno n-krát.

Vezměme nový konstantní symbol c a vyjádřeme, že je ostře větší než každý n-tý numerál:

T = Th(N) ∪ {n < c | n ∈ N}

Všimněte si, že každá konečná část teorie T má model. Z věty o kompaktnosti tedy plyne, že i teorie T má
model. Říkáme mu nestandardní model (označme ho A ). Platí v něm tytéž sentence, které platí ve standardním
modelu, ale zároveň obsahuje prvek cA, který je větší než každé n ∈ N (čímž zde myslíme hodnotu termu n v
nestandardním modelu A).

16. Kompletné jednoduché extenzie DeLO*
Teorie uspořádání je teorie v jazyce uspořádání L = ⟨≤⟩ s rovností, jejíž axiomy jsou:

T ={x ≤ x,

x ≤ y ∧ y ≤ x→ x = y,

x ≤ y ∧ y ≤ z → x ≤ z}

Těmto axiomům říkáme reflexivita, antisymetrie, tranzitivita. Modely T jsou L-struktury
〈
S,≤S

〉
, ve

kterých platí axiomy T , tzv. (částečně) uspořádané množiny. Např: A = ⟨N,≤⟩, B = ⟨P(X),⊆⟩ pro
X = {0, 1, 2}

• Formule x ≤ y ∨ y ≤ x (linearita) platí v A, ale neplatí v B, nebot neplatí např. při ohodnocení kde
e(x) = {0}, e(y) = {1} (píšeme B ̸|= φ[e] ). Je tedy nezávislá v T .

• Sentence (∃x)(∀y)(y ≤ x) (označme ji ψ ) je pravdivá vB a lživá vA, píšeme B |= ψ, A |= ¬ψ. Je tedy
také nezávislá v T .

• Formule (x ≤ y ∧ y ≤ z ∧ z ≤ x) → (x = y ∧ y = z ) (označme ji χ ) je pravdivá vT , píšeme T |= χ. Totéž
platí pro její generální uzávěr (∀x)(∀y)(∀z)χ.

Teorie hustého lineárniho uspořádání (DeLO*) je extenze teorie uspořádání o následující axiomy:
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• axiom linearity (někdy se mu říká také dichotomie):

x ≤ y ∨ y ≤ x

• axiom hustoty

x ≤ y ∧ ¬x = y → (∃z)(x ≤ z ∧ z ≤ y ∧ ¬z = x ∧ ¬z = y)

Tvrzení 9.1.6. Mějme sentence φ = (∃x)(∀y)(x ≤ y) a ψ = (∃x)(∀y)(y ≤ x) vyjadřující existenci minimál-
ního resp. maximálního prvku. Následující čtyři teorie jsou právě všechny kompletní jednoduché extenze teorie
DeLO*:

• DeLO = DeLO∗ ∪{¬φ,¬ψ}

• DeLO+ = DeLO∗ ∪ {¬φ,ψ}

• DeLO− = DeLO∗ ∪ {φ,¬ψ}

• DeLO± = DeLO∗ ∪{φ,ψ} Stačí ukázat, že tyto čtyři teorie jsou kompletní. Potom už je zřejmé, že
žádná další kompletní jednoduchá extenze DeLO* nemůže existovat. Kompletnost plyne z faktu, že jsou
ω-kategorické, tj. mají jediný spočetný model až na izomorfismus.

17. Existencia spočetného algebraicky uzavreného telesa
Je-li L spočetný jazyk s rovností, potom ke každé nekonečné L-struktuře existuje elementárně ekvivalentní
spočetně nekonečná struktura.

Důkaz. Mějme nekonečnou L-strukturu A. Najdeme spočetně nekonečnou strukturu B ≡ A. Protože vA
neplatí pro žádné n ∈ N sentence vyjadřující ’existuje nejvýše n prvků’ (což lze pomocí rovnosti snadno zapsat),
neplatí tato sentence ani v B,B tedy nemůže být konečná struktura.

Těleso A je algebraicky uzavřené, pokud každý polynom nenulového stupně v něm má kořen. Těleso reálných
čísel R není algebraicky uzavřené, neboť x2 + 1 nemá v R kořen, stejně tak těleso Q ( v něm nemá kořen ani
x2 − 2

)
. Těleso komplexních čísel C algebraicky uzavřené je, je ale nespočetné.

Algebraickou uzavřenost lze vyjádřit pomocí následujících sentencí ψn, pro každé n > 0 :

(∀xn−1) . . . (∀x0) (∃y)
(
yn + xn−1 · yn−1 + · · ·+ x1 · y + x0) = 0

kde yk je zkratka za term y · y · · · · · y (kde · je aplikováno (k − 1)-krát). Důsledek: Existuje spočetné
algebraicky uzavřené těleso. Důkaz. Existuje spočetně nekonečná struktura A elementárně ekvivalentní tělesu
C. Protože C je těleso a splňuje sentence ψn pro všechna n > 0, je i A algebraicky uzavřené těleso.

18. Telesá charakteristiky 0 nie sú konečne axiomatizovateľné
Mějme třŕdu struktur K ⊆ ML a uvažme také jeji doplněk K̄ = ML\K. Potom K je konečně axiomatizovatelná,
právě když KiK̄ jsou axiomatizovatelné.

Stačí ukázat, že K̄ (tělesa nenulové charakteristiky) není axiomatizovatelná, což dokážeme sporem. Necht’
existuje teorie S taková, že M(S) = K̄. Potom teorie S′ = S ∪ T ′ má model, nebot’ každá její konečná část má
model: stačí vzít těleso prvočíselné charakteristiky větší než jakékoliv p z axiomu T ′ tvaru ¬p1 = 0. Necht A je
model S′. Potom je i A ∈ M(S) = K̄. Zároveň je ale A ∈ M(T ′) = K, což je spor.

