Obsah

Grafové algoritmy

KAREL VELICKA

18. ledna 2025

Mgr. Martin Mares Ph.D.

1 Toky v sitich 3
1.1 Formulace problému, zdkladni definice o 3
1.2 Ford-Fulkerson algoritmus e e e 4
1.3 Zékladn{ véty (min-cut/max-flow, integrality) Lo Lo Lo 4
1.4 Hledéani bipartitniho parovani za pomoci toka L 5
1.5 Symetrické formulace (priutok) 5
1.6 Dinitzv algoritmus L. 6
1.7 Speciélni sité (ubfrdme na obecnosti) Lo 7

1.7.1 Jednotkové kapacity: c=1; O(mn) 7
1.7.2 Jednotkové kapacity znovu a lépe: ¢ =1; O(m3/2) 7
1.7.3 Jednotkové kapacity a jeden ze stupiiii roven 1: ¢ = 1; min(degt,deg™) = 1; O(n'/?m) 7
1.7.4 Tieti pokus pro jednotkové kapacity bez omezeni na stupné vrcholt v siti: ¢ = 1; O(n*/*m) 8
1.7.5 Obecny odhad pro celociselné kapacity: ¢ € N; O(|fln+nm) 8
1.7.6 Skalovani kapacit 8

2 Pravdépodobnostni hledani ezt 9
2.1 Disjunktni cesty L e 9
2.2 Pravdépodobnostni hledani fezti L 9
2.3 Nahodné kontrakce a jejich analyza 10
2.4 Karger-Steintv algoritmus oL 10

3 Hledani nejkratsich cest 11
3.1 Obecné vlastnosti L e 11
3.2 Strastise zapornymi cyklyo Lo 11
3.3 Prefixova vlastnost 11
3.4 Stromy nejkratsich cest oL 12
3.5 Relaxacnischéma L 12
3.6 Bellman-Ford-Moore algoritmus e 13
3.7 Dijkstruv algoritmus 13

3.7.1 Haldy e 13
3.8 Datové struktury pro Dijkstrav algoritmuso 13
3.8.1 Pole prihrddek oL 14
3.8.2 Strom nad prihradkami L 14
3.8.3 Multi-level prihradky L 14
3.8.4 Dinitzuv trik pro hrany redlné délky oo 15

4 Potencidly 15
4.1 Potencidly a eliminace zapornych hran. L oL oL 15
4.2 Heuristické 1-1 nejkratsi cesty a obousmérny Dijkstra o oL 15
4.3 A*algoritmus 16

5 APSP algoritmy a transitivni uzavér 16
5.1 Floyd-Warshall algoritmus a jeho generalizace 16
5.2 Nasobeni matic L L e 17

5.2.1 Algebraicky pohled na ndsobeni matic oo 17
5.2.2 Divide and conquer algoritmus e 17
5.2.3 Seideltv algoritmus L e 18

6 Minimalni kostry 18

6.1 UVOd .« o ot 18
6.2 Cerveno-cerny algoritmus a specidlni pouZiti 18
6.2.1 Jarnikuv algoritmus 18
6.2.2 Boruvkuv algoritmuso Lo 19
6.2.3 Kruskaluv algoritmuso 19

6.3 Boruvkuv algoritmus s kontrakcemi a filtrovanim 19
6.4 MST v rovinnych grafech a Minorové uzaviené tfidy 19
6.5 Hustota minorové uzavienych t¥id Lo 19
6.6 Jarnikuv/Dijkstruv algoritmus s Fibonacciho haldou00 20
6.7 Fredman-Tarjan algoritmus L L 20
7 LCA a RMQ 21
7.1 LCA - Lowest Common Ancestor it 21
7.2 RMQ - Range Minimum QUery 21
7.3 Redukce z LCA na RMQ e 21
7.4 Dekompozice RMQ 1 e 22

1 Toky v sitich

1.1 Formulace problému, zakladni definice

Definice 1.1. (Sit) je usporddand pétice (V, E, s,t, c), kde:

(V, E) je orientovany graf,

o s €V je zdroj,

e t €V je spotrebic, neboli stok a

e c: F — R funkce udédvajici nezaporné kapacity hran.
Definice 1.2. (Ohodnoceni) hran je libovolna funkce f : F — R. Pro kazdé ohodnoceni f muzeme definovat:

Froy= 3 fle),)= > fle), f2w)=F(v)—f(v),
e=(-v) e=(v,")

co do vrcholu pritece, co odtece a jaky je v ném prebytek.
Definice 1.3. (Tok) je ohodnoceni f: E — R, pro které plati:

e Ve:0< f(e) <c(e), (dodrzuje kapacity)

o Yo #s,t: f2(v)=0. (Kirchhoffiiv zdkon)
Definice 1.4. (Velikost toku): |f| = —f2(s) = fA(t).
Definice 1.5. (Elementarni st-fez) pro dvé vzdjemné disjunktni mnoziny A, B C V, kde s € A,t ¢ A, je:
E(A,B):={abe E|a€ ANbe B}.

