
Grafové algoritmy

Karel Velička

18. ledna 2025

Mgr. Martin Mareš Ph.D.

Obsah

1 Toky v śıt́ıch 3
1.1 Formulace problému, základńı definice . 3
1.2 Ford-Fulkerson algoritmus . 4
1.3 Základńı věty (min-cut/max-flow, integrality) . 4
1.4 Hledáńı bipartitńıho párováńı za pomoci tok̊u . 5
1.5 Symetrické formulace (pr̊utok) . 5
1.6 Dinitz̊uv algoritmus . 6
1.7 Speciálńı śıtě (ub́ıráme na obecnosti) . 7

1.7.1 Jednotkové kapacity: c = 1; O(mn) . 7
1.7.2 Jednotkové kapacity znovu a lépe: c = 1; O(m3/2) . 7
1.7.3 Jednotkové kapacity a jeden ze stupň̊u roven 1: c = 1; min(deg+,deg−) = 1; O(n1/2m) . . 7
1.7.4 Třet́ı pokus pro jednotkové kapacity bez omezeńı na stupně vrchol̊u v śıti: c = 1; O(n2/3m) 8
1.7.5 Obecný odhad pro celoč́ıselné kapacity: c ∈ N; O(|f |n+ nm) 8
1.7.6 Škálováńı kapacit . 8

2 Pravděpodobnostńı hledáńı řez̊u 9
2.1 Disjunktńı cesty . 9
2.2 Pravděpodobnostńı hledáńı řez̊u . 9
2.3 Náhodné kontrakce a jejich analýza . 10
2.4 Karger-Stein̊uv algoritmus . 10

3 Hledáńı nejkratš́ıch cest 11
3.1 Obecné vlastnosti . 11
3.2 Strasti se zápornými cykly . 11
3.3 Prefixová vlastnost . 11
3.4 Stromy nejkratš́ıch cest . 12
3.5 Relaxačńı schéma . 12
3.6 Bellman-Ford-Moore algoritmus . 13
3.7 Dijkstr̊uv algoritmus . 13

3.7.1 Haldy . 13
3.8 Datové struktury pro Dijkstr̊uv algoritmus . 13

3.8.1 Pole přihrádek . 14
3.8.2 Strom nad přihrádkami . 14
3.8.3 Multi-level přihrádky . 14
3.8.4 Dinitz̊uv trik pro hrany reálné délky . 15

4 Potenciály 15
4.1 Potenciály a eliminace záporných hran. 15
4.2 Heuristické 1-1 nejkratš́ı cesty a obousměrný Dijkstra . 15
4.3 A* algoritmus . 16

5 APSP algoritmy a transitivńı uzávěr 16
5.1 Floyd-Warshall algoritmus a jeho generalizace . 16
5.2 Násobeńı matic . 17

5.2.1 Algebraický pohled na násobeńı matic . 17
5.2.2 Divide and conquer algoritmus . 17
5.2.3 Seidel̊uv algoritmus . 18

1

6 Minimálńı kostry 18
6.1 Úvod . 18
6.2 Červeno-černý algoritmus a speciálńı použit́ı . 18

6.2.1 Jarńık̊uv algoritmus . 18
6.2.2 Bor̊uvk̊uv algoritmus . 19
6.2.3 Kruskal̊uv algoritmus . 19

6.3 Bor̊uvkuv algoritmus s kontrakcemi a filtrováńım . 19
6.4 MST v rovinných grafech a Minorově uzavřené tř́ıdy . 19
6.5 Hustota minorově uzavřených tř́ıd . 19
6.6 Jarńık̊uv/Dijkstr̊uv algoritmus s Fibonacciho haldou . 20
6.7 Fredman-Tarjan algoritmus . 20

7 LCA a RMQ 21
7.1 LCA - Lowest Common Ancestor . 21
7.2 RMQ - Range Minimum Query . 21
7.3 Redukce z LCA na RMQ . 21
7.4 Dekompozice RMQ ±1 . 22

2

1 Toky v śıt́ıch

1.1 Formulace problému, základńı definice

Definice 1.1. (Śıt’) je uspořádaná pětice (V,E, s, t, c), kde:

� (V,E) je orientovaný graf,

� s ∈ V je zdroj,

� t ∈ V je spotřebič, neboli stok a

� c : E → R funkce udávaj́ıćı nezáporné kapacity hran.

Definice 1.2. (Ohodnoceńı) hran je libovolná funkce f : E → R. Pro každé ohodnoceńı f můžeme definovat:

f+(v) =
∑

e=(·,v)

f(e), f−(v) =
∑

e=(v,·)

f(e), f∆(v) = f+(v)− f−(v),

co do vrcholu přiteče, co odteče a jaký je v něm přebytek.

Definice 1.3. (Tok) je ohodnoceńı f : E → R, pro které plat́ı:

� ∀e : 0 ≤ f(e) ≤ c(e), (dodržuje kapacity)

� ∀v ̸= s, t : f∆(v) = 0. (Kirchhoffuv zákon)

Definice 1.4. (Velikost toku): |f | = −f∆(s) = f∆(t).

Definice 1.5. (Elementárńı st-řez) pro dvě vzájemně disjunktńı množiny A,B ⊆ V , kde s ∈ A, t /∈ A, je:

E(A,B) := {ab ∈ E | a ∈ A ∧ b ∈ B}.

Definice 1.6. Pro libovolné dvě množiny vrchol̊u A a B označ́ıme E(A,B) množinu hran vedoućıch z A do B.
Je-li dále f nějaká funkce přiřazuj́ıćı hranám č́ısla, označ́ıme:

� f(A,B) :=
∑

e∈E(A,B)

f(e)

� f∆(A,B) := f(A,B)− f(B,A)

Definice 1.7. (Rezerva) r : E → R+
0 , že r(uv) := (c(uv)− f(uv)) + f(vu).

Hrana e ∈ E je nasycená, pokud r(e) = 0, jinak pro r(e) > 0 je hrana nenasycená.

Definice 1.8. (Zlepšuj́ıćı cesta) je orientovaná cesta, jej́ıž všechny hrany maj́ı nenulovou rezervu.

Př́ıklad 1.1. Uvažujme např́ıklad śıt’ s jednotkovými kapacitami nakreslenou na obrázku. Najdeme-li nejdř́ıve cestu
zabs, zlepš́ıme po ńı tok o 1. Tı́m dostaneme tok z levého obrázku, ve kterém už žádná daľśı zlepšuj́ıćı cesta neńı.
Jenže jak ukazuje pravý obrázek, maximálńı tok má velikost 2.

z

a

b

s z

a

b

s

Obrázek 1: Př́ıklad, kdy algoritmus nefunguje.

Tuto prekérńı situaci by zachránilo, kdybychom mohli poslat tok velikosti 1 proti směru hrany ab. Pak bychom tok
z levého obrázku zlepšili po cestě zbas a źıskali bychom maximálńı tok z pravého obrázku. Pośılat proti směru hrany
ve skutečnosti nem̊užeme, ale stejný efekt bude mı́t odečteńı jedničky od toku po směru hrany.

3

1.2 Ford-Fulkerson algoritmus

Algoritmus 1.1. (Ford-Fulkerson algoritmus): Nejpř́ımočařeǰśı zp̊usob, jak bychom mohli hledat toky v śıt́ıch,
je zač́ıt s nějakým tokem (nulový je po ruce vždy) a postupně ho zlepšovat tak, že nalezneme nějakou nenasycenou
cestu a pošleme po ńı

”
co p̊ujde“. To bohužel nefunguje, ale m̊užeme tento postup trochu zobecnit a být ochotni

použ́ıvat nejen hrany, pro které je f(e) < c(e), ale také hrany, po kterých něco teče v protisměru a my m̊užeme tok
v našem směru simulovat odečteńım od toku v protisměru.

Algorithm 1 Ford-Fulkerson algoritmus

Input: Śıt’ (V,E, z, s, c)
Output: Maximálńı tok f

1: f ← nulový tok
2: while existuje zlepšuj́ıćı cesta P z s do t: do
3: ε← mine∈P r(e) ▷ spoč́ıtáme rezervu celé cesty
4: for all uv ∈ P do ▷ zvětš́ıme tok f
5: δ ← min{f(vu), ε} ▷ kolik můžeme odeč́ıst v protisměru
6: f(vu)← f(vu)− δ
7: f(uv)← f(uv) + (ε− δ) ▷ zbytek přičteme po směru

Analýza ukončeńı algoritmu:

� Celoč́ıselné kapacity: Algoritmus vždy doběhne. V každém kroku stoupne velikost toku o ε ≥ 1, což může
nastat pouze konečně-krát.

� Racionálńı kapacity: přenásob́ıme-li všechny kapacity jejich společným jmenovatelem, dostaneme śıt’ s celoč́ıselnými
kapacitami, na které se bude algoritmus chovat identicky a jak již v́ıme, skonč́ı.

� Iracionálńı kapacity: obecně doběhnout nemuśı. Nemuśı zkonvertovat k max flow.

1.3 Základńı věty (min-cut/max-flow, integrality)

Lemma 1.1. Pro každý E(A, Ā) řez plat́ı f∆(A, Ā) = |f |.

D̊ukaz.

|f | def=
∑
v∈Ā

f∆(v) = f(A, Ā)︸ ︷︷ ︸
≤c(A,Ā)

− f(Ā, A)︸ ︷︷ ︸
≤0

= f∆(A, Ā).

■

Důsledek 1.1. Velikost každého toku je menš́ı nebo rovna než kapacita každého řezu: |f | ≤ c(A, Ā)

Důsledek 1.2. Pokud |f | = c(A, Ā), pak f je maximum a E(A, Ā) je minimum.

Věta 1.1. Pokud se Ford̊uv-Fulkerson̊uv algoritmus zastav́ı, pak f je maximálńı.

D̊ukaz. Necht’ se algoritmus zastav́ı. Uvažme množiny vrchol̊u

A := {v ∈ V | existuje nenasycená cesta ze z do v} a B := V \A.

Všimneme si, že množina E(A,B) je řez: Zdroj z lež́ı v A, protože ze z do z existuje cesta nulové délky, která je
t́ım pádem nenasycená. Spotřebič muśı ležet v B, nebot’ jinak by existovala nenasycená cesta ze z do s, tud́ıž by
algoritmus ještě neskončil.
Dále v́ıme, že všechny hrany řezu maj́ı nulovou rezervu: kdyby totiž pro nějaké u ∈ A a v ∈ B měla hrana
uv rezervu nenulovou (nebyla nasycená), spojeńım nenasycené cesty ze zdroje do u s touto hranou by vznikla
nenasycená cesta ze zdroje do v, takže vrchol v by také musel ležet v A, a nikoliv v B.
Proto po všech hranách řezu vedoućıch z A do B teče tok rovný kapacitě hran a po hranách z B do A neteče
nic. Nalezli jsme tedy řez E(A,B), pro nějž f∆(A,B) = c(A,B). To znamená, že tento řez je minimálńı a tok f
maximálńı. ■

Důsledek 1.3. Velikost maximálńıho toku je rovna velikosti minimálńıho řezu.

Důsledek 1.4. Ford̊uv-Fulkerson̊uv algoritmus nám dává celoč́ıselné řešeńı.

4

1.4 Hledáńı bipartitńıho párováńı za pomoci tok̊u

Mějme nějaký bipartitńı graf (V,E). Přetvoř́ıme ho na śıt’ (V ′, E′, z, s, c) následovně:

� Nalezneme partity grafu, budeme jim ř́ıkat levá a pravá.