19. Kritérium otvorenej axiomatizovateľnosti
Pokud je teorie T otevřeně axiomatizovatelná, potom je každá podstruktura modelu T také modelem T . Nechť
T ′ je otevřená axiomatizace T . Mějme model A |= T ′ a podstrukturu B ⊆ A. Pro každou formuli φ ∈ T ′ platí
B |= φ (nebot’ φ je otevřená), tedy i B |= T ′.

Uved’me několik příkladů:

• Teorie DeLO není otevřeně axiomatizovatelná, například žádná konečná podstruktura modelu DeLO
nemůže být hustá.

• Teorie těles není otevřeně axiomatizovatelná, podstruktura Z ⊆ Q tělesa celých čísel není tělesem, v Z
neexistuje inverzní prvek vůči násobení k číslu 2 .
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• Pro dané n ∈ N jsou nejvýše n-prvkové grupy otevřeně axiomatizovatelné(podgrupy jsou jistě také nejvýše
n-prvkové). Jako otevřenou axiomatizaci lze vzít následující extenzi (otevřené) teorie grup T :

T ∪

 ∨
1≤i<j≤n+1

xi = xj


20. Rekurzívne axiomatizovaná teória je čiastočne rozhodnuteľná, kompletná je
rozhodnuteľná
O teorii T říkáme, že je

• rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne a odpoví, zda
T |= φ,

• částečně rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli:

• pokud T |= φ, doběhne a odpoví "ano",

• pokud T ̸|= φ, bud’ nedoběhne, nebo doběhne a odpoví "ne".

Teorie T je rekurzivně axiomatizovaná, pokud existuje algoritmus, který pro každou vstupní formuli φ
doběhne a odpoví, zda φ ∈ T .

Nechť T je rekurzivně axiomatizovaná. Potom:

1. T je částečně rozhodnutelná,

2. je-li T navíc kompletní, potom je rozhodnutelná. Důkaz. Algoritmem ukazujícím částečnou rozhodnutel-
nost je konstrukce systematického tabla pro F φ.4 Pokud φ v T platí, konstrukce skončí v konečně mnoha
krocích a snadno ověříme, že je tablo sporné, jinak ale skončit nemusí.

Je-li T kompletní, víme, že T ⊢ φ právě když T ⊬ φ. Budeme tedy paralelně konstruovat tablo pro Fφ a
tablo pro Tφ (důkaz a zamítnutí φ z T ): jedna z konstrukcí po konečně mnoha krocích skončí.

21. Teória konečnej štruktúry v konečnom jazyku s rovnosťou je rozhodnuteľná
Mějme L-strukturu A. Teorie struktury A, značíme Th(A) je množina všech L-sentencí platných v A :

Th(A) = {φ | φ je L-sentence a A |= φ}

Je-li A konečná struktura v konečném jazyce s rovností, potom je teorie Th(A) rekurzivně axiomatizovatelná.
Důkaz. Očíslujme prvky domény jako A = {a1, . . . , an}. Teorii Th(A) lze axiomatizovat jedinou sentencí,

která je tvaru "existuje právě n prvků a1, . . . , an splňujících právě ty základní vztahy o funkčních hodnotách a
relacích, které platí ve struktuře A ".

22. Godelové vety o neúplnosti a ich dôsledky (bez dôkazu)
(První věta o neúplnosti). Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy arit-
metiky existuje sentence, která je pravdivá v N, ale není dokazatelná v T .

(Druhá věta o neúplnosti). Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Peanovy arit-
metiky platí, že CT není dokazatelná v T.

Ťažké otázky

1. Veta o korektnosti tablo metódy vo výrokovej logike
Je-li výrok φ tablo dokazatelný z teorie T , potom je φ pravdivý v T , t j . T ⊢ φ⇒ T |= φ.

Důkaz. Dokážeme sporem. Předpokládejme, že φ v T neplatí, tj. existuje protipříklad: model v ∈ M(T ), ve
kterém φ neplatí. Protože je φ dokazatelná z T , existuje tablo důkaz φ z T, což je sporné tablo z T s položkou
Fφ v kořeni. Model v se shoduje s položkou Fφ
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1. Shoduje-li se model teorie T s položkou v kořeni tabla z teorie T , potom se shoduje s některou větví.
Důkaz. Mějme tablo τ =

⋃
i≥0 τi z teorie T a model v ∈ M(T ) shodující se s kořenem τ , tedy s

(jednoprvkovou) větví V0 v (jednoprvkovém) τ0. Indukcí podle i (podle kroků v při konstrukci tabla)
najdeme posloupnost V0 ⊆ V1 ⊆ . . . takovou, že Vi je větev v tablu τi shodující se s modelem v, a Vi+1 je
prodloužením Vi. Požadovaná větev tabla τ je potom V =

⋃
i≥0 Vi.

• Pokud τi+1 vzniklo z τi bez prodloužení větve Vi, definujeme Vi+1 = Vi.

• Pokud τi+1 vzniklo z τi připojením položky T α (pro nějaký axiom α ∈ T ) na konec větve Vi,
definujeme Vi+1 jako tuto prodlouženou větev. Protože v je model T , platí v něm axiom α, tedy
shoduje se i s novou položkou T α.