Definice 1.6. Pro libovolné dvé mnoZiny vrcholi A a B oznacime E(A, B) mnoZinu hran vedoucich z A do B.
Je-li ddle f néjakd funkce pritazujici hrandm c¢isla, oznacime:

e f(AB)== > fle)

ecE(A,B)
b fA(AvB) = f(A7B) - f(BaA)

Definice 1.7. (Rezerva) r: E — R, ze r(uv) := (c(uwv) — f(uv)) + f(vu).
Hrana e € E je nasycend, pokud r(e) = 0, jinak pro r(e) > 0 je hrana nenasycend.

Definice 1.8. (Zlepsujici cesta) je orientovand cesta, jejiz vSechny hrany maji nenulovou rezervu.

Piiklad 1.1. Uvazujme napriklad sit s jednotkovymi kapacitami nakreslenou na obrdzku. Najdeme-li nejdrive cestu
zabs, zlepsime po ni tok o 1. Tim dostaneme tok z levého obrdzku, ve kterém uZ Zddnd dalsi zlepsujici cesta nend.
JenzZe jaok ukazuje pravy obrazek, maximalni tok md velikost 2.

a a

b b

Obrazek 1: Piiklad, kdy algoritmus nefunguje.

Tuto prekérni situaci by zachrdnilo, kdybychom mohli poslat tok velikosti 1 proti sméru hrany ab. Pak bychom tok
z levého obrdzku zlepsili po cesté zbas a ziskali bychom maximdlni tok z pravého obrdzku. Posilat proti sméru hrany
ve skuteénosti nemuzeme, ale stejny efekt bude mit odectent jednicky od toku po sméru hrany.

1.2 Ford-Fulkerson algoritmus

Algoritmus 1.1. (Ford-Fulkerson algoritmus): Nejprimocarejsi zpisob, jak bychom mohli hledat toky v sitich,
je zacit s néjakym tokem (nulovy je po ruce vidy) a postupné ho zlepSovat tak, Ze nalezneme néjakou nenasycenou
cestu a posleme po ni ,co pujde®. To bohuzel nefunguje, ale muZeme tento postup trochu zobecnit a byt ochotni
pouzivat nejen hrany, pro které je f(e) < c(e), ale také hrany, po kterych néco tece v protisméru a my mizeme tok
v naSem sméru simulovat odectenim od toku v protismeru.

Algorithm 1 Ford-Fulkerson algoritmus

1:
2:

Input: Sit (V, E, z, s, ¢)
Output: Maximéalni tok f

f < nulovy tok
while existuje zlepsujici cesta P z s do t: do

€ < mingecp r(e) > spocitdme rezervu celé cesty
for all uv € P do > zvétsime tok f
§ < min{f(vu),e} > kolik muzeme odeéist v protismeéru
fou) < f(vu) =6
fluv) < f(uv) + (e — 9) > zbytek pri¢teme po sméru

Analyza ukonéeni algoritmu:

o (Celociselné kapacity: Algoritmus vidy dobéhne. V kazdém kroku stoupne velikost toku o € > 1, coz muze
nastat pouze konec¢né-krat.

e Raciondlni kapacity: prendsobime-li viechny kapacity jejich spoleénym jmenovatelem, dostaneme sit s celoéiselnymi
kapacitami, na které se bude algoritmus chovat identicky a jak jiz vime, skonct.

o [raciondlni kapacity: obecné dobéhnout nemusi. Nemusi zkonvertovat k max flow.

1.3 Zakladni véty (min-cut/max-flow, integrality)
Lemma 1.1. Pro kazdy E(A, A) Fez plati f2(A, A) = |f|.

Dikaz.

1 E ST 12 0) = F(AA) — (A, A) = FA(A, A).
. N——— N —
ved <e(AA) <0

Diisledek 1.1. Velikost kazdého toku je mensi nebo rovna nez kapacita kazdého rezu: |f| < c(A, A)

Diisledek 1.2. Pokud |f| = c(A, A), pak f je mazimum a E(A, A) je minimum.

Veéta 1.1. Pokud se Forduv-Fulkersonuv algoritmus zastavi, pak f je mazimdlni.

Diikaz. Necht se algoritmus zastavi. Uvazme mnoZiny vrcholi

A :={v € V| existuje nenasycend cesta ze z dov} a B:=V \ A.

Vsimneme si, ze mnozina E(A, B) je fez: Zdroj z lezi v A, protoze ze z do z existuje cesta nulové délky, kterd je
tim padem nenasycend. Spotfebi¢ musi lezet v B, nebot jinak by existovala nenasycend cesta ze z do s, tudiz by
algoritmus jesté neskoncil.

Déle vime, ze vSechny hrany fezu maji nulovou rezervu: kdyby totiz pro néjaké u € A a v € B méla hrana
uv rezervu nenulovou (nebyla nasycend), spojenim nenasycené cesty ze zdroje do w s touto hranou by vznikla
nenasycena cesta ze zdroje do v, takze vrchol v by také musel lezet v A, a nikoliv v B.

Proto po vSech hranich fezu vedoucich z A do B tece tok rovny kapacité hran a po hrandch z B do A netece
nic. Nalezli jsme tedy fez E(A, B), pro néjz f~(A, B) = ¢(A, B). To znamend, 7e tento fez je minimdln{ a tok f
maximalni. |

Disledek 1.3. Velikost maximdlniho toku je rovna velikosti minimdlniho Tezu.