� Všechny hrany zorientujeme zleva doprava.

� Přidáme zdroj z a vedeme z něj hrany do všech vrchol̊u levé partity.

� Přidáme spotřebič s a vedeme do něj hrany ze všech vrchol̊u pravé partity.

� Všem hranám nastav́ıme jednotkovou kapacitu.

z s

Obrázek 2: Ukázka bipartitńıho párováńı.

Nyńı v této śıti najdeme maximálńı celoč́ıselný tok. Jelikož všechny hrany maj́ı kapacitu 1, muśı po každé hraně
téci bud’ 0 nebo 1. Do výsledného párováńı vlož́ıme právě ty hrany p̊uvodńıho grafu, po kterých teče 1.

1.5 Symetrické formulace (pr̊utok)

Definice 1.9. (Pr̊utok) f∗ : E → R definujeme pro tok f jako: f∗(uv) = f(uv)− f(vu).

Pozorováńı 1.1. Pr̊utoky maj́ı následuj́ıćı vlastnosti:

(1) f∗(uv) = −f∗(vu),

(2) f∗(uv) ≤ c(uv),

(3) f∗(uv) ≥ −c(vu),

(4) pro všechny vrcholy v ̸= z, s plat́ı
∑
u:uv∈E f

∗(uv) = 0.

Lemma 1.2. (O pr̊utoku): Necht’ funkce f∗ : E → R splňuje podmı́nky (1), (2) a (4). Potom existuje tok f ,
jehož pr̊utokem je f∗.

D̊ukaz. Tok f stanov́ıme pro každou dvojici hran uv a vu zvlášt’. Předpokládejme, že f∗(uv) ≥ 0; v opačném
př́ıpadě využijeme (1) a u prohod́ıme s v. Nyńı stač́ı položit f(uv) := f∗(uv) a f(vu) := 0. Dı́ky vlastnosti (2)
funkce f nepřekračuje kapacity, d́ıky (4) pro ni plat́ı Kirchhoffuv zákon. ■

Definice 1.10. (Śıt’ rezerv) k toku f v śıti S = (V,E, z, s, c) je śıt’ R(S, f) := (V,E, z, s, r), kde r(e) je rezerva
hrany e při toku f .

Lemma 1.3. (O zlepšováńı tok̊u): Pro libovolný tok f v śıti S a libovolný tok g v śıti R(S, f) lze v čase O(m)
nalézt tok h v śıti S takový, že |h| = |f |+ |g|.

D̊ukaz. Toky př́ımo sč́ıtat nemůžeme, ale pr̊utoky po jednotlivých hranách už ano. Pro každou hranu e polož́ıme
h∗(e) := f∗(e) + g∗(e). Nahlédněme, že funkce h∗ má všechny vlastnosti vyžadované lemmatem P.

(1) Jelikož prvńı podmı́nka plat́ı pro f∗ i g∗, plat́ı i pro jejich součet.

(2) Vı́me, že g∗(uv) ≤ r(uv) = c(uv)− f∗(uv), takže h∗(uv) = f∗(uv) + g∗(uv) ≤ c(uv).

(4) Když se sečtou pr̊utoky, sečtou se i přebytky.

Zbývá dokázat, že se správně sečetly velikosti tok̊u. K tomu si stač́ı uvědomit, že velikost toku je přebytkem
spotřebiče a přebytky se sečetly. ■

Definice 1.11. (Blokuj́ıćı tok), pokud na každé orientované zs-cestě P , ∃e ∈ P : f(e) = c(e).

Definice 1.12. (Vrstevnatá śıt’): Śıt’ je vrstevnatá (pročǐstěná), pokud všechny jej́ı vrcholy a hrany lež́ı na nej-
kratš́ıch cestách ze z do s.

5

1.6 Dinitz̊uv algoritmus

Algoritmus 1.2. (Dinitz̊uv algoritmus) začne s nulovým tokem a bude ho vylepšovat pomoćı nějakých po-
mocných tok̊u v śıti rezerv, až se dostane k maximálńımu toku. Počet potřebných iteraćı přitom bude záviset na
tom, jak

”
vydatné“ pomocné toky seženeme – na jednu stranu bychom chtěli, aby byly podobné maximálńımu toku,

na druhou stranu jejich výpočtem nechceme trávit př́ılǐs mnoho času. Vhodným kompromisem jsou blokuj́ıćı toky:

Algorithm 2 Dinitz̊uv algoritmus: O(n2m)

Input: Śıt’ (V,E, z, s, c)
Output: Maximálńı tok f

1: f ← nulový tok
2: repeat
3: R← śıt’ rezerv, smažeme z f hrany s nulovou rezervou.
4: ℓ← délka nejkratš́ı cesty ze z do s v R ▷ BFS
5: if žádná taková cesta neexistuje then zastav́ıme se

6: Pročist́ıme śıt’ R.
7: g ← blokuj́ıćı tok v R
8: Zlepš́ıme tok f pomoćı g.
9: until neexistuje cesta ℓ

10: return tok f .

Algorithm 3 Blokuj́ıćı Tok: O(nm)

Input: Vrstevnatá śıt’ R s rezervami r
Output: Blokuj́ıćı tok g

1: g ← nulový tok
2: while existuje v R orientovaná cesta P ze z do s do
3: ε← mine∈P (r(e)− g(e))
4: for all e ∈ P do
5: g(e)← g(e) + ε
6: if g(e) = r(e) then smažeme e z R.

7: Dočist́ıme śıt’ pomoćı fronty.
return tok g.

Lemma 1.4. (O korektnosti:) Pokud se algoritmus zastav́ı, vydá maximálńı tok.

D̊ukaz. Z lemmatu o zlepšováńı tok̊u plyne, že f je stále korektńı tok. Algoritmus se zastav́ı tehdy, když už
neexistuje cesta ze z do s po hranách s kladnou rezervou. Tehdy by se zastavil i Ford̊uv-Fulkerson̊uv algoritmus
a ten, jak už v́ıme, je korektńı. ■

Lemma 1.5. V každém pr̊uchodu Dinicova algoritmu vzroste l alespoň o 1.

D̊ukaz. Pod́ıváme se na pr̊uběh jednoho pr̊uchodu vněǰśım cyklem. Délku aktuálně nejkratš́ı st-cesty označme l.
Všechny p̊uvodńı cesty délky l se během pr̊uchodu zaručeně nasyt́ı, protože tok fB je blokuj́ıćı. Muśıme však
dokázat, že nemohou vzniknout žádné nové cesty délky l nebo menš́ı. V śıti rezerv totiž mohou hrany nejen
ubývat, ale i přibývat: pokud pošleme tok po hraně, po které ještě nic neteklo, tak v protisměru z dosud nulové
rezervy vyrob́ıme nenulovou. Rozmysleme si tedy, jaké hrany mohou přibývat:
Vněǰśı cyklus zač́ıná s nepročǐstěnou śıt́ı. Př́ıklad takové śıtě je na následuj́ıćım obrázku. Po pročǐstěńı z̊ustanou
v śıti jen černé hrany, tedy hrany vedoućı z i-té vrstvy do (i+ 1)-ńı. Červené a modré se zahod́ı.

Obrázek 3: Nepročǐstěná śıt’. Obsahuje zpětné hrany,
hrany uvnitř vrstvy a slepé uličky.

Obrázek 4: Cesta už́ıvaj́ıćı novou zpětnou hranu

6

Nové hrany mohou vznikat výhradně jako opačné k černým hranám (hrany ostatńıch barev padly za obět’ pročǐstěńı).
Jsou to tedy vždy zpětné hrany vedoućı z i-té vrstvy do (i−1)-ńı. Vznikem nových hran by proto mohly vzniknout
nové st-cesty, které použ́ıvaj́ı zpětné hrany. Jenže st-cesta, která použije zpětnou hranu, muśı alespoň jednou skočit
o vrstvu zpět a nikdy nemůže skočit o v́ıce než jednu vrstvu dopředu, a proto je jej́ı délka alespoň l + 2. T́ım je
věta dokázána. ■

1.7 Speciálńı śıtě (ub́ıráme na obecnosti)

Při převodu r̊uzných úloh na hledáńı maximálńıho toku často dostaneme śıt’ v nějakém speciálńım tvaru – třeba
s omezenými kapacitami či stupni vrchol̊u. Pod́ıváme se proto podrobněji na chováńı Dinicova algoritmu v takových
př́ıpadech a ukážeme, že často pracuje překvapivě efektivně.

1.7.1 Jednotkové kapacity: c = 1; O(mn)

Pokud śıt’ neobsahuje cykly délky 2 (dvojice navzájem opačných hran), všechny rezervy jsou jen 0 nebo 1. Pokud
obsahuje, mohou rezervy být i dvojky, a proto śıt’ uprav́ıme tak, že ke každé hraně přidáme hranu opačnou s nulovou
kapacitou a rezervu proti směru toku přǐrkneme j́ı. Vzniknou t́ım sice paralelńı hrany, ale to tokovým algoritmům
nikterak nevad́ı.
Při hledáńı blokuj́ıćıho toku tedy budou mı́t všechny hrany na nalezené st-cestě stejnou, totiž jednotkovou, rezervu,
takže vždy z grafu odstrańıme celou cestu. Když máme m hran, počet zlepšeńı po cestách délky l bude maximálně
m/l. Proto složitost podkrok̊u 9, 10 a 11 budem/l·O(l) = O(m). Tedy pro jednotkové kapacity dostáváme složitost
Ø(nm).

1.7.2 Jednotkové kapacity znovu a lépe: c = 1; O(m3/2)

Vnitřńı cyklus lépe udělat nep̊ujde. Je potřeba alespoň lineárńı čas pro čǐstěńı. Můžeme se ale pokusit lépe odhad-
nout počet iteraćı vněǰśıho cyklu.
Sledujme stav śıtě po k iteraćıch vněǰśıho cyklu a pokusme se odhadnout, kolik iteraćı ještě algoritmus udělá.
Označme l délku nejkratš́ı st-cesty. Vı́me, že l > k, protože v každé iteraci vzroste l alespoň o 1.
Máme tok fk a chceme dostat maximálńı tok f . Rozd́ıl f − fk je tok v śıti rezerv (tok v p̊uvodńı śıti to ovšem být
nemuśı!), označme si ho fR. Každá iterace velkého cyklu zlepš́ı fk alespoň o 1. Tedy nám zbývá ještě nejvýše |fR|
iteraćı. Proto bychom chtěli omezit velikost toku fR. Např́ıklad řezem.
Najdeme v śıti rezerv nějaký dost malý řez C. Kde ho vźıt? Poč́ıtejme jen hrany zleva doprava. Těch je jistě nejvýše
m a tvoř́ı alespoň k rozhrańı mezi vrstvami. Tedy existuje rozhrańı vrstev s nejvýše m/k hranami Toto rozhrańı
je řez. Tedy existuje řez C, pro nějž |C| ≤ m/k, a algoritmu zbývá maximálně m/k daľśıch krok̊u. Celkový počet
krok̊u je nejvýš k +m/k, takže stač́ı zvolit k =

√
m a źıskáme odhad na počet krok̊u O(

√
m).

T́ım jsme dokázali, že celková složitost Dinicova algoritmu pro jednotkové kapacity je O(m3/2). T́ım jsme si pomohli
pro ř́ıdké grafy.