• Necht’ τi+1 vzniklo z τi připojením atomického tabla pro nějakou položku P na konec větve Vi.
Protože se model v shoduje s položkou P (která leží na větvi Vi ), shoduje se i s kořenem připojeného
atomického tabla, a proto se shoduje i s některou z jeho větví. (Tuto vlastnost snadno ověříme pro
všechna atomická tabla.) Definujeme Vi+1 jako prodloužení Vi o tuto větev atomického tabla.

Všechny větve jsou ale sporné, včetně V . Takže V obsahuje položky T ψ a F ψ (pro nějaký výrok ψ ), a
model v se s těmito položkami shoduje. Máme tedy v |= ψ a zároven v ̸|= ψ, což je spor.

2. Veta o korektnosti tablo metódy v predikátovej logike
Je-li sentence φ tablo dokazatelná z teorie T , potom je φ pravdivá vT, tj.T ⊢ φ⇒ T |= φ.

Důkaz. Předpokládejme pro spor, že T ̸|= φ, tj. existuje A ∈ M(T ) takový, že A ̸|= φ. Protože T ⊢ φ,
existuje sporné tablo z T s F φ v kořeni. Model A se shoduje s Fφ, lze tedy expandovat do jazyka LC tak, že
se expanze shoduje s nějakou větví V .

1. Důkaz. Mějme tablo τ =
⋃

i>0 τi z teorie T a model A ∈ ML(T ) shodující se s kořenem τ , tedy s
(jednoprvkovou) větví V0v (jednoprvkovém) τ0. Indukcí podle i najdeme posloupnost větví Vi a expanzí
Ai modelu A o konstanty cA ∈ C vyskytující se na Vi takových, že Vi je větev v tablu τi shodující se s
modelem Ai, Vi+1 je prodloužením Vi, a Ai+1 je expanzí Ai (mohou si být i rovny). Požadovaná větev
tabla τ je potom V =

⋃
i≥0 Vi. Expanzi modelu A do jazyka LC získáme jako ’limitu’ expanzí Ai, tj.

vyskytuje-li se symbol c ∈ C na V , vyskytuje se na nějaké z větví Vi a interpretujeme ho stejně jako vAi

(ostatní pomocné symboly interpretujeme libovolně).

• Pokud τi+1 vzniklo z τi bez prodloužení větve Vi, definujeme Vi+1 = Vi a Ai+1 = Ai.

• Pokud τi+1 vzniklo z τi připojením položky T α (pro nějaký axiom α ∈ T ) na konec větve Vi,
definujeme Vi+1 jako tuto prodlouženou větev a Ai+1 = Ai (nepřidali jsme žádný nový pomocný
konstantní symbol). Protože Ai+1 je modelem T , platí v něm axiom α, tedy shoduje se i s novou
položkou Tα.

• Necht τi+1 vzniklo z τi připojením atomického tabla pro nějakou položku P na konec větve Vi.
Protože se model Ai shoduje s položkou P (která leží na větvi Vi ), shoduje se i s kořenem připojeného
atomického tabla.

• Pokud jsme připojili atomické tablo pro logickou spojku, položíme Ai+1 = Ai (nepřidali jsme nový
pomocný symbol). Protože Ai+1 se shoduje s kořenem atomického tabla, shoduje se i s některou z
jeho větví (stejně jako ve výrokové logice); definujeme Vi+1 jako prodloužení Vi o tuto větev.

• Je-li položka P typu ’svědek’: Pokud je P = T(∃x)φ(x), potom Ai |= (∃x)φ(x), tedy existuje a ∈ A
takové, že Ai |= φ(x)[e(x/a)]. Větev Vi+1 definujeme jako prodloužení Vi o nově přidanou položku
Tφ(x/c) a model Ai+1 jako expanzi Aio konstantu cA = a. Případ P = F(∀x)φ(x) je obdobný.

• Je-li položka P typu ’všichni’, větev Vi+1 definujeme jako prodloužení Vi o atomické tablo. Nově
přidaná položka je Tφ(x/t) nebo Fφ(x/t) pro nějaký LC-term t. Předpokládejme, že jde o první
z těchto dvou možností, pro druhou je důkaz analogický. Model Ai+1 definujeme jako libovolnou
expanzi Ai o nové konstanty vyskytující se v t. Protože Ai |= (∀x)φ(x), platí i Ai+1 |= (∀x)φ(x) a
tedy i Ai+1 |= φ(x/t); model Ai+1 se tedy shoduje s větví Vi.

Všechny větve jsou ale sporné.
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3. Veta o úplnosti tablo metódy vo výrokovej logike
Je-li výrok φ pravdivý v teorii T , potom je tablo dokazatelný z T , tj.T |= φ⇒ T ⊢ φ.

Důkaz. Ukážeme, že libovolné dokončené (tedy např. i systematické) tablo z T s položkou Fφv kořeni je
nutně sporné. Důkaz provedeme sporem: kdyby takové tablo nebylo sporné, existovala by v něm bezesporná
(dokončená) větev V . Uvažme kanonický model v pro tuto větev. Protože je V dokončená, obsahuje T α pro
všechny axiomy α ∈ T . Model v se shoduje se všemi položkami na V , splňuje tedy všechny axiomy a máme
v |= T .

1. Důkaz. Ukážeme, že kanonický model v se shoduje se všemi položkami P na větvi V , a to indukcí podle
struktury výroku v položce. Nejprve základ indukce:

• Je-li P = Tp pro nějaký prvovýrok p ∈ P, máme podle definice v(p) = 1; v se s P shoduje.

• Je-li P = Fp, potom se na větvi V nemůže vyskytovat položka Tp, jinak by V byla sporná. Podle
definice máme v(p) = 0 a v se s P opět shoduje. Nyní indukční krok. Rozebereme dva případy,
ostatní se dokáží obdobně.