Dusledek 1.4. Forduv-Fulkersonuv algoritmus ndm ddvd celociselné reseni.

1.4 Hledani bipartitniho parovani za pomoci toku
Méjme néjaky bipartitni graf (V, E). Pfetvofime ho na sit (V', E’, 2, s, ¢) nésledovné:

e Nalezneme partity grafu, budeme jim tikat levd a pravd.

Vsechny hrany zorientujeme zleva doprava.

Priddme zdroj z a vedeme z néj hrany do vSech vrcholu levé partity.

Pridame spotiebi¢ s a vedeme do néj hrany ze vSech vrcholu pravé partity.

e Vsem hrandm nastavime jednotkovou kapacitu.

Obrazek 2: Ukézka bipartitniho parovani.

Nyni v této siti najdeme maximalni celociselny tok. Jelikoz vSechny hrany maji kapacitu 1, musi po kazdé hrané
téci bud 0 nebo 1. Do vysledného parovani vlozime pravé ty hrany pivodntho grafu, po kterych tece 1.
1.5 Symetrické formulace (prutok)
Definice 1.9. (Prutok) f*: E — R definujeme pro tok f jako: f*(uv) = f(uv) — f(vu).
Pozorovani 1.1. Prutoky maji ndsledujici vlastnosti:
(1) f*(uv) = —f*(vu),
(2) [(uv) < c(uv),
(3) [(uv) = —c(vu),
(4) pro wsechny vrcholy v # z,s plati) ... cp [*(uv) = 0.

Lemma 1.2. (O pritoku): Necht funkce f* : E — R spliuje podminky (1), (2) a (4). Potom existuje tok f,
jehoz pritokem je f*.

Diikaz. Tok f stanovime pro kazdou dvojici hran uv a vu zvlast. Predpoklddejme, Ze f*(uv) > 0; v opainém
piipadé vyuzijeme (1) a u prohodime s v. Nyni{ staéi polozit f(uv) := f*(uv) a f(vu) := 0. Diky vlastnosti (2)
funkce f nepfekracuje kapacity, diky (4) pro ni plati Kirchhoffuv zdkon. |

Definice 1.10. (Sit rezerv) k toku f v siti S = (V, E, z,s,c) je sit R(S, f) := (V, E, z,s,7), kde r(e) je rezerva
hrany e pii toku f.

Lemma 1.3. (O zlep3ovdnd toki): Pro libovolny tok f v siti S a libovolny tok g v siti R(S, f) lze v ¢ase O(m)
nalézt tok h v siti S takovy, Ze |h| = |f| + |g]-.

Drikaz. Toky piimo s¢itat nemuzeme, ale prutoky po jednotlivych hrandch uz ano. Pro kazdou hranu e polozime
h*(e) := f*(e) + g*(e). Nahlédnéme, ze funkce h* m4 vsechny vlastnosti vyzadované lemmatem P.

(1) Jelikoz prvni podminka plati pro f* i ¢g*, plati i pro jejich soucet.
(2) Vime, ze g*(uv) < r(uv) = c(uww) — f*(wv), takze h*(uv) = f*(uv) + g*(uv) < c(uw).
(4) Kdyz se sectou prutoky, sectou se i prebytky.

Zbyvéa dokdzat, ze se spravné secetly velikosti toku. K tomu si sta¢i uvédomit, ze velikost toku je prebytkem
spotiebice a prebytky se secetly. |

Definice 1.11. (Blokujici tok), pokud na kazdé orientované zs-cesté P, Je € P : f(e) = c(e).

Definice 1.12. (Vrstevnatd sit): Sif je vrstevnatd (proéisténd), pokud viechny jeji vrcholy a hrany lezi na nej-
kratsich cestach ze z do s.

1.6 Dinitziv algoritmus

Algoritmus 1.2. (Dinitziv algoritmus) zacne s nulovym tokem a bude ho vylepsovat pomoci néjakgch po-
mocnigjch toku v siti rezerv, aZ se dostane k mazimdlnimu toku. Pocet potrebnijch iteraci pritom bude zdviset na
tom, jak ,vydatné“ pomocné toky seZeneme — na jednu stranu bychom chtéli, aby byly podobné maximdlnimu toku,
na druhou stranu jejich vypoctem nechceme trdvit prilis mnoho casu. Vhodnygm kompromisem jsou blokugici toky:

Algorithm 2 Dinitziv algoritmus: O(n?m)

Input: Sit (V, E, 2, s, ¢)

Output: Maximalni tok f

f < nulovy tok

repeat
R « sif rezerv, smaZeme z f hrany s nulovou rezervou.
{ < délka nejkratsi cesty ze z do s v R > BFS
if zadna takova cesta neexistuje then zastavime se

Procistime sit R.

g < blokujici tok v R

Zlepsime tok f pomoci g.
until neexistuje cesta ¢
return tok f.

—
<

Algorithm 3 Blokujici Tok: O(nm)
Input: Vrstevnatd sit R s rezervami r
Output: Blokujici tok g
g < nulovy tok
while existuje v R orientovand cesta P ze z do s do
€ + mingep (r(e) — g(e))
for all e € P do
gle) < gle) +¢
if g(e) = r(e) then smazeme e z R.