1.7.3 Jednotkové kapacity a jeden ze stupň̊u roven 1: c = 1; min(deg+,deg−) = 1; O(n1/2m)

Úlohu hledáńı maximálńıho párováńı v bipartitńım grafu, př́ıpadně hledáńı vrcholově disjunktńıch cest v obecném
grafu lze převést (viz předchoźı kapitola) na hledáńı maximálńıho toku v śıti, v ńıž má každý vrchol v ̸= s, t
bud’to vstupńı nebo výstupńı stupeň roven jedné. Pro takovou śıt’ můžeme předchoźı odhad ještě trošku upravit.
Pokuśıme se nalézt v śıti po k kroćıch nějaký malý řez. Mı́sto rozhrańı budeme hledat jednu malou vrstvu a z malé
vrstvy vytvoř́ıme malý řez tak, že pro každý vrchol z vrstvy vezmeme tu hranu, která je ve svém směru sama.

Obrázek 5

Po k kroćıch máme alespoň k vrstev, a proto existuje vrstva δ s nejvýše n/k vrcholy. Tedy existuje řez C o velikosti
|C| ≤ n/k (źıskáme z vrstvy δ výše popsaným postupem). Algoritmu zbývá do konce ≤ n/k iteraćı vněǰśıho cyklu,
celkem tedy udělá k + n/k iteraćı. Nyńı stač́ı zvolit k =

√
n a složitost celého algoritmu vyjde O(

√
n ·m).

7

1.7.4 Třet́ı pokus pro jednotkové kapacity bez omezeńı na stupně vrchol̊u v śıti: c = 1; O(n2/3m)

Hlavńı myšlenkou je opět po k kroćıch naj́ıt nějaký malý řez. Najdeme dvě malé sousedńı vrstvy a všechny hrany
mezi nimi budou tvořit námi hledaný malý řez. Budeme tentokrát předpokládat, že naše śıt’ neńı multigraf, př́ıpadně
že násobnost hran je alespoň omezena konstantou.
Označme si počet vrchol̊u v i-té vrstvě. Součet počtu vrchol̊u ve dvou sousedńıch vrstvách označ́ıme ti = si+si+1.
Bude tedy platit nerovnost: ∑

i

ti ≤ 2
∑
i

si ≤ 2n.

Podle holubńıkového principu existuje i takové, že ti ≤ 2n/k, čili si + si+1 ≤ 2n/k. Počet hran mezi si a si+1 je

velikost řezu C, a to je shora omezeno si ·si+1. Nejhorš́ı př́ıpad nastane, když si = si+1 = n/k, a proto |C| ≤ (n/k)
2
.

Proto počet iteraćı velkého cyklu je ≤ k + (n/k)
2
. Chytře zvoĺıme k = n2/3. Složitost celého algoritmu pak bude

O(n2/3m).

1.7.5 Obecný odhad pro celoč́ıselné kapacity: c ∈ N; O(|f |n+ nm)

Tento odhad je založen na velikosti maximálńıho toku f a předpokladu celoč́ıselných kapacit. Za jednu iteraci
velkého cyklu projdeme malým cyklem maximálně tolikrát, o kolik se v něm zvedl tok, protože každá zlepšuj́ıćı
cesta ho zvedne alespoň o 1. Zlepšuj́ıćı cesta se tedy hledá maximálně |f |-krát za celou dobu běhu algoritmu. Cestu
najdeme v čase O(n). Celkem na hledáńı cest spotřebujeme O(|f | · n) za celou dobu běhu algoritmu.
Nesmı́me ale zapomenout na čǐstěńı. V jedné iteraci velkého cyklu nás stoj́ı čǐstěńı O(m) a velkých iteraćı je ≤ n.
Proto celková složitost algoritmu čińı O(|f |n+ nm)

1.7.6 Škálováńı kapacit

Pokud jsou kapacity hran větš́ı celá č́ısla omezená nějakou konstantou C, můžeme si pomoci následuj́ıćım algo-
ritmem. Jeho základńı myšlenka je podobná, jako u tř́ıděńı č́ısel postupně po řádech pomoćı radix-sortu neboli
přihrádkového tř́ıděńı. Pro jistotu si ho připomeňme. Algoritmus nejprve setř́ıd́ı č́ısla podle posledńı (nejméně
významné) cifry, poté podle předposledńı, předpředposledńı a tak dále.

Obrázek 6: Kroky postupného tř́ıděńı podle řád̊u.

V našem př́ıpadě budeme postupně budovat śıtě č́ım dál podobněǰśı zadané śıti a v nich poč́ıtat toky, až nakonec
źıskáme tok pro ni.
Přesněji: Maximálńı tok v śıti G budeme hledat tak, že hranám postupně budeme zvětšovat kapacity bit po bitu
v binárńım zápisu až k jejich skutečné kapacitě. Přitom po každém posunu zavoláme Dinic̊uv algoritmus, aby
dopoč́ıtal maximálńı tok. Pomoćı předchoźıho odhadu ukážeme, že jeden takový krok nebude př́ılǐs drahý.

Obrázek 7: Původńı śıt’, na hranách jsou jejich kapacity v binárńım zápisu

Označme k index nejvyšš́ıho bitu v zápisu kapacit v zadané śıti (k = ⌊log2 C⌋). Postupně budeme budovat śıtě
Gi s kapacitami ci(e) = ⌊c(e)/2k−i⌋. G0 je nejořezaněǰśı śıt’, kde každá hrana má kapacitu rovnou nejvyšš́ımu bitu
v binárńım zápisu jej́ı skutečné kapacity, až Gk je p̊uvodńı śıt’ G.

Obrázek 8: Śıtě G0, G1 a G2, jak vyjdou pro śıt’ z předchoźıho obrázku

8

Přitom pro kapacity v jednotlivých śıt́ıch plat́ı:

ci+1(e) =

{
2ci(e), pokud (k − i− 1)-tý bit je 0,

2ci(e) + 1, pokud (k − i− 1)-tý bit je 1.
.

Na spočteńı maximálńıho toku fi v śıti Gi zavoláme Dinic̊uv algoritmus, ovšem do začátku nepoužijeme nulový
tok, nýbrž tok 2fi−1. Rozd́ıl toku z inicializace a výsledného bude malý, totiž:

Lemma 1.6. |fi| − |2fi−1| ≤ m.

D̊ukaz. Vezmeme minimálńı řez R v Gi−1. Podle F-F věty v́ıme, že |fi−1| = |R|. Řez R obsahuje ≤ m hran, a tedy
v Gi má tentýž řez kapacitu maximálně 2|R|+m. Maximálńı tok je omezen každým řezem, tedy i řezem R, a proto
tok vzroste nejvýše o m. ■

Podle předchoźıho odhadu pro celoč́ıselné kapacity výpočet toku fi trvá O(mn). Takový tok se bude poč́ıtat k-krát,
pročež celková složitost vyjde O(mn logC).

2 Pravděpodobnostńı hledáńı řez̊u

2.1 Disjunktńı cesty

Definice 2.1. (Orientovaný st-řez) C ⊆ E, t.̌z. G \ E neobsahuje žádnou orientovanou st-cestu

Definice 2.2. (Řez) je množina hran, která je xy-řezem pro nějakou dvojici vrchol̊u x, y.

Definice 2.3. (st-separátor) je W ⊆ V (G) taková, že s, t ̸∈W a v V (G) \W neńı žádná s, t-cesta.

Definice 2.4. (Separátor) je množina vrchol̊u, která je xy-separátorem pro nějakou dvojici vrchol̊u x, y.

Definice 2.5. (Hranová k-souvislost) grafu G, pokud |V | > k a všechny řezy v G maj́ı alespoň k hran.

Definice 2.6. (Vrcholová k-souvislost) pokud |V | > k a všechny separátory v G maj́ı alespoň k vrchol̊u.

Pro nalezeńı min st-řezu použijeme max tok ⇝ Dinitz̊uv algoritmus. Pokud se bude jednat o neorientovaný
st-řez, použijeme stejný algoritmus, jen budeme zdvojnásobovat hrany (2 orientace ⇄) ⇝ Dinitz v O(n2/3m).

Systém hranově disjunktńıch st-cest maximálńı kardinality Hladový algoritmus v O(m).

1. Najdeme st-cestu, vyṕı̌seme ji a odstrańıme (velikost toku −1)

2. Může se stát, že se zacykĺıme ⇝ odstrańıme (Kirkhoff stále plat́ı, velikost toku se nezměńı)

Hledáńı min řezu řeš́ıme zvlášt’ pro hranové a vrcholové k-souvislosti:

� Problém zjǐstěńı stupně hranové souvislosti G lze převést na hledáńı minimálńıho řezu ⇝ Dinitz O(n2/3m).

Pokud chceme minimum ze všech řez̊u v G, můžeme zkoušet všechny páry (s, t)⇝ O(n2n2/3m) = O(n8/3m).

To ale můžeme snadno zrychlit: Zafixujeme s ∈ A a zkouš́ıme všechna t. Určitě najdeme alespoň jedno t /∈ A,
takže O(n · n2/3m) = O(n5/3m).

� V grafu uprav́ıme vrcholy ⇝ hrany jednotkové kapacity s min(deg+,deg−) = 1 ⇝ Dinitz O(n1/2m).

Jako s postupně voĺıme v́ıce vrchol̊u, než je velikost minimálńıho separátoru.

Zkouš́ıme, dokud počet vrchol̊u < velikost separátoru (ten prohláśıme za minimálńı).

Čas je O(κ · n · n1/2m) = O(κ(G) · n3/2m), kde κ je nalezený stupeň souvislosti.

2.2 Pravděpodobnostńı hledáńı řez̊u

Algoritmus 2.1. (Naivńı algoritmus): Náhodně vyb́ırá hrany a kontrahuje je, dokud # vrchol̊u neklesne na ℓ.
Opakujeme, dokud se nedostaneme na velice malý graf, na který aplikujeme algoritmus min-cut.

Pozorováńı 2.1. Řez v G/e =⇒ řez v G.

9

Algorithm 4 Contract(G0, ℓ):

1: G← G0

2: while n > ℓ do
3: Vybereme hranu e ∈ E rovnoměrně náhodně.
4: G← G/e (kontrahujeme hranu e, smyčky odstraňujeme, paralelńı hrany ponecháme).

return graf G.

2.3 Náhodné kontrakce a jejich analýza

Zvoĺıme nyńı pevně jeden z minimálńıch řez̊u C v zadaném grafu G0 a označ́ıme k jeho velikost. Pokud algoritmus
ani jednou nevybere hranu lež́ıćı v tomto řezu, velikost minimálńıho řezu v grafu G bude rovněž rovna k. Jaká je
pravděpodobnost, že se tak stane?
Označme Gi stav grafu G před i-tým pr̊uchodem cyklem a ni a mi počet jeho vrchol̊u a hran. Zřejmě ni = n− i+1
(každou kontrakćı přijdeme o jeden vrchol). Nav́ıc každý vrchol má stupeň alespoň k, jelikož jinak by triviálńı řez
okolo tohoto vrcholu byl menš́ı než minimálńı řez. Proto plat́ı mi ≥ kni/2. Hranu lež́ıćı v řezu C tedy vybereme
s pravděpodobnost́ı nejvýše k/mi ≤ k/(kni/2) = 2/ni = 2/(n− i+ 1). Všechny hrany z řezu C proto postouṕı do
výsledného grafu G s pravděpodobnost́ı

p ≥
n−ℓ∏
i=1

(
1− 2

n− i+ 1

)
=

n−ℓ∏
i=1

n− i− 1

n− i+ 1
=

=
n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · · · · ℓ+ 1

ℓ+ 3
· ℓ

ℓ+ 2
· ℓ− 1

ℓ+ 1
=

ℓ · (ℓ− 1)

n · (n− 1)
.