• Necht P = Tφ ∧ ψ. Protože je V dokončená větev, je na ní položka P redukovaná. To znamená, že
se na V vyskytují i položky T φ a T ψ. Podle indukčního předpokladu se s nimi model v shoduje,
tedy v |= φ a v |= ψ. Takže platí i v |= φ ∧ ψ a v se shoduje s.

• Necht P = Fφ∧ ψ. Protože je P na V redukovaná, vyskytuje se na V položka Fφ nebo položka Fψ.
Platí tedy v ̸|= φ nebo v ̸|= ψ, z čehož plyne v ̸|= φ ∧ ψ a v se shoduje s P .

Protože se ale v shoduje i s položkou Fφ v kořeni, máme v ̸|= ψ, což znamenám, že T ̸|= ψ, spor. Tablo tedy
muselo být sporné, tj. být tablo důkazem φ z T .

4. Veta o úplnosti tablo metódy v predikátovej logike
Je-li sentence φ pravdivá v teorii T , potom je tablo dokazatelná z T, tj.T |= φ⇒ T ⊢ φ.

Důkaz provedeme sporem: kdyby takové tablo nebylo sporné, existovala by v něm bezesporná (dokončená)
větev V . Uvažme kanonický model A pro tuto větev, a označme jako A′ jeho redukt na jazyk L. Protože je V
dokončená, obsahuje T α pro všechny axiomy α ∈ T . Model A se shoduje se všemi položkami na V , splňuje
tedy všechny axiomy a máme i A′ |= T .

1. Důkaz. Nejprve uvažme jazyky bez rovnosti. Ukážeme indukcí podle struktury sentencí v položkách,
že kanonický model A se shoduje se všemi položkami P na větvi V . Základ indukce, tj. případ, kdy
φ = R (s1, . . . , sn) je atomická sentence, je jednoduchý: Je-li na V položka T φ, potom (s1, . . . , sn) ∈ RA

plyne přímo z definice kanonického modelu, máme tedy A |= φ. Je-li na V položka Fφ, potom na V není
položka Tφ(V je bezesporná), (s1, . . . , sn) /∈ RA, a A ̸|= φ Nyní indukční krok. Rozebereme jen několik
případů, ostatní se dokáží obdobně. Pro logické spojky je důkaz zcela stejný jako ve výrokové logice,
například je-li P = Fφ ∧ ψ, potom protože je P na V redukovaná, vyskytuje se na V položka Fφ nebo
položka F ψ. Platí tedy A∀φ nebo A∀ψ, z čehož plyne A∀φ ∧ ψ a A se shoduje s P .

• Máme-li položku typu "všichni", například P = T(∀x)φ(x) (případ P = F(∃x)φ(x) je obdobný),
potom jsou na V i položky Tφ(x/t) pro každý konstantní LC-term, tj. pro každý prvek " t " ∈ A.
Dle indukčního předpokladu je A |= φ(x/t) pro každé "t" ∈ A, tedy A |= (∀x)φ(x)

• Máme-li položku typu "svědek", například P = T(∃x)φ(x) (případ P = F(∀x)φ(x) je obdobný),
potom je na V i položka Tφ(x/c) pro nějaké " c " ∈ A. Dle indukčního předpokladu je A |= φ(x/c),
tedy i A |= (∃x)φ(x).

Je-li jazyk s rovností, máme kanonický model A = B/ = B, důkaz výše platí pro B

Protože se ale A shoduje i s položkou Fφ v kořeni, platí i A′ ̸|= φ, což znamená, že A′ ∈ ML(T )\ML(φ),
tedy T ̸|= φ, a to je spor. Tablo tedy muselo být sporné, tj. být tablo důkazem φ z T .

5. Veta o konečnosti sporu, dôsledky o konečnosti a systematičnosti dôkazov
Je-li τ =

⋃
i≥0 τi sporné tablo, potom existuje n ∈ N takové, že τn je sporné konečné tablo. Důkaz. Uvažme

množinu S všech vrcholů stromu τ , které nad sebou (ve stromovém uspořádání) neobsahují spor, tj. dvojici
položek Tψ,Fψ.
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Kdyby množina S byla nekonečná, podle Königova lemmatu (Nekonečný, konečně větvíci strom má nekoneč-
nou větev. ) použitého na podstrom τ na množině S bychom měli nekonečnou, bezespornou větev v S. To by
ale znamenalo, že máme i bezespornou větev v τ , což je ve sporu s tím, že τ je sporné. (Podrobněji: Větev na S
by byla podvětví nějaké větve V v τ , která je sporná, tj. obsahuje nějakou (konkrétní) spornou dvojici položek,
která ale existuje už v nějakém konečném prefixu V .)

Množina S je tedy konečná. To znamená, že existuje d ∈ N takové, že celá S leží v hloubce nejvýše d. Každý
vrchol na úrovni d+ 1 má tedy nad sebou spor. Zvolme n tak, že τn už obsahuje všechny vrcholy τ z prvních
d+ 1 úrovní: každá větev τn je tedy sporná.

Důsledek Pokud při konstrukci tabla nikdy neprodlužujeme sporné větve, napr. pro systematické tablo,
potom sporné tablo je konečné. Důsledek Pokud T ⊢ φ, potom existuje i konečný tablo důkaz φ z T

Důsledek Systematičnost důkazů). Pokud T ⊢ φ, potom systematické tablo je (konečným) tablo důkazem φ
z T . K důkazu budeme potřebovat dvě fakta: pokud je φ dokazatelná z T , potom v T platí (Věta o korektnosti),
tj. nemůže existovat protipříklad. A dále pokud by systematické tablo mělo bezespornou větev, znamenalo by
to, že existuje protipříklad (to je klíčem k Větě o úplnosti).