Docistime sit pomoci fronty.
return tok g.

Lemma 1.4. (O korektnosti:) Pokud se algoritmus zastavi, vydd mazimding tok.

Diuikaz. 7 lemmatu o zlepSovani toku plyne, Ze f je stale korektni tok. Algoritmus se zastavi tehdy, kdyz uz
neexistuje cesta ze z do s po hrandch s kladnou rezervou. Tehdy by se zastavil i Forduv-Fulkersonuv algoritmus
a ten, jak uz vime, je korektni. |

Lemma 1.5. V kazdém pruchodu Dinicova algoritmu vzroste | alespoti o 1.

Diikaz. Podivame se na prubéh jednoho pruchodu vnéjsim cyklem. Délku aktualné nejkratsi st-cesty oznacéme I.
Vs8echny puvodni cesty délky [se béhem priuchodu zarucené nasyti, protoze tok fp je blokujici. Musime vsak
dokéazat, ze nemohou vzniknout zadné nové cesty délky [nebo mensi. V siti rezerv totiz mohou hrany nejen
ubyvat, ale i pfibyvat: pokud posleme tok po hrané, po které jesté nic neteklo, tak v protisméru z dosud nulové
rezervy vyrobime nenulovou. Rozmysleme si tedy, jaké hrany mohou pfibyvat:

Vnéjsi cyklus zac¢ind s neprocisténou siti. Piiklad takové sité je na néasledujicim obrazku. Po procisténi zustanou
v siti jen Gerné hrany, tedy hrany vedouci z i-té vrstvy do (i 4 1)-ni. Cervené a modré se zahodi.

Obrazek 3: Neprocisténa sif. Obsahuje zpétné hrany, Obrézek 4: Cesta uzivajici novou zpétnou hranu

hrany uvnitf vrstvy a slepé ulicky.

Nové hrany mohou vznikat vyhradné jako opaéné k éernym hrandm (hrany ostatnich barev padly za obéf procisténi).
Jsou to tedy vzdy zpétné hrany vedouci z i-té vrstvy do (¢ — 1)-ni. Vznikem novych hran by proto mohly vzniknout
nové st-cesty, které pouzivaji zpétné hrany. Jenze st-cesta, kterd pouzije zpétnou hranu, musi alespon jednou skocit
o vrstvu zpét a nikdy nemuze skocCit o vice nez jednu vrstvu dopiedu, a proto je jeji délka alespon [+ 2. Tim je
véta dokdzana. |

1.7 Specidlni sité (ubirame na obecnosti)

Pii pfevodu riznych tloh na hledani maximalniho toku éasto dostaneme sit v néjakém specidlnim tvaru — tfeba
s omezenymi kapacitami ¢i stupni vrcholtu. Podivame se proto podrobnéji na chovani Dinicova algoritmu v takovych
pripadech a ukazeme, ze Casto pracuje prekvapivé efektivneé.

1.7.1 Jednotkové kapacity: ¢ = 1; O(mn)

Pokud sit neobsahuje cykly délky 2 (dvojice navzdjem opaénych hran), viechny rezervy jsou jen 0 nebo 1. Pokud
obsahuje, mohou rezervy byt i dvojky, a proto sit upravime tak, ze ke kazdé hrané pfiddme hranu opa¢nou s nulovou
kapacitou a rezervu proti sméru toku pfitkneme ji. Vzniknou tim sice paralelni hrany, ale to tokovym algoritmim
nikterak nevadi.

Pii hledani blokujiciho toku tedy budou mit vSechny hrany na nalezené st-cesté stejnou, totiz jednotkovou, rezervu,
takze vzdy z grafu odstranime celou cestu. Kdyz mame m hran, pocet zlepSeni po cestach délky [bude maximélné
m/l. Proto slozitost podkroku 9, 10 a 11 bude m/I1-O(l) = O(m). Tedy pro jednotkové kapacity dostavame slozitost
O(nm).

1.7.2 Jednotkové kapacity znovu a lépe: c = 1; O(m?/?)

Vnitini cyklus 1épe udélat nepujde. Je potieba alespoii linedrni ¢as pro ¢isténi. Muzeme se ale pokusit 1épe odhad-
nout pocet iteraci vnéjstho cyklu.

Sledujme stav sité po k iteracich vnéjsiho cyklu a pokusme se odhadnout, kolik iteraci jesté algoritmus udéla.
Ozna¢me [délku nejkratsi st-cesty. Vime, ze | > k, protoze v kazdé iteraci vzroste [alespon o 1.

Méme tok fi a chceme dostat maximaln{ tok f. Rozdil f — fi je tok v siti rezerv (tok v puvodnf siti to ovsem byt
nemusi!), ozna¢me si ho fr. Kazda iterace velkého cyklu zlepsi fi alespon o 1. Tedy ndm zbyva jesté nejvyse | fr|
iteraci. Proto bychom chtéli omezit velikost toku fr. Naptiklad fezem.