Ještě muśıme ošetřit př́ıpad, kdy bychom hranu řezu smazali, protože se mezit́ım stala smyčkou. Ovšem smyčky
vznikaj́ı pouze z hran paralelńıch s právě kontrahovanou hranou. Jelikož v libovolném svazku paralelńıch hran
bud’to všechny lež́ı v C, nebo ani jedna nelež́ı, museli jsme v takovém př́ıpadě řez C rozb́ıt už dř́ıve. Odhad
pravděpodobnosti to tedy neovlivńı.
Můžeme tedy zvolit pevně ℓ, spustit na zadaný graf proceduru Contract a ve vzniklém konstantně velkém grafu
pak nalézt minimálńı řez hrubou silou (to je obzvláště snadné pro ℓ = 2 – tehdy stač́ı vźıt všechny zbylé hrany).
Takový algoritmus nalezne minimálńı řez s pravděpodobnost́ı alespoň c/n2, kde c je konstanta závislá na ℓ.

Zlepšeńı: Fixujeme K, výpočet zopakujeme K-krát a použijeme nejmenš́ı z nalezených řez̊u. Ten už bude mi-
nimálńı s pravděpodobnost́ı

PK ≥ 1− (1− c/n2)K ≥ 1− e−cK/n
2

.

(Druhá nerovnost plat́ı d́ıky tomu, že e−x ≥ 1−x pro všechna x ≥ 0.) Pokud tedy nastav́ıme počet opakováńı K na
Ω(n2), můžeme t́ım pravděpodobnost chyby stlačit pod libovolnou konstantu, proK = Ω(n2 log n) pod převrácenou
hodnotu libovolného polynomu v n a pro K = Ω(n3) už bude dokonce exponenciálně malá.

2.4 Karger-Stein̊uv algoritmus

Všimněme si, že během kontrahováńı hran pravděpodobnost toho, že vybereme
”
špatnou“ hranu lež́ıćı v mi-

nimálńım řezu, postupně rostla z počátečńıch 2/n až po obrovské 2/3 v posledńı iteraci (pro ℓ = 2). Pomůže tedy
zastavit kontrahováńı dř́ıve a přej́ıt na spolehlivěǰśı zp̊usob hledáńı řezu.
Pokud zvoĺıme ℓ = ⌈n/

√
2 + 1⌉, pak řez C přežije kontrahováńı s pravděpodobnost́ı alespoň

ℓ · (ℓ− 1)

n · (n− 1)
≥ (n/

√
2 + 1) · n/

√
2

n · (n− 1)
=

n/
√
2 + 1√

2 · (n− 1)
=

n+
√
2

2 · (n− 1)
≥ 1

2
.

Algoritmus 2.2. Jako onen spolehlivěǰśı zp̊usob hledáńı řezu následně zavoláme stejný algoritmus rekurzivně,
přičemž jak kontrakci, tak rekurzi provedeme dvakrát a z obou nalezených řez̊u vybereme ten menš́ı, č́ımž pravděpodobnost
chyby sńı̌źıme.

Algorithm 5 KargerStein(G):

1: if n < 7 then najdeme minimálńı řez hrubou silou.

2: ℓ← ⌈n/
√
2 + 1⌉.

3: C1 ← KargerStein(Contract(G, ℓ)).
4: C2 ← KargerStein(Contract(G, ℓ)).
5: return min(C1, C2).

10

Časová složitost za pomoci stromu rekurze: Hloubka rekurze: v každém kroku se velikost vstupu zmenš́ı
přiblǐzně

√
2-krát, takže strom rekurze bude mı́t hloubku O(log n).

Na i-té hladině zpracováváme 2i podproblém̊u velikosti n/2i/2.
Při výpočtu každého podproblému voláme dvakrát Contract, která spotřebuje čas O((n/2i/2)2) = O(n2/2i).
Součet přes celou hladinu je O(n2) a přes všechny hladiny O(n2 log n).

Zbývá spoč́ıtat, s jakou pravděpodobnost́ı algoritmus skutečně nalezne minimálńı řez.
Označme pi pravděpodobnost, že algoritmus na i-té hladině stromu rekurze (poč́ıtáno od nejhlubš́ı, nulté hladiny)
vydá správný výsledek př́ıslušného podproblému. Jistě je p0 = 1 a plat́ı rekurence pi ≥ 1 − (1 − 1/2 · pi−1)

2.
Uvažujme posloupnost gi, pro kterou jsou tyto nerovnosti splněny jako rovnosti, a všimněme si, že pi ≥ gi. Vı́me
tedy, že g0 = 1 a gi = 1− (1− 1/2 · gi−1)

2 = gi−1 − g2i−1/4.
Nyńı zavedeme substituci zi = 4/gi − 1, čili gi = 4/(zi + 1), a tak źıskáme novou rekurenci pro zi:

4

zi + 1
=

4

zi−1 + 1
− 4

(zi−1 + 1)2
,

kterou už můžeme snadno upravovat:

1

zi + 1
=

zi−1

(zi−1 + 1)2
,

zi + 1 =
z2i−1 + 2zi−1 + 1

zi−1
,

zi + 1 = zi−1 + 2 +
1

zi−1
.

Jelikož z0 = 3, a t́ım pádem zi ≥ 3 pro všechna i, źıskáme z posledńı rovnosti vztah zi ≤ zi−1 + 2, a tud́ıž
zi ≤ 2i+ 3. Zpětnou substitućı obdrž́ıme gi ≥ 4/(2i+ 4), tedy pi ≥ gi = Ω(1/i).
Nyńı si stač́ı vzpomenout, že hloubka rekurze čińı O(log n), a ihned źıskáme odhad pro pravděpodobnost správného
výsledku Ω(1/ log n). Náš algoritmus tedy stač́ı ziterovat O(log2 n)-krát, abychom pravděpodobnost chyby stlačili
pod převrácenou hodnotu polynomu. Dokázali jsme následuj́ıćı větu:

Věta 2.1. Iterováńım algoritmu MinCut nalezneme minimálńı řez v neohodnoceném neorientovaném grafu v čase
O(n2 log3 n) s pravděpodobnost́ı chyby O(1/nc) pro libovolnou konstantu c > 0.

3 Hledáńı nejkratš́ıch cest

3.1 Obecné vlastnosti

Obvykle se studuj́ı následuj́ıćı tři problémy:

� 1-1 neboli P2PSP (Point to Point Shortest Path) – chceme nalézt nejkratš́ı cestu z daného vrcholu u
do daného vrcholu v. (Pokud je nejkratš́ıch cest v́ıce, tak libovolnou z nich.)

� 1-n neboli SSSP (Single Source Shortest Paths) – pro daný vrchol u chceme nalézt nejkratš́ı cesty do všech
ostatńıch vrchol̊u.

� n-n neboli APSP (All Pairs Shortest Paths) – zaj́ımaj́ı nás nejkratš́ı cesty mezi všemi dvojicemi vrchol̊u.

Definice 3.1. (Vzdálenost) d(u, v) := délka nejkratš́ı cesty.

3.2 Strasti se zápornými cykly

Pro grafy s hranami záporných délek bez jakýchkoliv omezeńı je hledáńı nejkratš́ı cesty NP-těžké Všechny známé
polynomiálńı algoritmy totiž mı́sto nejkratš́ı cesty hledaj́ı nejkratš́ı sled (nijak nekontroluj́ı, zda cesta neprojde
jedńım vrcholem v́ıcekrát).
Může nastat, že neplat́ı trojúhelńıková nerovnost.

3.3 Prefixová vlastnost

Nav́ıc se nám bude hodit, že každý prefix nejkratš́ı cesty je opět nejkratš́ı cesta. Jinými slovy pokud některá
z nejkratš́ıch cest z u do v vede přes nějaký vrchol w, pak jej́ı část z u do w je jednou z nejkratš́ıch cest z u do w.
(V opačném př́ıpadě bychom mohli úsek u . . . w vyměnit za kratš́ı.)
Dı́ky této prefixové vlastnosti můžeme pro každý vrchol u sestrojit jeho strom nejkraťśıch cest T (u).

11

3.4 Stromy nejkratš́ıch cest

Definice 3.2. (Strom nejkratš́ıch cest) v (G, e) se zdrojem v u je T ⊆ G, strom na vrcholech dosažitelných z
u, orientovaný z u ven. Pro každý vrchol v dosažitelný z u je uv-cesta v T nejkratš́ı uv-cesta v G.

Pozorováńı 3.1. Strom nejkraťśıch cest vždy existuje.

D̊ukaz. Necht’ u = v1, . . . , vn jsou všechny vrcholy grafu G. Indukćı budeme dokazovat, že pro každé i existuje
strom Ti, v němž se nacházej́ı nejkratš́ı cesty z vrcholu u do vrchol̊u v1, . . . , vi. Pro i = 1 stač́ı uvážit strom
obsahuj́ıćı jediný vrchol u. Ze stromu Ti−1 pak vyrob́ıme strom Ti takto: Nalezneme v G nejkratš́ı cestu z u do vi
a označ́ıme z posledńı vrchol na této cestě, který se ještě vyskytuje v Ti−1. Úsek nejkratš́ı cesty od z do vi pak
přidáme do Ti−1 a d́ıky prefixové vlastnosti bude i cesta z u do vi v novém stromu nejkratš́ı. ■

3.5 Relaxačńı schéma

Vhodnou operaćı pro vylepšováńı ohodnoceńı je takzvaná relaxace. Vybereme si nějaký vrchol v a pro všechny
jeho sousedy w spoč́ıtáme h(v)+ ℓ(v, w), tedy délku sledu, který vznikne rozš́ı̌reńım aktuálńıho sledu do v o hranu
(v, w). Pokud je tato hodnota menš́ı než h(w), tak j́ı h(w) přeṕı̌seme.
Abychom zabránili opakovaným relaxaćım téhož vrcholu, které nic nezměńı, budeme rozlǐsovat tři stavy vrchol̊u:

� neviděn . . . ještě jsme ho nenavšt́ıvili,

� otevřen . . . změnilo se ohodnoceńı, časem chceme relaxovat,

� uzavřen . . . už jsme relaxovali a neńı potřeba znovu.

,

Algoritmus 3.1. Náš algoritmus bude fungovat následovně:

Algorithm 6 Relaxace:

1: h(∗)←∞, h(u)← 0.
2: stav(∗)← neviděn, stav(u)← otevřen.
3: while existuj́ı otevřené vrcholy do
4: v ← libovolný otevřený vrchol.
5: stav(v)← uzavřen.
6: for all hrany vw ∈ E do ▷ Relaxujeme v
7: if h(w) > h(v) + ℓ(v, w) then
8: h(w)← h(v) + ℓ(v, w).
9: stav(w)← otevřen.

return d(u, v) = h(v) pro všechna v.

Věta 3.1. Spust́ıme-li meta-algoritmus na graf bez záporných cykl̊u, pak:

1. Ohodnoceńı h(v) vždy odpov́ıdá délce nějakého sledu z u do v.

2. h(v) dokonce odpov́ıdá délce nějaké cesty z u do v.