Důkaz Z důkazu o uplnosti také dostáváme ’systematičnost důkazů’, tj. že důkaz můžeme vždy hledat
konstrukcí systematického tabla: Pokud T |= φ, tak je i systematické tablo pro položku Fφ nutně sporné, a je
tedy tablo důkazem φzT .

6. Veta o úplnosti rezolúcie vo výrokovej logike
Je-li S nesplnitelná, je rezolucí zamítnutelná (tj. S ⊢R □). Důkaz. Je-li S nekonečná, má konečnou nesplnitel-
nou část S′. Rezoluční zamítnutí S′ je také rezolučním zamítnutím S.

1. Teorie má model, právě když každá její konečná část má model. Důkaz. Každý model teorie T je zjevně
modelem každé její části. Druhou implikaci dokážeme nepřímým důkazem: Předpokládejme, že T nemá
model, tj. je sporná, a najděme konečnou část T ′ ⊆ T , která je také sporná. Protože je T sporná, platí
T ⊢⊥. Pokud T ⊢ φ, potom existuje i konečný tablo důkaz φ z T . Konstrukce tohoto důkazu má jen
konečně mnoho kroků, použili jsme tedy jen konečně mnoho axiomů z T . Definujeme-li T ′ = {α ∈ T | T α
je položka v tablu τ}, potom τ je také tablo důkaz sporu z teorie T ′. Teorie T ′ je tedy sporná konečná část
T . Důkaz provedeme indukcí podle počtu proměnných v S. Je-li |Var(S)| = 0, jediná možná nesplnitelná
formule bez proměnných je S = {□} a máme jednokrokový důkaz S ⊢R □. Jinak vyberme p ∈ Var(S). S
je splnitelná, právě když je splnitelná Sℓ nebo S ℓ̄. Mějme ohodnocení V |= S, to nemůže obsahovat ℓ i ℓ̄
(musí být konzistentní); bez újmy na obecnosti předpokládejme, že ℓ̄ /∈ V, a ukažme, že V |= Sℓ. Vezměme
libovolnou klauzuli v Sℓ. Ta je tvaru C\{ℓ̄} pro klauzuli C ∈ S (neobsahující literál ℓ ). Víme, že V |= C,
protože ale V neobsahuje ℓ̄, muselo ohodnocení V splnit nějaký jiný literál C, takže platí i V |= C\{ℓ̄}
Předpokládejme tedy, že S je konečná. Naopak, předpokládejme že existuje ohodnocení V splňující Sℓ

(opět bez újmy na obecnosti). Protože se ℓ̄ (ani ℓ ) nevyskytuje vSℓ, platí také V\{ℓ̄} |= Sℓ. Ohodnocení
V ′ = (V\{ℓ̄}) ∪ {ℓ} potom splňuje každou klauzuli C ∈ S : pokud ℓ ∈ C, potom ℓ ∈ C ∩ V ′ a C ∩ V ′ ̸= ∅,
jinak C ∩V ′ = (C\{ℓ̄})∩V ′ ̸= ∅ nebot V\{ℓ̄} |= C\{ℓ̄} ∈ Sℓ. Ověřili jsme, že V ′ |= S, tedy S je splnitelná.

Tedy Sp i Sp̄ nesplnitelné. Mají o jednu proměnnou méně, tedy podle indukčního předpokladu existují
rezoluční stromy T pro Sp ⊢R □ a T ′ pro Sp̄ ⊢R □.

Ukážeme, jak ze stromu T vyrobit rezoluční strom T̂ pro S ⊢R ¬p. Analogicky vyrobíme T̂ ′ pro S ⊢R p a
potom už snadno vyrobíme rezoluční strom pro S ⊢R □ : ke kořeni □ připojíme kořeny stromů T̂ a T̂ ′ jako
levého a pravého syna (tj. v posledním kroku rezolučního důkazu získáme □ rezolucí z {¬p} a {p}).

Zbývá ukázat konstrukci stromu T̂ : množina vrcholů i uspořádání jsou stejné, změníme jen některé klauzule
ve vrcholech, a to přidáním literálu ¬p. Na každém listu stromu T je nějaká klauzule C ∈ Sp, a bud’ je C ∈ S,
nebo není, ale C ∪ {¬p} ∈ S. V prvním případě necháme label stejný. Ve druhém případě přidáme do C a do
všech klauzulí nad tímto listem literál ¬p. V listech jsou nyní jen klauzule z S, v kořeni jsme □ změnili na ¬p.
A každý vnitřní vrchol je nadále rezolventou svých synů.

7. Veta o úplnosti LI-rezolúcie pre výrokové Hornove formule
Je-li Hornova formule T splnitelná, a T∪{G} je nesplnitelná pro cíl G, potom T∪{G} ⊢LI □, a to LI-zamítnutím,
které začíná cílem G.

Důkaz (konstrukci LI-zamítnutí) provedeme indukcí podle počtu proměnných v T .
Víme, že je-li Hornova formule S nesplnitelná a □ /∈ S, potom obsahuje fakt i cíl. Důkaz. Neobsahuje-li

fakt, můžeme ohodnotit všechny proměnné 0 ; neobsahuje-li cíl, ohodnotíme 1. Potom T obsahuje fakt {p} pro
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nějakou výrokovou proměnnou p. Protože T ∪{G} je nesplnitelná, je nesplnitelná také (T ∪{G})p = T p∪{Gp},
kde Gp = G\{¬p}

Pokud Gp = □, potom G = {¬p},□ je rezolventa G a {p} ∈ T , a máme jednokrokové LI-zamítnutí T (to je
báze indukce).