Najdeme v siti rezerv néjaky dost maly fez C'. Kde ho vzit? Poc¢itejme jen hrany zleva doprava. Téch je jisté nejvyse
m a tvoi{ alesponi k rozhrani mezi vrstvami. Tedy existuje rozhrani vrstev s nejvyse m/k hranami Toto rozhran{
je Tez. Tedy existuje fez C, pro néjz |C| < m/k, a algoritmu zbyvd maximdlné m/k dalsich kroku. Celkovy pocet
krokt je nejvys k + m/k, takze staci zvolit k = /m a ziskdme odhad na pocet kroku O(y/m).

Tim jsme dokazali, ze celkové slozitost Dinicova algoritmu pro jednotkové kapacity je O(mS/ 2). Tfm jsme si pomohli
pro tidké grafy.

1.7.3 Jednotkové kapacity a jeden ze stupiii roven 1: ¢ = 1; min(deg®,deg™) = 1; O(n'/?m)

Ulohu hleddn{ maximalnfho parovan{ v bipartitnim grafu, pripadné hledani vrcholové disjunktnich cest v obecném
grafu lze prevést (viz predchozi kapitola) na hleddni maximdlniho toku v siti, v niz md kazdy vrchol v # s,t
bud’to vstupni nebo vystupni stupeini roven jedné. Pro takovou sit miuZzeme piredchozi odhad jesté trosku upravit.
Pokusime se nalézt v siti po k krocich néjaky maly fez. Misto rozhrani budeme hledat jednu malou vrstvu a z malé
vrstvy vytvofime maly fez tak, ze pro kazdy vrchol z vrstvy vezmeme tu hranu, kterd je ve svém sméru sama.

Obrazek 5

Po k krocich méme alespon k vrstev, a proto existuje vrstva d s nejvyse n/k vrcholy. Tedy existuje fez C' o velikosti
|C| < n/k (ziskdme z vrstvy ¢ vyse popsanym postupem). Algoritmu zbyva do konce < n/k iteraci vnéjsiho cyklu,
celkem tedy udéld k + n/k iteraci. Nyni stacf zvolit k = \/n a slozitost celého algoritmu vyjde O(y/n - m).

1.7.4 Tieti pokus pro jednotkové kapacity bez omezeni na stupné vrcholi v siti: ¢ = 1; O(n?/3m)

Hlavni myslenkou je opét po k krocich najit néjaky maly fez. Najdeme dvé malé sousedni vrstvy a vSechny hrany
mezi nimi budou tvofit ndmi hledany maly fez. Budeme tentokrat piedpoklddat, Ze nase sit nenf multigraf, piipadné
7e nasobnost hran je alespon omezena konstantou.

Oznacme s; pocet vrchola v i-té vrstvé. Soucet poctu vrcholi ve dvou sousednich vrstvach oznacime t; = s; +5;11.

Bude tedy platit nerovnost:
D ti<2) si<2n

Podle holubnikového principu existuje i takové, ze t; < 2n/k, ¢ili s; + s;+1 < 2n/k. Pocet hran mezi s; a s;1+1 je
velikost fezu C', a to je shora omezeno s;- ;.1 . Nejhorsf pifpad nastane, kdyz s; = s;41 = n/k, a proto |C| < (n/k)”.
Proto pocet iteraci velkého cyklu je < k + (n/ k:)2. Chytfe zvolime k = n?/3. Slozitost celého algoritmu pak bude

O(n?*m).

1.7.5 Obecny odhad pro celoéiselné kapacity: c € N; O(|f|n + nm)

Tento odhad je zalozen na velikosti maximélniho toku f a predpokladu celo¢iselnych kapacit. Za jednu iteraci
velkého cyklu projdeme malym cyklem maximéalné tolikrat, o kolik se v ném zvedl tok, protoze kazda zlepsujici
cesta ho zvedne alespori o 1. Zlepsujici cesta se tedy hledd maximéalné | f|-krdt za celou dobu béhu algoritmu. Cestu
najdeme v ¢ase O(n). Celkem na hleddn{ cest spotfebujeme O(]|f|-n) za celou dobu béhu algoritmu.

Nesmime ale zapomenout na ¢isténi. V jedné iteraci velkého cyklu nds stoji ¢istén{ O(m) a velkych iteraci je < n.
Proto celkovd slozitost algoritmu ¢ini O(|f|n + nm)

1.7.6 Skalovani kapacit

Pokud jsou kapacity hran vétsi celd ¢isla omezena néjakou konstantou C', muzeme si pomoci nasledujicim algo-
ritmem. Jeho zdkladni myslenka je podobnd, jako u tiidéni ¢isel postupné po fadech pomoci radix-sortu neboli
prihrddkového t¥idéni. Pro jistotu si ho pfipomeinme. Algoritmus nejprve setiidi ¢isla podle posledni (nejméné
vyznamné) cifry, poté podle predposledni, pfedpiedposledni a tak ddle.

247 311 311 229
264 —> 264 > 229 264
229 267 264 > 267
311 229 267 311

Obrazek 6: Kroky postupného tiidéni podle fadu.

V nasem piipadé budeme postupné budovat sité ¢im dal podobnéjsi zadané siti a v nich pocitat toky, az nakonec
ziskdme tok pro ni.