3. Algoritmus se vždy zastav́ı.

4. Po zastaveńı jsou označeny jako uzavřené právě ty vrcholy, které jsou dosažitelné z u.

5. Po zastaveńı maj́ı konečné h(v) právě všechny uzavřené vrcholy.

6. Pro každý dosažitelný vrchol je na konci h(v) rovno d(u, v).

D̊ukaz. Dokážeme jednotlivě:

1. Dokážeme indukćı podle počtu krok̊u algoritmu.

2. Stač́ı rozmyslet, v jaké situaci by vytvořený sled mohl obsahovat cyklus.

3. Cest, a t́ım pádem i možných hodnot h(v) pro každý v, je konečně mnoho.

4. Implikace⇒ je triviálńı, pro⇐ stač́ı uvážit neuzavřený vrchol, který je dosažitelný z u cestou o co nejmenš́ım
počtu hran.

5. h(v) nastavujeme na konečnou hodnotu právě v okamžićıch, kdy se vrchol stává otevřeným. Každý otevřený
vrchol je časem uzavřen.

12

6. Kdyby tomu tak nebylo, vyberme si ze
”
špatných“ vrchol̊u v takový, pro nějž obsahuje nejkratš́ı cesta z u do v

nejmenš́ı možný počet hran. Vrchol v je zajisté r̊uzný od u, takže má na této cestě nějakého předch̊udce w.
Přitom w už muśı být ohodnocen správně a relaxace, která mu toto ohodnoceńı nastavila, ho musela prohlásit
za otevřený. Jenže každý otevřený vrchol je později uzavřen, takže w poté musel být ještě alespoň jednou
relaxován, což muselo sńıžit h(v) na správnou vzdálenost.

■

3.6 Bellman-Ford-Moore algoritmus

Otevřené vrcholy udržujeme ve frontě (relaxujeme vrchol na počátku fronty, nově otev́ırané zařazujeme na konec).
• Fáze i uzavře všechny vrcholy fáze i− 1.

Pozorováńı 3.2. Jedna fáze algoritmu je v čase O(m). Celkem v O(nm).

Lemma 3.1. Algoritmus se zastav́ı po n fáźıch.

D̊ukaz. Maximálńı délka nejdeľśıho sledu je n− 1 =⇒ na konci n− 1 fáze se všechny h(v) nezvětš́ı =⇒ +1 fáze
na uzavřeńı otevřených vrchol̊u. ■

Pozorováńı 3.3. Pokud běž́ı déle než n fáźı, obsahuje záporné hrany.

Lemma 3.2. Na konci i-té fáze plat́ı ∀v : h(v) ≤ délka nejkraťśıho uv-sledu s maximálně i hranami.

D̊ukaz. Indukćı podle i.

� Pro i = 0 to triviálně plat́ı.

� Pro i 7→ i+ 1: Uvažujme nyńı vrchol v na konci (i+ 1)-ńı fáze a nějaký nejkratš́ı uv sled P o i+ 1 hranách.
Označme wv posledńı hranu tohoto sledu a P ′ sled bez této hrany, který tedy má délku i.

Podle indukčńıho předpokladu je na konci i-té fáze h(w) ≤ ℓ(P ′). Tuto hodnotu źıskalo h(w) nejpozději v i-té
fázi, při tom jsme vrchol w otevřeli, takže jsme ho nejpozději v (i + 1)-ńı fázi zavřeli a relaxovali. Po této
relaxaci je ovšem h(v) ≤ h(w) + ℓ(w, v) ≤ ℓ(P ′) + ℓ(w, v) = ℓ(P).

■

3.7 Dijkstr̊uv algoritmus

Pokud jsou všechny délky hran nezáporné, můžeme použ́ıt efektivněǰśı pravidlo pro výběr vrcholu navržené
Dijkstrou. To ř́ıká, že vždy relaxujeme ten z otevřených vrchol̊u, jehož ohodnoceńı je nejmenš́ı.

Věta 3.2. Dijkstr̊uv algoritmus uzav́ırá vrcholy v pořad́ı podle neklesaj́ıćı vzdálenosti od u a každý dosažitelný
vrchol uzavře právě jednou.

D̊ukaz. Indukćı dokážeme, že v každém okamžiku maj́ı všechny uzavřené vrcholy ohodnoceńı menš́ı nebo rovné
ohodnoceńım všech otevřených vrchol̊u. Na počátku to jistě plat́ı. Necht’ nyńı uzav́ıráme vrchol v s minimálńım h(v)
mezi otevřenými. Během jeho relaxace nemůžeme žádnou hodnotu sńıžit pod h(v), jelikož v grafu s nezápornými
hranami je h(v)+ ℓ(v, w) ≥ h(v). Hodnota zbývaj́ıćıch otevřených vrchol̊u tedy neklesne pod hodnotu tohoto nově
uzavřeného. Hodnoty dř́ıve uzavřených vrchol̊u se nemohou nijak změnit. ■

Důsledek 3.1. Počet relaćı ≤ n.

Časová složitost O(nTI + nTX +mTD) (Insert, ExtractMin, Decrease)

3.7.1 Haldy

Datová struktura pro otevřeńı vrchol̊u s h() s operacemi Insert, ExtractMin, Decrease.
V relaxačńıch algoritmech běž́ı Insert, ExtractMin v ≤ n operaćıch a Decrease v ≤ m.

3.8 Datové struktury pro Dijkstr̊uv algoritmus

Všechny délky hran jsou nezáporná celá č́ısla omezená nějakou konstantou L. Všechny vzdálenosti jsou tedy
omezeny č́ıslem nL, takže nám stač́ı datová struktura schopná uchovávat takto omezená celá č́ısla.

13

Datová struktura TI TX TD Celkem

Pole 1 n 1 n2

Bináńı halda log n log n log n m log n

d-árńı halda logd n d logd n logd n m logn
logm/k

Fibonacciho halda 1 log n 1 m+ n log n
Pole přihrádek 1 nL 1 m+ nL
Strom nad přihrádkami logL logL logL m logL

Multiple přihrádky logL
log logL 1 1 m+ n logn

log logL

3.8.1 Pole přihrádek

Pole indexované hodnotami 0 . . . nL, kde i-tý prvek obsahuje seznam vrchol̊u, jejichž ohodnoceńı = i.

� Insert, Decrease v O(1), budeme-li si u každého prvku pamatovat jeho polohu v seznamu.

� ExtractMin potřebuje naj́ıt prvńı neprázdnou přihrádku, ale jelikož v́ıme, že posloupnost odeb́ıraných
minim je monotónńı, stač́ı hledat od mı́sta, kde se hledáńı zastavilo minule.

Všechna hledáńı přihrádek tedy zaberou dohromady O(nL) a celý Dijkstr̊uv algoritmus bude trvat O(m + nL).
Prostor je stejný, což neńı moc dobré. Můžeme zlepšit.
Všechny neprázdné přihrádky se nacházej́ı v úseku pole dlouhém L+1, takže stač́ı indexovat (mod L+1). Pouze
si muśıme dávat pozor, abychom správně poznali, kdy se struktura vyprázdnila, což zjist́ıme např́ıklad pomoćı
poč́ıtadla otevřených vrchol̊u. Prostor klesne na O(L+m).

3.8.2 Strom nad přihrádkami

� Insert, ExtractMin, Decrease v O(logL),

Celková složitost Dijkstrova algoritmu vyjde , přičemž čas L spotřebujeme na inicializaci struktury (té se lze za
jistých podmı́nek vyhnout, viz zmı́něná kapitola).

3.8.3 Multi-level přihrádky

Podobně jako u tř́ıděńı č́ısel, i zde se vypláćı stavět přihrádkové struktury v́ıceúrovňově. Jednotlivé hodnoty budeme
zapisovat v soustavě o základu B, který zvoĺıme jako nějakou mocninu dvojky, abychom mohli s č́ıslicemi tohoto
zápisu snadno zacházet pomoćı bitových operaćı. Každé č́ıslo tedy zabere nejvýše d = 1 + ⌊logB L⌋ č́ıslic; pokud
bude kratš́ı, doplńıme ho zleva nulami.
Nejvyšš́ı patro struktury bude tvořeno polem B přihrádek, v i-té z nich budou uložena ta č́ısla, jejichž č́ıslice
nejvyšš́ıho řádu je rovna i. Za aktivńı prohláśıme tu přihrádku, která obsahuje aktuálńı minimum. Přihrádky
s menš́ımi indexy jsou prázdné a z̊ustanou takové až do konce výpočtu, protože halda je monotónńı. Pokud
v přihrádce obsahuj́ıćı minimum bude v́ıce prvk̊u, budeme ji rozkládat podle druhého nejvyšš́ıho řádu na daľśıch B
přihrádek atd. Celkem tak vznikne až d úrovńı.
Struktura bude obsahovat následuj́ıćı data:

� Parametry L, B a d.

� Pole úrovńı (nejvyšš́ı má č́ıslo d−1, nejnižš́ı 0), každá úroveň je bud’to prázdná (a pak jsou prázdné i všechny
nižš́ı), nebo obsahuje pole Ui o B přihrádkách a v každé z nich seznam prvk̊u. Pole úrovńı použ́ıváme jako
zásobńık, udržujeme si č́ıslo nejnižš́ı neprázdné úrovně.

� Hodnotu µ předchoźıho odebraného minima.

Operace Insert vlož́ı hodnotu do nejhlubš́ı možné přihrádky. Pod́ıvá se tedy na nejvyšš́ı úroveň: pokud hodnota
patř́ı do přihrádky, která neńı aktivńı, vlož́ı ji př́ımo. Jinak přejde o úroveň ńıže a zopakuje stejný postup. To vše
lze provést v konstantńım čase: stač́ı se pod́ıvat, jaký je nejvyšš́ı jedničkový bit ve xoru nové hodnoty s č́ıslem µ
(opět viz kapitola o výpočetńıch modelech), a t́ım zjistit č́ıslo úrovně, kam hodnota patř́ı.
Pokud chceme provést Decrease, odstrańıme hodnotu z přihrádky, ve které se právě nacháźı (polohu si můžeme
u každé hodnoty pamatovat zvlášt’), a znovu ji vlož́ıme.
Většinu práce samozřejmě přenecháme funkci ExtractMin.Ta začne prohledávat nejnižš́ı obsazenou úroveň od ak-
tivńı přihrádky dál (to, která přihrádka je na které úrovni aktivńı, poznáme z č́ıslic hodnoty µ). Pokud přihrádky
na této úrovni dojdou, prázdnou úroveň zruš́ıme a pokračujeme o patro výše.

14

Jakmile najdeme neprázdnou přihrádku, nalezneme v ńı minimum a to se stane novým µ. Pokud v přihrádce nebyly
žádné daľśı prvky, skonč́ıme. V opačném př́ıpadě zbývaj́ıćı prvky rozprostřeme do přihrádek na bezprostředně nižš́ı
úrovni, kterou t́ım založ́ıme.
Čas strávený hledáńım minima můžeme rozdělit na několik část́ı:

� O(B) na inicializaci nové úrovně – to naúčtujeme prvku, který jsme právě mazali;

� hledáńı neprázdných přihrádek – prozkoumáńı každé prázdné přihrádky naúčtujeme jej́ımu vytvořeńı, což se
rozpust́ı v O(B) na inicializaci úrovně;

� zrušeńı úrovně – opět naúčtujeme jej́ımu vzniku;

� rozhazováńı prvk̊u do přihrádek – jelikož prvky v hierarchii přihrádek putuj́ı během operaćı pouze doleva a
dol̊u (jejich hodnoty se nikdy nezvětšuj́ı), klesne každý prvek nejvýše d-krát, takže stač́ı, když na všechna
rozhazováńı přispěje časem O(d);

� hledáńı minima – minimum naúčtujeme smazanému prvku, ostatńı prvky, které jsme museli proj́ıt, naúčtujeme
jejich rozhazováńı.