Jinak je formule T p splnitelná (stejným ohodnocením jako T , nebot to musí obsahovat p kvůli faktu {p},
tedy neobsahuje ¬p ) a má méně proměnných než T . Tedy podle indukčního přdpokladu existuje LI-odvození
□zT p ∪ {Gp} začínající Gp = G\{¬p}.

Hledané LI-zamítnutí T ∪{G} začínající G zkonstruujeme (podobně jako v důkazu Věty o úplnosti rezoluce)
přidáním literálu ¬p do všech listů, které už nejsou v T ∪ {G} (tedy vznikly odebráním ¬p, a do všech vrcholů
nad nimi. Tím získáme T ∪ {G} ⊢LI ¬p, na závěr přidáme boční klauzuli {p} a odvodíme □.

8. Veta o úplnosti rezolúcie v predikátovej logike (Lifting lemma)
Je-li CNF formule S nesplnitelná, potom je zamítnutelná rezolucí.

(Základní instance). Mějme otevřenou formuli φ ve volných proměnných x1, . . . , xn. Řekneme, že instance
φ (x1/t1, . . . , xn/tn) je základní (ground) instance, jsou-li všechny termy t1, . . . , tn konstantní (ground).

(Lifting lemma). Mějme klauzule C1 a C2 s disjunktní množinou proměnných. Jsou-li C∗
1 a C∗

2 základní
instance klauzulí C1 a C2 a je-li C∗ je rezolventou C∗

1 a C∗
2 , potom existuje rezolventa C klauzulí C1 a C2

taková, že C∗ je základní instancí C. Z lifting lemma pak: Mějme CNF formuli S a označme jako S∗ množinu
všech jejích základních instancí. Pokud S∗ ⊢R C∗ (’na úrovni výrokové logiky’) pro nějakou základni klauzuli
C∗, potom existuje klauzule C a základní substituce σ taková, že C∗ = Cσ a S ⊢R C (’na úrovni predikátové
logiky’).

Důkaz. Označme jako S∗ množinu všech základních instancí klauzulí z S. Protože je S nesplnitelná, je díky
Herbrandově větě nesplnitelná i S∗. Z věty o úplnosti výrokové rezoluce víme, že S∗ ⊢R □ (’na úrovni výrokové
logiky’). Z Lifting lemmatu postáváme klauzuli C a základní substituci σ takové, že Cσ = □ a S ⊢R C (’na
úrovni predikátové logiky’). Ale protože prázdná klauzule □ je instancí C, musí být C = □. Tím jsme našli
rezoluční zamítnutí S ⊢R □.

9. Skolemova veta
Každá teorie má otevřenou konzervativní extenzi.

(Skolemova varianta). Mějme L-sentenci φ v PNF, a necht všechny její vázané proměnné jsou různé.
Necht existenční kvantifikátory z prefixu φ jsou (∃y1) , . . . , (∃yn) (v tomto pořadí), a necht pro každé i jsou
(∀x1) , . . . , (∀xni

) právě všechny univerzální kvantifikátory předcházející kvantifikátor (∃yi) v prefixu φ.
Lemma: Mějme L-sentenci φ = (∀x1) . . . (∀xn) (∃y)ψ a necht’ φ′ je sentence

(∀x1) . . . (∀xn)ψ (y/f (x1, . . . , xn))

kde f je nový funkční symbol. Potom: (i) L-redukt každého modelu φ′ je modelem φ, a (ii) každý model φ
lze expandovat na model φ′. Důkaz. Nejprve dokažme část (i): Mějme model A′ |= φ′ a necht A je jeho redukt
na jazyk L. Pro každé ohodnocení proměnných e platí A |= ψ[e(y/a)] pro a = (f (x1, . . . , xn))

A′
[e], tedy A |= φ

Nyní část (ii): Protože A |= φ, existuje funkce fA : An → A taková, že pro každé ohodnocení proměnných
e platí A |= ψ[e(y/a)], kde a = fA (e (x1) , . . . , e (xn)). To znamená, že expanze struktury A vzniklá přidáním
funkce fA je modelem φ′.

Důkaz. Mějme L-teorii T . Každý axiom nahradíme jeho generálním uzávěrem (není-li to už sentence) a
převedeme do PNF, tím získáme ekvivalentní teorii T ′. Nyní nahradíme každý axiom teorie T ′ jeho Skolemovou
variantou. Tím získáme teorii T ′′ v rozšířném jazyce L′. Z Lemmatu pak plyne, že L-redukt každého modelu T ′′

je modelem T ′, tedy T ′′ je extenzí T ′, a že každý model T ′ lze expandovat do jazyka L′ na model T ′′, tedy jde
o konzervativní extenzi. Teorie T ′′ je axiomatizovaná univerzálními sentencemi, odstraníme-li kvantifikátorové
prefixy (tj. vezmeme-li jádra axiomů), získáme otevřenou teorii T ′′′, která ekvivalentní s T ′′ a tedy je také
konzervativní extenzí T .

10. Herbrandova veta
Mějme otevřenou teorii T v jazyce L bez rovnosti a s alespoň jedním konstantním symbolem. Potom bud’
má T Herbrandův model, nebo existuje konečně mnoho základních instancí axiomů T , jejichž konjunkce je
nesplnitelná.