Presngji: Maximalni tok v siti G budeme hledat tak, Zze hrandm postupné budeme zvétsovat kapacity bit po bitu
v bindarnim zépisu az k jejich skutectné kapacité. Pritom po kazdém posunu zavoldme Dinicuv algoritmus, aby
dopocital maximalni tok. Pomoci pfedchoziho odhadu ukazeme, Ze jeden takovy krok nebude piilis drahy.

Obrazek 7: Pivodni sit, na hranich jsou jejich kapacity v bindrnim zdpisu

Ozna¢me k index nejvyssiho bitu v zdpisu kapacit v zadané siti (k = |log, C]). Postupné budeme budovat sité
G s kapacitami ¢;(e) = [c(e)/287]. Gy je nejoiezangjsi sit, kde kazd4 hrana m4 kapacitu rovnou nejvyssimu bitu
v bindrnim zdpisu jeji skuteéné kapacity, az G}, je ptvodni sit G.

010

>

Obrazek 8: Sité Go, G1 a G2, jak vyjdou pro sit z piedchoziho obrazku

Pritom pro kapacity v jednotlivych sitich plati:
() 2¢i(e), pokud (k — i — 1)-ty bit je 0,
C; = .
i 2;(e)+1, pokud (k—i— 1)-ty bit je 1.

Na spocteni maximélniho toku f; v siti G; zavoldme Dinicuv algoritmus, ovSem do zac¢dtku nepouzijeme nulovy
tok, nybrz tok 2f;_;. Rozdil toku z inicializace a vysledného bude maly, totiz:

Lemma 1.6. |f;| — |2fi—1] < m.

Diikaz. Vezmeme minimalni fez R v G;_1. Podle F-F véty vime, ze |f;_1| = | R|. Rez R obsahuje < m hran, a tedy
v G; mé tentyz fez kapacitu maximélné 2|R| +m. Maximaln{ tok je omezen kazdym fezem, tedy i fezem R, a proto
tok vzroste nejvyse o m.]

Podle predchoziho odhadu pro celociselné kapacity vypocet toku f; trvd O(mn). Takovy tok se bude pocitat k-krat,
procez celkova slozitost vyjde O(mnlogC).

2 Pravdépodobnostni hledani rezu

2.1 Disjunktni cesty

Definice 2.1. (Orientovany st-fez) C C E, t.z. G\ E neobsahuje Zddnou orientovanou st-cestu
Definice 2.2. (Rez) je mnozina hran, kterd je xy-rezem pro néjokou dvojici vrcholu x,y.
Definice 2.3. (st-separdtor) je W C V(G) takovd, Ze s,t ¢ W a v V(G)\ W neni Zddnd s, t-cesta.
Definice 2.4. (Separdtor) je mnozina vrcholi, kterd je xy-separdtorem pro néjakou dvojici vrcholi x,y.
Definice 2.5. (Hranovd k-souvislost) grafu G, pokud |V| > k a vSechny tezy v G mayji alespori k hran.
Definice 2.6. (Vrcholovd k-souvislost) pokud |V| > k a vsechny separdtory v G maji alespori k vrcholi.
Pro nalezeni min st-rezu pouzZijeme maz tok ~~ Dinitzuv algoritmus. Pokud se bude jednat o meorientovany
st-fez, pouzijeme stejng algoritmus, jen budeme zdvojndsobovat hrany (2 orientace =) ~» Dinitz v O(n/3m).
Systém hranové disjunktnich st-cest maximdlni kardinality Hladovy algoritmus v O(m).

1. Najdeme st-cestu, vypiSeme ji a odstranime (velikost toku —1)

2. Muze se stat, ze se zacyklime ~~ odstranime (Kirkhoff stdle plati, velikost toku se nezméni)

Hled4ni min fezu iesime zvl43t pro hranové a vrcholové k-souvislosti:

e Problém zjisténi stupné hranové souvislosti G lze prevést na hleddni minimdlniho Fezu ~ Dinitz O(n?/*m).
Pokud chceme minimum ze viech fezi v G, miizeme zkouset viechny pary (s, t) ~ O(n?n?/3m) = O(n®/3m).
To ale muzeme snadno zrychlit: Zafixujeme s € A a zkousime vsechna ¢. Uré¢ité najdeme alespon jedno ¢ ¢ A,
takze O(n - n?/3m) = O(n®/3m).

e V grafu upravime vrcholy ~» hrany jednotkové kapacity s min(deg®,deg™) = 1 ~» Dinitz O(n'/?m).

Jako s postupné volime vice vrcholti, nez je velikost miniméalniho separatoru.
Zkousime, dokud pocet vrchola < velikost separatoru (ten prohldsime za minimdlni).

Cas je O(k - n-n'?m) = O(k(G) - n*/?>m), kde & je nalezeny stupen souvislosti.

2.2 Pravdépodobnostni hledani rezi

Algoritmus 2.1. (Naivni algoritmus): Nihodné vybird hrany a kontrahuje je, dokud # vrcholi neklesne na £.
Opakujeme, dokud se nedostaneme na velice maly graf, na ktery aplikujeme algoritmus MIN-CUT.

Pozorovani 2.1. Rez v G/e = ez v G.

Algorithm 4 CONTRACT(GY, {):

G« Go
while n > ¢ do
Vybereme hranu e € E rovnomérné ndhodné.