Stač́ı tedy, aby každý prvek při Insert u zaplatil čas O(B + d) a jak Decrease, tak ExtractMin budou mı́t
konstantńı amortizovanou složitost. Dijkstr̊uv algoritmus pak poběž́ı v O(m+ n(B + d)).
Zbývá nastavit parametry tak, abychom minimalizovali výraz B + d = B + logL/ logB. Vhodná volba je B =
logL/ log logL. Při ńı plat́ı

logL

logB
=

logL

log (logL/ log logL)
=

logL

log logL− log log logL
= Θ(B).

Tehdy Dijkstra vydá výsledek v čase O(m+ n · logL
log logL).

3.8.4 Dinitz̊uv trik pro hrany reálné délky

4 Potenciály

4.1 Potenciály a eliminace záporných hran.

Definice 4.1. (Potenciál) budeme ř́ıkat libovolné funkci ψ : V → R. Pro každý potenciál zavedeme redukované
délky hran ℓψ(u, v) := ℓ(u, v) + ψ(u) − ψ(v). Potenciál nazveme př́ıpustný, pokud žádná hrana nemá zápornou
redukovanou délku.

Pozorováńı 4.1. Pro redukovanou délku libovolné cesty P z u do v plat́ı: ℓψ(P) = ℓ(P) + ψ(u)− ψ(v).

D̊ukaz. Necht’ cesta P procháźı přes vrcholy u = w1, . . . , wk = v. Potom:

ℓψ(P) =
∑
i

ℓψ(wi, wi+1) =
∑
i

(ℓ(wi, wi+1) + ψ(wi)− ψ(wi+1)) .

Tato suma je ovšem teleskopická, takže z ńı zbude∑
i

ℓ(wi, wi+1) + ψ(w1)− ψ(wk) = ℓ(P) + ψ(u)− ψ(v).

■

Důsledek 4.1. Potenciálovou redukćı se délky všech cest mezi u a v změńı o tutéž konstantu, takže struktura
nejkraťśıch cest z̊ustane nezměněna.

4.2 Heuristické 1-1 nejkratš́ı cesty a obousměrný Dijkstra

Můžeme spustit prohledáváńı z obou konc̊u zároveň, tedy zkombinovat hledáńı od s v p̊uvodńım grafu s hledáńım
od t v grafu s obrácenou orientaćı hran.
Zastav́ıme se v okamžiku, kdy jsme jeden vrchol uzavřeli v obou směrech. Pozor ovšem na to, že součet obou
ohodnoceńı tohoto vrcholu nemuśı být roven d(v, u).
Nejkratš́ı cesta ještě může vypadat tak, že přecháźı po nějaké hraně mezi vrcholem uzavřeným v jednom směru
a vrcholem uzavřeným ve směru druhém (ponechme bez d̊ukazu). Stač́ı tedy během relaxace zjistit, zda je konec
hrany uzavřený v opačném směru prohledáváńı, a pokud ano, započ́ıtat cestu do pr̊uběžného minima.
Obousměrný Dijkstr̊uv algoritmus projde sjednoceńı nějaké koule okolo s s nějakou kouĺı okolo t, které obsahuje
nejkratš́ı cestu. Pr̊uměry kouĺı přitom záviśı na tom, jak budeme během výpočtu stř́ıdat oba směry prohledáváńı.
V nejhorš́ım př́ıpadě samozřejmě můžeme prohledat celý graf.

15

4.3 A* algoritmus

Jedná se o modifikaci Dijkstrova algoritmu, která využ́ıvá heuristickou funkci pro dolńı odhad vzdálenosti do ćıle;
označme si ji ψ(v). V každém kroku pak uzav́ırá vrchol v s nejmenš́ım možným součtem h(v) + ψ(v) aktuálńıho
ohodnoceńı s heuristikou.
Intuice za t́ımto algoritmem je jasná: pokud v́ıme, že nějaký vrchol je bĺızko od počátačńıho vrcholu s, ale bude
z něj určitě daleko do ćıle t, zat́ım ho odlož́ıme a budeme zkoumat nadějněǰśı varianty.
Heuristika se přitom voĺı podle konkrétńıho problému – např. hledáme-li cestu v mapě, můžeme použ́ıt vzdálenost
do ćıle vzdušnou čarou.
Je u tohoto algoritmu zaručeno, že vždy najde nejkratš́ı cestu? Na to nám dá odpověd’ teorie potenciál̊u:

Věta 4.1. Běh algoritmu A* odpov́ıdá pr̊uběhu Dijkstrova algoritmu na grafu redukovaném potenciálem −ψ.
Přesněji, pokud označ́ıme h∗ aktuálńı ohodnoceńı v A* a h aktuálńı ohodnoceńı v synchronně běž́ıćım Dijkstrovi,
bude vždy platit h(v) = h∗(v)− ψ(s) + ψ(v).

D̊ukaz. Indukćı podle doby běhu obou algoritmů. Na počátku je h∗(s) i h(s) nulové a všechna ostatńı h∗ a h jsou
nekonečná, takže tvrzeńı plat́ı. V každém daľśım kroku A* vybere vrchol v s nejmenš́ım h∗(v)+ψ(v), což je tentýž
vrchol, který vybere Dijkstra (ψ(s) je stále stejné).
Uvažujme, co se stane během relaxace hrany vw: Dijkstra se pokuśı sńıžit ohodnoceńı h(w) o δ = h(w) − h(v) −
ℓ−ψ(v, w) a provede to, pokud δ > 0. Ukážeme, že A* udělá totéž:

δ = (h∗(w)− ψ(s) + ψ(w))− (h∗(v)− ψ(s) + ψ(v))− (ℓ(v, w)− ψ(v) + ψ(w))

= h∗(w)− ψ(s) + ψ(w)− h∗(v) + ψ(s)− ψ(v)− ℓ(v, w) + ψ(v)− ψ(w)
= h∗(w)− h∗(v)− ℓ(v, w).

Oba algoritmy tedy až na posunut́ı dané potenciálem poč́ıtaj́ı totéž. ■

Důsledek 4.2. Algoritmus A* funguje jen tehdy, je-li potenciál −ψ př́ıpustný.

Př́ıklad: Pro rovinnou mapu to heuristika daná euklidovskou vzdálenost́ı ϱ, tedy ψ(v) := ϱ(v, t), splňuje:
Př́ıpustnost požaduje pro každou hranu uv nerovnost ℓ(u, v)−ψ(v) +ψ(u) ≥ 0, tedy ℓ(u, v)− ϱ(v, t) + ϱ(u, t) ≥ 0.
Jelikož ℓ(u, v) ≥ ϱ(u, v), stač́ı dokázat, že ϱ(u, v)− ϱ(v, t) + ϱ(u, t) ≥ 0, což je ovšem trojúhelńıková nerovnost pro
metriku ϱ.

5 APSP algoritmy a transitivńı uzávěr

Dosažitelnost (transitivńı uzávěr): matice matice soused̊u A vyprodukuje matici A∗ vzdálenost́ı (délek stran).
Můžeme vyřešit spuštěńım n×BFS, což nám dá složitost Θ(nm).
Poč́ıtáńı vzdálenost́ı. L→ D, kde L je matice aktuálńıch délek (obsahuje Lij = l(i, j) pokud ij ∈ E, jinak +∞) a D
je matice vzdálenost́ı. Můžeme vyřešit spuštěńım n×Dijkstra (s Fib. haldou), což nám dá složitost Θ(n2 log n+nm).
Pokud je graf hustý, tak je oboj́ı n3. Definujeme si tedy lepš́ı algoritmus.

5.1 Floyd-Warshall algoritmus a jeho generalizace

Funguje pro libovolný orientovaný graf bez záporných cykl̊u.
Označme Dk

ij délku nejkratš́ı cesty z vrcholu i do vrcholu j přes vrcholy 1 až k (t́ım mysĺıme, že všechny vnitřńı

vrcholy cesty lež́ı v množině {1, . . . , k}). Jako obvykle polož́ıme Dk
ij = +∞, pokud žádná taková cesta neexistuje.

Pak plat́ı:

D0
ij = délka hrany ij,

Dn
ij = hledaná vzdálenost z i do j,

Dk
ij = min(Dk−1

ij , Dk−1
ik +Dk−1

kj).

Prvńı dvě rovnosti plynou př́ımo z definice. Třet́ı rovnost dostaneme rozděleńım cest z i do j přes 1 až k na ty,
které se vrcholu k vyhnou (a jsou tedy cestami přes 1 až k − 1), a ty, které ho použij́ı – každou takovou můžeme
složit z cesty z i do k a cesty z k do j, oboj́ı přes 1 až k − 1.
Zbývá vyřešit jednu maličkost: složeńım cesty z i do k s cestou z k do j nemuśı nutně vzniknout cesta, protože se
nějaký vrchol může opakovat. V grafech bez záporných cykl̊u nicméně takový sled nemůže být kratš́ı než nejkratš́ı
cesta, takže t́ım falešné řešeńı nevyrob́ıme. (Přesněji: ze sledu iαvβkγvδj, kde v ̸∈ β, γ, můžeme vypuštěńım části
vβkγv nezáporné délky źıskat sled z i do j přes 1 až k − 1, jehož délka nemůže být menš́ı než Dk−1

ij .)

Samotný algoritmus postupně poč́ıtá matice D0, D1, . . . , Dn podle uvedeného předpisu:

Algoritmus 5.1. (Floyd-Warshall): Náhodně vyb́ırá hrany a kontrahuje je, dokud # vrchol̊u neklesne na ℓ.

16

Algorithm 7 FloydWarshall(G0, ℓ):

1: D0 ←matice délek hran.
2: for k = 1, . . . , n do
3: for i, j = 1, . . . , n do
4: Dk

ij ← min(Dk−1
ij , Dk−1

ik +Dk−1
kj).

5: Matice vzdálenost́ı ← Dn.

Časová složitost tohoto algoritmu čińı Θ(n3). Kubickou prostorovou složitost můžeme snadno sńıžit na kvadra-
tickou: Bud’ si uvědomı́me, že v každém okamžiku potřebujeme jen aktuálńı matici Dk a předchoźı Dk−1. Anebo
nahlédneme, že můžeme Dk−1 na Dk přepisovat na mı́stě. U hodnot Dik a Dkj je totiž podle definice stará i
nová hodnota stejná. Algoritmu tedy stač́ı jediné pole velikosti n× n, které na počátku výpočtu obsahuje vstup a
na konci výstup.

5.2 Násobeńı matic

Definice 5.1. (⊕,⊗)-součin matic A,B ∈ Xn×n, kde ⊕ a ⊗ jsou dvě asociativńı binárńı operace na množině X,
je matice C taková, že

Cij =

n⊕
k=1

Aik ⊗Bkj .

Klasické násobeńı matic je tedy (+, ·)-součin.

5.2.1 Algebraický pohled na násobeńı matic

5.2.2 Divide and conquer algoritmus

Na vstupu dostaneme matici sousednosti A, výstupem má být jej́ı transitivńı uzávěr A∗ (matice dosažitelnosti).
Všechny součiny matic v tomto odd́ılu budou typu (∨,∧).
Vrcholy grafu rozděĺıme na dvě množiny X a Y přibližně stejné velikosti, bez újmy na obecnosti tak, aby matice A
měla následuj́ıćı blokový tvar:

A =

(
P Q
R S

)
,

kde podmatice P popisuje hrany z X do X, podmatice Q hrany z X do Y , atd.