(Herbrandův model). Mějme jazyk L = ⟨R,F⟩ s alespoň jedním konstantním symbolem. L-struktura
A =

〈
A,RA,FA〉 je Herbrandův model, jestliže:
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• A je množina všech konstantních L-termů (tzv. Herbrandovo univerzum), a

• pro každý n-ární funkční symbol f ∈ F a konstantní termy " t1”, . . ., " tn” ∈ A platí:

fA (”t1”, . . . , ”tn”) = ”f (t1, . . . , tn) ”

• Speciálně, pro každý konstantní symbol c ∈ F je cA = "c".

Důkaz. Označme jako Tground množinu všech základních instancí axomů teorie T. Zkonstruujeme systemat-
ické tablo z teorie Tground s položkou F ⊥ v kořeni, ale z jazyka L, bez rozšíření o pomocné konstantní symboly
na jazyk LC · Pokud tablo obsahuje bezespornou větev, potom je kanonický model pro tuto větev (opět bez
přidání pomocných konstantních symbolů) Herbrandovým modelem T . V opačném případě máme tablo důkaz
sporu, tedy teorie Tground , a tím pádem i T , je nesplnitelná. Protože je tablo důkaz konečný, použili jsme v
něm jen konečně mnoho základních instancí axiomů αground ∈ Tground. Jejich konjunkce je tedy nesplnitelná.

11. Lowenheim-Skolemova veta vrátane variatnu s rovnosťou, jej dôsledky
Je-li L spočetný jazyk bez rovnosti, potom každá bezesporná L-teorie má spočetně nekonečný model.

Důkaz. Vezměme nějaké dokončené (např. systematické) tablo z teorie T s položkou F ⊥ v kořeni. Protože
T je bezesporná, není v ní dokazatelný spor, tedy tablo musí obsahovat bezespornou větev. Hledaný spočetně
nekonečný model je L-redukt kanonického modelu pro tuto větev.

Tato věta má následující jednoduchý důsledek: Důsledek 1. Je-li L spočetný jazyk bez rovnosti, potom ke
každé L-struktuře existuje elementárně ekvivalentní spočetně nekonečná struktura.

Důkaz. Mějme L-strukturu A. Teorie Th(A) je bezesporná (má model A), tedy dle LöwenheimSkolemovy
má spočetně nekonečný model B |= Th(A). To ale znamená, že B ≡ A.

V jazyce bez rovnosti tedy nemůžeme vyjádřit například ’model má právě 42 prvků’. V důkazu Löwenheim-
Skolemovy věty jsme sestrojený model získali jako kanonický model pro bezespornou větev tabla z T pro položku
F ⊥. Stejným způsobem se dokáže následující verze pro jazyky s rovností, stačí faktorizovat dle relace = A :

Věta (Löwenheim-Skolemova s rovností). Je-li L spočetný jazyk s rovností, potom každá bezesporná L-teorie
má spočetný model (tj. konečný, nebo spočetně nekonečný). I tato verze má snadný důsledek pro konkrétní
struktury: Důsledek 2. Je-li L spočetný jazyk s rovností, potom ke každé nekonečné L-struktuře existuje
elementárně ekvivalentní spočetně nekonečná struktura.

Důkaz. Mějme nekonečnou L-strukturu A. Stejně jako v důkazu Důsledku 1. najdeme spočetně nekonečnou
strukturu B ≡ A. Protože v A neplatí pro žádné n ∈ N sentence vyjadřující ’existuje nejvýše n prvků’ (což lze
pomocí rovnosti snadno zapsat), neplatí tato sentence ani v B,B tedy nemůže být konečná struktura.

12. Vzťah izomorfizmu a elementárnej ekvivalencie
Mějme struktury A,B jazyka L = ⟨R,F⟩. Izomorfismus A a B (nebo ’ A na B′) je bijekce h : A→ B splňující
následující vlastnosti:

• Pro každý (n-ární) funkční symbol f ∈ F a pro všechna ai ∈ A platí:

h
(
fA (a1, . . . , an)

)
= fB (h (a1) , . . . , h (an))

(Speciálně, je-li c ∈ F konstantní symbol, platí h
(
cA

)
= cB.)

• Pro každý (n-ární) relační symbol R ∈ R a pro všechna ai ∈ A platí:

RA (a1, . . . , an) právě když RB (h (a1) , . . . , h (an))

Pokud existuje, říkáme, že A a B jsou izomorfní (nebo ’ A je izomorfni s B via h ’) a píšeme A ≃ B (nebo
A ≃ hB). Automorfismus A je izomorfismus A na A

Struktury A,B (v témž jazyce) jsou elementárně ekvivalentní, pokud v nich platí tytéž sentence. Značíme
A ≡ B.

Mějme struktury A,B jazyka L = ⟨R,F⟩. Bijekce h : A → B je izomorfismus A a B, právě když platí
následující: (i) pro každý L-term t a ohodnocení proměnných e : Var → A :

h
(
tA[e]

)
= tB[e ◦ h]
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(ii) pro každou L-formuli φ a ohodnocení proměnných e : Var → A :

A |= φ[e] pravěkdyž B |= φ[e ◦ h]

Důkaz. Je-li h izomorfismus, vlastnosti snadno dokážeme indukcí podle struktury termu resp. formule.
Naopak, je-li h bijekce splňující (i) a (ii), dosazením t = f (x1, . . . , xn) resp. φ = R (x1, . . . , xn) dostáváme
vlastnosti z definice izomorfismu.