G + G/e (kontrahujeme hranu e, smycky odstranujeme, paralelni hrany ponechéme).
return graf G.

2.3 Nahodné kontrakce a jejich analyza

Zvolime nyni pevné jeden z minimalnich ezt C' v zadaném grafu Gy a ozna¢ime k jeho velikost. Pokud algoritmus
ani jednou nevybere hranu lezici v tomto fezu, velikost minimélniho fezu v grafu G bude rovnéz rovna k. Jaka je
pravdépodobnost, ze se tak stane?

Oznaéme G; stav grafu G pied i-tym prichodem cyklem a n; a m; pocet jeho vrcholi a hran. Ziejmé n; =n—i+1
(kazdou kontrakei ptijdeme o jeden vrchol). Navic kazdy vrchol mé stupen alespon k, jelikoz jinak by trividlni fez
okolo tohoto vrcholu byl mens{ nez minimdln{ fez. Proto plat{ m; > kn;/2. Hranu lezic{ v fezu C tedy vybereme
s pravdépodobnosti nejvyse k/m; < k/(kn;/2) = 2/n; = 2/(n — i+ 1). Viechny hrany z fezu C proto postoupi do
vysledného grafu G s pravdépodobnosti

n—~_

- n—i-—1
> - =
1:[< n—z—|—1> Z]--[n—i—&—l
n—-2 n—3 n—4 (+1 £ 4—-1 L-(L—1)
T n n—1 n-2 0+3 (+2 (+1 n-(n-1)

Jesté musime osetfit pripad, kdy bychom hranu fezu smazali, protoze se mezitim stala smyckou. Ovsem smycky
vznikaji pouze z hran paralelnich s pravé kontrahovanou hranou. Jelikoz v libovolném svazku paralelnich hran
bud'to vsechny lezi v C, nebo ani jedna nelezi, museli jsme v takovém piipadé fez C rozbit uz difve. Odhad
pravdépodobnosti to tedy neovlivni.

Muzeme tedy zvolit pevné ¢, spustit na zadany graf proceduru CONTRACT a ve vzniklém konstantné velkém grafu
pak nalézt minimdln{ fez hrubou silou (to je obzvlisté snadné pro £ = 2 — tehdy stac¢i vzit vSechny zbylé hrany).
Takovy algoritmus nalezne miniméln{ fez s pravdépodobnost{ alespoii ¢/n?, kde ¢ je konstanta zavisla na £.

Zlepseni: Fixujeme K, vypocet zopakujeme K-krat a pouzijeme nejmensi z nalezenych fezu. Ten uz bude mi-
nimalni s pravdépodobnosti
2
Pk >1—(1—¢/n?)K >1—¢e K/,

(Druhd nerovnost plati diky tomu, ze e=* > 1—x pro vSechna = > 0.) Pokud tedy nastavime pocet opakovini K na
Q(n?), mizeme tim pravdépodobnost chyby stla¢it pod libovolnou konstantu, pro K = Q(n? log n) pod prevracenou
hodnotu libovolného polynomu v n a pro K = Q(n?) uz bude dokonce exponencidlné mal4.

2.4 Karger-Steinuv algoritmus

Vsimnéme si, ze béhem kontrahovani hran pravdépodobnost toho, ze vybereme ,Spatnou® hranu lezici v mi-
nimélnim Fezu, postupné rostla z pocdtecnich 2/n az po obrovské 2/3 v poslednf iteraci (pro £ = 2). Pomuze tedy
zastavit kontrahovani diive a piejit na spolehlivéjsi zpusob hledani fezu.

Pokud zvolime ¢ = [n/ V2 + 17, pak fez C piezije kontrahovan{ s pravdépodobnost{ alespon

f-(€—1)>(n/\/§+1)-n/\/§_ n/vV2+1 n+V2
n-(n—1) ~ n-(n—1) V2-(n—1) 2-(n-1)
Algoritmus 2.2. Jako onen spolehlivéjsi zpusob hleddni tTezu ndsledné zavolame stejny algoritmus rekurzivné,

pricem? jak kontrakci, tak rekurzi provedeme dvakrdt a z obou nalezenijch ez vybereme ten mensi, ¢imz pravdépodobnost
chyby snizime.

Algorithm 5 KARGERSTEIN(G):

if n < 7 then najdeme minimaln{ fez hrubou silou.
0+ [n/vV2+1].

Cy < KARGERSTEIN(CONTRACT(G, {)).

Cy < KARGERSTEIN(CONTRACT(G,).

return min(Cy, Cy).

10

Casovi slozitost za pomoci stromu rekurze: Hloubka rekurze: v kazdém kroku se velikost vstupu zmensi
priblizné /2-krdt, takze strom rekurze bude mit hloubku O(logn).

Na i-té hladiné zpracovdvdme 2° podproblémi velikosti n/2i/2.

Pri vifpoctu kazdého podproblému voldme dvakrdt CONTRACT, kterd spotiebuje cas O((n/2/2)%) = O(n?/2%).
Soucet pres celou hladinu je O(n?) a pres viechny hladiny O(n?logn).

Zbyva spocitat, s jakou pravdépodobnosti algoritmus skuteéné nalezne minimalni fez.