Věta 5.1. Pokud matici A∗ zaṕı̌seme rovněž v blokovém tvaru:

A∗ =

(
I J
K L

)
,

bude platit:

I = (P ∨QS∗R)∗,

J = IQS∗,

K = S∗RI,

L = S∗ ∨ S∗RIQS∗.

D̊ukaz. Jednotlivé rovnosti můžeme č́ıst takto:

I: Sled z X do X vznikne opakováńım část́ı, z nichž každá je bud’to hrana uvnitř X nebo přechod po hraně
z X do Y následovaný sledem uvnitř Y a přechodem zpět do X.

J: Sled z X do Y můžeme rozdělit v mı́stě, kdy naposledy přecháźı po hraně z X do Y . Prvńı část přitom bude
sled z X do X, druhá sled uvnitř Y .

K: Se sledem z Y do X nalož́ıme symetricky.

L: Sled z Y do Y vede bud’to celý uvnitř Y , nebo ho můžeme rozdělit na prvńım přechodu z Y do X a posledńım
přechodu z X do Y . Část před prvńım přechodem povede celá uvnitř Y , část mezi přechody bude tvořit sled
z X do X a konečně část za posledńım přechodem z̊ustane opět uvnitř Y .

■

17

5.2.3 Seidel̊uv algoritmus

Pro G neorientovaný jednotkové délky můžeme dosáhnout ještě lepš́ıch výsledk̊u.
Matici vzdálenost́ı lze spoč́ıtat v čase O(nω log n) Seidelovým algoritmem.

Definice 5.2. (Druhá mocnina grafu G) je graf G2 na téže množině vrchol̊u, v němž jsou vrcholy i a j spojeny
hranou právě tehdy, existuje-li v G sled délky nejvýše 2 vedoućı z i do j.

Pozorováńı 5.1. Matici sousednosti grafu G2 źıskáme z matice sousednosti grafu G jedńım (∨,∧)-součinem, tedy
v čase O(nω).

Algoritmus 5.2. (Seidl̊uv) Rekurzivně: Sestroj́ıme graf G2, rekurźı spoč́ıtáme jeho matici vzdálenost́ı D′ a z
ńı pak rekonstruujeme matici vzdálenost́ı D zadaného grafu. Rekurze konč́ı, pokud G2 = G – tehdy je každá
komponenta souvislosti zahuštěna na úplný graf, takže matice vzdálenost́ı je rovna matici sousednosti.

Zbývá ukázat, jak z matice D′ spoč́ıtat matici D. Zvolme pevně i a zaměřme se na funkce d(v) = Div a d
′(v) = D′

iv.
Jistě plat́ı d′(v) = ⌈d(v)/2⌉, pročež d(v) je bud’ rovno 2d′(v) nebo o 1 nižš́ı. Nauč́ıme se rozpoznat, jestli d(v) má
být sudé nebo liché, a z toho vždy poznáme, jestli je potřeba jedničku odeč́ıst.

Jak vypadá funkce d na sousedech vrcholu v ̸= i? Pro alespoň jednoho souseda u je d(u) = d(v) − 1 (to plat́ı
pro sousedy, kteř́ı lež́ı na některé z nejkratš́ıch cest z v do i). Pro všechny ostatńı sousedy je d(u) = d(v) nebo
d(u) = d(v) + 1.
Pokud je d(v) sudé, vyjde pro sousedy lež́ıćı na nejkratš́ıch cestách d′(u) = d′(v) a pro ostatńı sousedy d′(u) ≥ d′(v),
takže pr̊uměr z d′(u) přes sousedy je alespoň d′(v). Je-li naopak d(v) liché, muśı být pro sousedy na nejkratš́ıch
cestách d′(u) < d(v) a pro všechny ostatńı d′(u) = d(v), takže pr̊uměr klesne pod d′(v).
Pr̊uměry přes sousedy přitom můžeme spoč́ıtat násobeńım matic: vynásob́ıme matici vzdálenost́ı D′ matićı sou-
sednosti grafu G. Na pozici i, j se objev́ı součet hodnot D′

ik přes všechny sousedy k vrcholu j. Ten stač́ı vydělit
stupněm vrcholu j a hledaný pr̊uměr je na světě.
Po provedeńı jednoho násobeńı matic tedy dovedeme pro každou dvojici vrchol̊u v konstantńım čase spoč́ıtat Dij

z D′
ij . Jedna úroveň rekurze proto trvá O(nω) a jelikož pr̊uměr grafu pokaždé klesne alespoň dvakrát, je úrovńı

O(log n) a celý algoritmus doběhne ve sĺıbeném čase O(nω log n).

6 Minimálńı kostry

6.1 Úvod

Věta 6.1. Kostra T je minimálńı ⇔ neexistuje hrana lehká vzhledem k T .

6.2 Červeno-černý algoritmus a speciálńı použit́ı

Všechny tradičńı algoritmy na hledáńı MST lze popsat jako speciálńı př́ıpady následuj́ıćıho meta-algoritmu. Ro-
zeberme si tedy rovnou ten. Formulujeme ho pro př́ıpad, kdy jsou všechny váhy hran navzájem r̊uzné.

Algoritmus 6.1. (Červeno-modrý): Náhodně vyb́ırá hrany a kontrahuje je, dokud # vrchol̊u neklesne na ℓ.

Algorithm 8 RedBlue:

1: Na počátku jsou všechny hrany bezbarvé.
2: while lze uplatnit alespoň jedno z pravidel do
3: Modré: ∃e ∈ C, že e je nejlehč́ı z C a nastav e← modrá
4: Červené: ∃e ∈ K cyklus, že e je nejtěžš́ı z K a nastav e← červená

6.2.1 Jarńık̊uv algoritmus

Necháváme r̊ust jen jeden modrý strom. MST je na začátku prázdná, přidáváme vždy nejlehč́ı hranu mezi T a T̄ .

� Červené pravidlo: zahodit všechny hrany v rámci stromu.

� Modré pravidlo: přidat nejlehč́ı hranu spojuj́ı́ı T a T̄ .

Kroky opakujeme, dokud se strom nerozroste přes všechny vrcholy.
Při šikovné implementaci pomoćı haldy dosáhneme časové složitosti O(m log n).

18

6.2.2 Bor̊uvk̊uv algoritmus

Pěstujeme modrý les, rozšǐrujeme ho ve fáźıch. V každé fázi nalezneme nejlevněǰśı incidentńı hranu a všechny tyto
nalezené hrany naráz přidáme (modré pravidlo).
Časová složitost je O(m log n): Počet strom̊u klesá exponenciálně, takže fáźı log n a nav́ıc každou fázi implemen-
tujeme lineárńım pr̊uchodem celého grafu.

6.2.3 Kruskal̊uv algoritmus

Algoritmus 6.2. (Kruskal̊uv): Hrany setř́ıd́ıme vzestupně podle vah, pro kadždou se pod́ıváme, jestli spojuje 2
komponenty, pokud ano, tak přidáme.

Algorithm 9 Kruskal:

1: Setř́ıd́ıme hrany podle vah vzestupně.
2: Začneme s prázdnou kostrou (každý vrchol je v samostatné komponentě souvislosti).
3: Bereme hrany ve vzestupném pořad́ı.
4: for all e ∈ E do
5: Pod́ıváme se, zda e spojuje dvě r̊uzné komponenty.
6: if ano then e přidáme ji do kostry.
7: else zahod́ıme e.

Setř́ıděńı je m logm, Union-Find struktura pro komponenty je m×find, n×unioon =⇒ O(log n) =⇒ m log n.

6.3 Bor̊uvkuv algoritmus s kontrakcemi a filtrováńım

Algoritmus 6.3. (Bor̊uvka s kontrakcemi): Vyjdeme z myšlenky, že m̊užeme po každém kroku p̊uvodńıho
Bor̊uvkova algoritmu vzniklé komponenty souvislosti grafu kontrahovat do jednoho vrcholu a t́ım źıskat menš́ı graf,
který m̊užeme znovu rekurzivně zmenšovat. Pro rovinné grafy tak dosáhneme lineárńı časové složitosti.

Algorithm 10 ContractiveBor̊uvka:

1: T ← ∅
2: while n > 1 do
3: S ← {nejdeľśı incidentńı hrana pro každý vrhol}
4: Kontrakce S
5: Odstraněńı smyček
6: Filtrace paralelńıch hran
7: T ← T ∪ S

return T

6.4 MST v rovinných grafech a Minorově uzavřené tř́ıdy

Definice 6.1. (Minor): Graf H je minorem grafu G (znač́ıme H ⪯ G), pokud lze H źıskat z G mazáńım vrchol̊u
či hran a kontrahováńım hran (s odstraněńım smyček a násobných hran).

Definice 6.2. (Minorová uzavřenost): Tř́ıda graf̊u C je minorově uzavřená, pokud kdykoliv G ∈ C a H ⪯ G,
plat́ı také H ∈ C.

Definice 6.3. (Forb): Pro tř́ıdu graf̊u C definujeme Forb(C) jako tř́ıdu všech graf̊u, jejichž minorem neńı žádný
graf z C. Pro zjednodušeńı značeńı budeme pro konečné tř́ıdy psát Forb(G1, . . . , Gk) namı́sto Forb({G1, . . . , Gk}).

6.5 Hustota minorově uzavřených tř́ıd

Definice 6.4. (Hustota): Hustotou neprázdného grafu G nazveme ϱ(G) = |E(G)|/|V (G)|. Hustotou tř́ıdy ϱ(C)
pak nazveme supremum z hustot všech neprázdných graf̊u lež́ıćıch v této tř́ıdě.

Věta 6.2. (o hustotě minorově uzavřených tř́ıd): Pokud je tř́ıda graf̊u C minorově uzavřená a netriviálńı
(alespoň jeden graf v ńı lež́ı a alespoň jeden nelež́ı), pak má konečnou hustotu.

D̊ukaz. Ukážeme nejprve, že pro každou tř́ıdu C existuje nějaké k takové, že C ⊆ Forb(Kk).
Už v́ıme, že C lze zapsat jako Forb(F) pro nějakou tř́ıdu F . Označme F graf z F s nejmenš́ım počtem vrchol̊u;
pokud existuje v́ıce takových, vybereme libovolný. Hledané k zvoĺıme jako počet vrchol̊u tohoto grafu.

19

Inkluze tvaru A ⊆ B je ekvivalentńı tomu, že kdykoliv nějaký graf G nelež́ı v B, pak nelež́ı ani v A. Mějme tedy
nějaký graf G ̸∈ Forb(Kk). Proto Kk ⪯ G. Ovšem triviálně plat́ı F ⪯ Kk a relace

”
být minorem“ je tranzitivńı,

takže F ⪯ G, a proto G ̸∈ C.
Vı́me tedy, že C ⊆ Forb(Kk). Proto muśı platit ϱ(C) ≤ ϱ(Forb(Kk)). Takže postačuje omezit hustotu tř́ıd s jedńım
zakázaným minorem, který je úplným grafem, a to plyne z následuj́ıćı Maderovy věty. ■

Důsledek 6.1. Pokud použ́ıváme kontrahuj́ıćı Bor̊uvk̊uv algoritmus na grafy lež́ıćı v nějaké netriviálńı minorově
uzavřené tř́ıdě, pak všechny grafy, které algoritmus v pr̊uběhu výpočtu sestroj́ı, lež́ı také v této tř́ıdě, takže na odhad
jejich hustoty m̊užeme použ́ıt předchoźı větu. Opět vyjde, že časová složitost algoritmu je lineárńı.