Jako okamžitý důsledek dostáváme fakt, že izomorfní struktury jsou elementárně ekvivalentní: DůsledekPokud
A ≃ B, potom A ≡ B

13. ω-kategorické kritérium kompletnosti
Mějme ω-kategorickou teorii T ve spočetnem jazyce L. Je-li

• L bez rovnosti, nebo

• L s rovností a T nemá konečné modely, potom je T kompletní. Důkaz. Pro jazyk bez rovnosti víme
z důsledku Löwenheim-Skolemovy věty, že každý model je elementárně ekvivalentní nějakému spočetně
nekonečnému modelu. Ten je ale až na izomorfizmus jediný, takže všechny modely jsou elementárně
ekvivalentní, což je sémantická definice kompletnosti.

Máme-li jazyk s rovností, použijeme podobně důsledek LS věty pro rovnost a dostaneme, že všechny
nekonečné modely jsou elementárně ekvivalentní.

14. Neaxiomatizovateľnosť konečných modelov
Pokud má teorie libovolně velké konečné modely, potom má i nekonečný model. V tom případě není třída všech
jejích konečných modelů axiomatizovatelná.

Důkaz. Je-li jazyk bez rovnosti, stačí vzít kanonický model pro některou bezespornou větev v tablu z T pro
položku F ⊥ ( T je bezesporná, nebot má model(y), tedy tablo není sporné). Mějme jazyk s rovností a označme
jako T ′ následující extenzi teorie T ′ do jazyka rozšířeného o spočetně mnoho nových konstantních symbolů ci :

T ′ = T ∪ {¬ci = cj | i ̸= j ∈ N}

Každá konečná část teorie T ′ má model: necht k je největší takové, že symbol ck se vyskytuje v T ′. Potom
stačí vzít libovolný alespoň (k + 1)-prvkový model T a interpretovat konstanty c0, . . . , ck jako navzájem různé
prvky tohoto modelu.

Dle věty o kompaktnosti má potom i T ′ model. Ten je nutně nekonečný. Jeho redukt na původní jazyk
(zapomenutí konstant cAi ) je nekonečným modelem T .

15. Veta o konečnej axiomatizovateľnosti
Mějme třídu struktur K ⊆ ML a uvažme také jeji doplněk K̄ = ML\K. Potom K je konečně axiomatizovatelná,
právě když KiK̄ jsou axiomatizovatelné.

Důkaz. Je-li K konečně axiomatizovatelná, potom je axiomatizovatelná i konečně mnoha sentencemi
φ1, . . . , φn (nahradíme formule jejich generálními uzávěry). Jako axiomatizaci K̄ stačí vzít sentenci ψ =
¬ (φ1 ∧ φ2 ∧ · · · ∧ φn). Zřejmě platí M(ψ) = K̄.

Naopak, necht T a S jsou teorie takové, že M(T ) = K a M(S) = K̄. Uvažme teorii T ∪ S. Tato teorie je
sporná, nebot:

M(T ∪ S) = M(T ) ∩M(S) = K ∩ K̄ = ∅

Podle věty o kompaktnosti existují konečné podteorie T ′ ⊆ T a S′ ⊆ S takové, že:

∅ = M(T ′ ∪ S′) = M(T ′) ∩M(S′)

Nyní si všimněme, že platí

M(T ) ⊆ M(T ′) ⊆ M(S′) ⊆ M(S) = M(T )

tím jsme dokázali, že M(T ) =M (T ′), tj. teorie T ′ je hledanou konečnou axiomatizací K.
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16. Rekurzívne axiomatizovaná teória s rekurzívne spočetnou kompletáciou je
rozhodnuteľná
Pokud je teorie T rekurzivně axiomatizovaná a má rekurzivně spočetnou kompletaci, potom je T rozhodnutelná.

Důkaz. Pro danou sentenci φ bud’ T ⊢ φ, nebo existuje protipříklad A ̸|= φ, tedy kompletní jednoduchá
extenze Ti teorie T taková, že Ti ⊬ φ. Z kompletnosti ale plyne, že Ti ⊢ ¬φ. Náš algoritmus bude paralelně
konstruovat tablo důkaz φ z T a (postupně) tablo důkazy ¬φ ze všech kompletních jednoduchých extenzí
T1, T2, . . . teorie T.8 Víme, že alespoň jedno z paralelně konstruovaných tabel je sporné, a můžeme předpokládat,
že konečné (neprodlužujeme-li sporné větve tabla), tedy algoritmus ho po konečně mnoha krocích zkonstruuje.

17. Nerozhodnuteľnosť predikátovej logiky
Neexistuje algoritmus, který by pro danou vstupní formuli φ rozhodl, zda je logicky platná.

Hilbertův desátý problém: "Nalezněte algoritmus, který po konečně mnoha krocích určí, zda daná Dio-
fantická rovnice s libovolným počtem proměnných a celočíselnými koeficienty má celočíselné řěšení." (Neexis-
tuje)

Důkaz. Uvažme formuli φ tvaru

(∃x1) . . . (∃xn) p (x1, . . . , xn) = q (x1, . . . , xn)

kde p a q jsou polynomy s přirozenými koeficienty. Platí:

N |= φ právě když Q ⊢ φ

Označme jako ψQ konjunkci (generálních uzávěrů) všech axiomů Q. Zřejmě Q ⊢ φ, právě když ψQ ⊢ φ, což
platí právě když ⊢ ψQ → φ. Dle Věty o úplnosti je to ale ekvivalentní |= ψQ → φ. Dostáváme tedy následující
ekvivalenci:

N |= φ právě když ⊢ ψQ → φ

To znamená, že pokud existoval algoritmus rozhodující logickou platnost, mohli bychom rozhodovat i exis-
tenci přirozeného řešení rovnice p (x1, . . . , xn) = q (x1, . . . , xn), neboli Hilbertův desátý problém by byl rozhod-
nutelný. Což by byl spor.
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