Věta 6.3. (Maderova): Pro každé k ≥ 2 existuje c(k) takové, že kdykoliv má graf hustotu alespoň c(k), obsahuje
jako podgraf nějaké děleńı grafu Kk.

6.6 Jarńık̊uv/Dijkstr̊uv algoritmus s Fibonacciho haldou

Algoritmus 6.4. (Jarńık-Dijkstra): P̊uvodńı Jarńık̊uv algoritmus s haldou má d́ıky ńı složitost O(m log n), to
zlepš́ıme použit́ım Fibonacciho haldy H, do které si pro každý vrchol soused́ıćı se zat́ım vybudovaným stromem T
ulož́ıme nejlevněǰśı z hran vedoućıch mezi t́ımto vrcholem a stromem T . Tyto hrany bude halda udržovat uspořádané
podle vah.

Algorithm 11 JarńıkDijkstra:

1: T ← ∅
2: stav(v0)← otevřený; stav(∗)← neviděný
3: h(v0)← −∞; h(∗)← nedefinováno; ae(∗)← nedefinováno ▷ ′ae′ znač́ı aktivńı hranu
4: while ∃v : stav(v) = otevřený do
5: Vezmeme takové v s nejmenš́ım h(v)
6: stav(v)← zavřený
7: T ← T ∪ {ae(v)}
8: for all vw ∈ E do
9: if stav(w) = neviděný then

10: stav(w)← otevřený
11: h(w)←W (vw) ▷ ′W ′ znač́ı váhu
12: ae(w)← vw

13: if stav(w) = otevřený & h(w) > W (vw) then
14: h(w)←W (vw)

return T

Dostaneme tak časovou složitost O(m+ n log n). Pokud je ovšem m ≥ n log n, tak je to pouze O(m).

6.7 Fredman-Tarjan algoritmus

Algoritmus 6.5. (Fredman-Tarjan): P̊uvodńı Jarńık̊uv algoritmus s haldou má d́ıky ńı složitost O(m log n), to
zlepš́ıme použit́ım Fibonacciho haldy H, do které si pro každý vrchol soused́ıćı se zat́ım vybudovaným stromem T
ulož́ıme nejlevněǰśı z hran vedoućıch mezi t́ımto vrcholem a stromem T . Tyto hrany bude halda udržovat uspořádané
podle vah.

Algorithm 12 FredmanTarjan:

1: T ← ∅.
2: while n > 1 do
3: F ← ∅. ▷ les
4: t← 2⌈2m0/n⌉.
5: while ∃v ∈ V \ V (F) do
6: Spust́ıme JarńıkDijkstra omezený na t položek z vrcholu v.
7: Zastav́ıme, když:

(1) halda je prázdná,

(2) velikost haldy = t,

(3) připoj́ıme vrchol, který už je v F .

8: Připoj́ıme výsledný strom do F .

9: T ← T ∪ F .
10: Kontrahujeme F .

20

Lemma 6.1. Jedna fáze bež́ı v čase O(m).

D̊ukaz. Máme O(mi + ni log t+mi). Plat́ı mi ≤ m0, máme tady O(2m0 + ni log t).
Za t do logaritmu substituujeme 2⌈2m0/n⌉ a dostaneme tak ni log 2

⌈2m0/n⌉ ∈��ni · O(
m0

��ni
).

Dostaneme tak celkem O(3m0) = O(m0). ■

Definice 6.5. (Tower function) je zjednodušeńı značeńı pro 2 ↑ k = 2
2·

··
2 }

k×
. Inverzńı funkci znač́ıme log∗ k.

Pozorováńı 6.1. Počet strom̊u v Fi ≤ 2mi

t =⇒ ni+1 ≤ 2mi

t .

Věta 6.4. Fredman-Tarjan běž́ı v čase O(m · log∗ n).

D̊ukaz.

ti+1 = 2⌈2m0/ni+1⌉ ≥ 2
2m0
ni+1

(Poz. 6.1.)

≥ 2
��2m0·ti
��2mi ≥ 2ti

Dostali jsme tedy ti+1 ≥ 2ti . Využijeme tower function a: ti ≥ 2 ↑ i =⇒ chceme log∗ i.
Jedna fáze je O(m), takže celkem dostaneme O(m · log∗ n). ■

7 LCA a RMQ

7.1 LCA - Lowest Common Ancestor

Chceme si předzpracovat zakořeněný strom T tak, abychom dokázali pro libovolné dva vrcholy x, y naj́ıt co nej-
rychleji jejich nejbližš́ıho společného předch̊udce.

Triviálńı řešeńı LCA:

� Vystoupáme z x i y do kořene, označ́ıme vrcholy na cestách a kde se poprvé potkaj́ı, tam je hledaný
předch̊udce. To je lineárńı s hloubkou a nepotřebuje předzpracováńı.

� Lze vylepšit: Budeme stoupat z x a y stř́ıdavě. Tak potřebujeme jen lineárně mnoho krok̊u vzhledem ke
vzdálenosti společného předch̊udce.

7.2 RMQ - Range Minimum Query

Chceme předzpracovat posloupnost č́ısel a1, . . . an tak, abychom uměli rychle poč́ıtat minx≤i≤y ai.

Triviálńı řešeńı RMQ:

� Předpoč́ıtáme všechny možné dotazy: předzpracováńı O(n2), dotaz O(1).

� Pro každé i a j ≤ log n předpoč́ıtáme mij = min{ai, ai+1, . . . , ai+2j−1}, čili minima všech blok̊u velkých jako
nějaká mocnina dvojky. Když se poté někdo zeptá na minimum bloku ai, ai+1, . . . , aj−1, najdeme největš́ı k
takové, že 2k < j − i a vrát́ıme:

min(min{ai, . . . , ai+2k−1},min{aj−2k , . . . , aj−1}).

Tak zvládneme dotazy v čase O(1) po předzpracováńı v čase O(n log n).

7.3 Redukce z LCA na RMQ

Lemma 7.1. LCA lze převést na RMQ s lineárńım časem na předzpracováńı a O(1) na převod dotazu.

D̊ukaz. Strom projdeme do hloubky a pokaždé, když vstouṕıme do vrcholu (at’ již poprvé nebo se do něj vrát́ıme),
zaṕı̌seme jeho hloubku. LCA(x, y) pak bude nejvyšš́ı vrchol mezi libovolnou návštěvou x a libovolnou návštěvou y.

■

Převod z LCA vytvář́ı dosti speciálńı instance problému RMQ. Takové, v nichž je |ai − ai+1| = 1. Takovým
instanćım budeme ř́ıkat RMQ±1 a budeme je umět řešit šikovnou dekompozićı.

21

7.4 Dekompozice RMQ ±1
Pro RMQ±1: Vstupńı posloupnost rozděĺıme na bloky velikosti b = 1/2 · log n, každý dotaz umı́me rozdělit na část
týkaj́ıćı se celých blok̊u a maximálně dva dotazy na části blok̊u.
—
Všimneme si, že ačkoliv blok̊u je mnoho, jejich možných typ̊u (tj. posloupnost́ı klesáńı a stoupáńı) je pouze
2b−1 ≤

√
n a bloky téhož typu se lǐśı pouze posunut́ım o konstantu. Vybudujeme proto kvadratickou strukturu

pro jednotlivé typy a pro každý blok si zapamatujeme, jakého je typu a jaké má posunut́ı. Celkem stráv́ıme čas
O(n+

√
n · log2 n) = O(n) předzpracováńım a O(1) dotazem.

Mimo to ještě vytvoř́ıme komprimovanou posloupnost, v ńıž každý blok nahrad́ıme jeho minimem. Tuto posloupnost
délky n/b budeme použ́ıvat pro části dotaz̊u týkaj́ıćı se celých blok̊u a připrav́ıme si pro ni

”
logaritmickou“ variantu

triviálńı struktury. To nás bude stát O(nb · log(
n
b)) = O(

n
logn · log n) = O(n) na předzpracováńı a O(1) na dotaz.

Co jsem nestihl sepsat:

Union find.
Union-Find with unions known in advance via Frederickson’s decomposition and binary coding.

Zdroje

Čerpal předevš́ım z přednášek Martina Mareše a jeho skript:

� Krajinou grafových algoritmů - skripta Martina Mareše

� Pr̊uvodce labyrintem algoritmů - skripta Martina Mareše

� Přednášky za rok 2024/25 Martina Mareše

� Poznámky z hodin Aničky Kmentové (2023/24)

22

http://mj.ucw.cz/vyuka/ga/ga.pdf
http://pruvodce.ucw.cz/static/pruvodce.pdf
http://mj.ucw.cz/vyuka/2425/ga/

	Toky v sítích
	Formulace problému, základní definice
	Ford-Fulkerson algoritmus
	Základní věty (min-cut/max-flow, integrality)
	Hledání bipartitního párování za pomoci toků
	Symetrické formulace (průtok)
	Dinitzův algoritmus
	Speciální sítě (ubíráme na obecnosti)
	Jednotkové kapacity: c=1; O(mn)
	Jednotkové kapacity znovu a lépe: c=1; O(m3/2)
	Jednotkové kapacity a jeden ze stupňů roven 1: c=1; (+, -)=1; O(n1/2 m)
	Třetí pokus pro jednotkové kapacity bez omezení na stupně vrcholů v síti: c=1; O(n2/3 m)
	Obecný odhad pro celočíselné kapacity: cN; O(|f|n + nm)
	Škálování kapacit

	Pravděpodobnostní hledání řezů
	Disjunktní cesty
	Pravděpodobnostní hledání řezů
	Náhodné kontrakce a jejich analýza
	Karger-Steinův algoritmus

	Hledání nejkratších cest
	Obecné vlastnosti
	Strasti se zápornými cykly
	Prefixová vlastnost
	Stromy nejkratších cest
	Relaxační schéma
	Bellman-Ford-Moore algoritmus
	Dijkstrův algoritmus
	Haldy

	Datové struktury pro Dijkstrův algoritmus
	Pole přihrádek
	Strom nad přihrádkami
	Multi-level přihrádky
	Dinitzův trik pro hrany reálné délky

	Potenciály
	Potenciály a eliminace záporných hran.
	Heuristické 1-1 nejkratší cesty a obousměrný Dijkstra
	A* algoritmus

	APSP algoritmy a transitivní uzávěr
	Floyd-Warshall algoritmus a jeho generalizace
	Násobení matic
	Algebraický pohled na násobení matic
	Divide and conquer algoritmus
	Seidelův algoritmus

	Minimální kostry
	Úvod
	Červeno-černý algoritmus a speciální použití
	Jarníkův algoritmus
	Borůvkův algoritmus
	Kruskalův algoritmus

	Borůvkuv algoritmus s kontrakcemi a filtrováním
	MST v rovinných grafech a Minorově uzavřené třídy
	Hustota minorově uzavřených tříd
	Jarníkův/Dijkstrův algoritmus s Fibonacciho haldou
	Fredman-Tarjan algoritmus

	LCA a RMQ
	LCA - Lowest Common Ancestor
	RMQ - Range Minimum Query
	Redukce z LCA na RMQ
	Dekompozice RMQ 1