Oznatme p; pravdépodobnost, ze algoritmus na i-té hladiné stromu rekurze (pocitdno od nejhlubsi, nulté hladiny)
vyda sprédvny vysledek piislusného podproblému. Jisté je pg = 1 a plat{ rekurence p; > 1 — (1 — 1/2 - p;_1)%
Uvazujme posloupnost g;, pro kterou jsou tyto nerovnosti splnény jako rovnosti, a vSimnéme si, ze p; > g;. Vime
tedy,ze go=1lagi=1—(1-1/2-gi-1)> = gi-1 — g7_1 /4.

Nyni zavedeme substituci z; = 4/g; — 1, ¢ili g; = 4/(z; + 1), a tak ziskdme novou rekurenci pro z;:

44 4
zi+1 zia+1 (z-1+1)%

kterou uz muzeme snadno upravovat:

r Zi—1
Zi + 1 a (zi—l + 1)2’
Z?fl + 22’7;_1 + 1

zi+l=—"——-——7—
Zi—1

1
Zi—1

Jelikoz zp = 3, a tim paddem z; > 3 pro vSechna ¢, ziskdme z posledni rovnosti vztah z; < z;_1 + 2, a tudiz
z; < 2i + 3. Zpétnou substituci obdrzime g; > 4/(2i + 4), tedy p; > g; = Q(1/1).

Nyni si sta¢i vzpomenout, ze hloubka rekurze ¢ini O(logn), a ihned ziskdme odhad pro pravdépodobnost spravného
vysledku Q(1/logn). N&s algoritmus tedy staéi ziterovat O(log? n)-krét, abychom pravdépodobnost chyby stlacili
pod pfevracenou hodnotu polynomu. Dokézali jsme nasledujici vétu:

Véta 2.1. Iterovdnim algoritmu MINCUT nalezneme minimdlni 7ez v neohodnoceném neorientovaném grafu v case
O(n?log®n) s pravdépodobnosti chyby O(1/n¢) pro libovolnou konstantu ¢ > 0.

3 Hledani nejkratsich cest

3.1 Obecné vlastnosti

Obvykle se studuji nasledujici t¥i problémy:

e 1-1 neboli P2PSP (Point to Point Shortest Path) — chceme nalézt nejkratsi cestu z daného vrcholu u
do daného vrcholu v. (Pokud je nejkratsich cest vice, tak libovolnou z nich.)

e 1-n neboli SSSP (Single Source Shortest Paths) — pro dany vrchol u chceme nalézt nejkratsi cesty do vsech
ostatnich vrcholu.

¢ n-n neboli APSP (All Pairs Shortest Paths) — zajimaj{ nds nejkrats{ cesty mezi véemi dvojicemi vrcholu.

Definice 3.1. (Vzdélenost) d(u,v) := délka nejkratsi cesty.

3.2 Strasti se zapornymi cykly

Pro grafy s hranami zapornych délek bez jakychkoliv omezeni je hledani nejkratsi cesty NP-tézké VSechny znamé
polynomidlni algoritmy totiz misto nejkratsi cesty hledaji nejkratsi sled (nijak nekontroluji, zda cesta neprojde
jednim vrcholem vicekrat).

Muze nastat, ze neplati trojuhelnikova nerovnost.

3.3 Prefixova vlastnost

Navic se nam bude hodit, ze kazdy prefix nejkratsi cesty je opét nejkratsi cesta. Jinymi slovy pokud nékterd
z nejkratsich cest z u do v vede pfes néjaky vrchol w, pak jeji ¢ast z u do w je jednou z nejkratsich cest z u do w.
(V opacéném pripadé bychom mohli dsek w...w vymeénit za kratsi.)

Diky této prefixové vlastnosti muzeme pro kazdy vrchol u sestrojit jeho strom nejkratsich cest T (u).

11

3.4 Stromy nejkratsich cest

Definice 3.2. (Strom nejkratsich cest) v (G, e) se zdrojem v u je T C G, strom na vrcholech dosazitelnych z
u, orientovany z u ven. Pro kazdy vrchol v dosazitelny z u je uv-cesta v T nejkratsi uv-cesta v G.

Pozorovani 3.1. Strom nejkratsich cest vidy existuje.

Diikaz. Necht u = vy,...,v, jsou viechny vrcholy grafu G. Indukci budeme dokazovat, Ze pro kazdé i existuje
strom 7;, v némz se nachdzeji nejkratsi cesty z vrcholu w do vrcholu vq,...,v;. Pro i = 1 staél uvazit strom
obsahujici jediny vrchol u. Ze stromu 7;_; pak vyrobime strom 7; takto: Nalezneme v G nejkratsi cestu z u do v;
a oznacime z posledni vrchol na této cesté, ktery se jesté vyskytuje v T;_1. Usek nejkratsi cesty od z do v; pak
pridame do 7;_1 a diky prefixové vlastnosti bude i cesta z v do v; v novém stromu nejkratsi. |

3.5 Relaxaéni schéma

Vhodnou operaci pro vylepsovani ohodnoceni je takzvanéd relazace. Vybereme si néjaky vrchol v a pro vsechny
jeho sousedy w spocitdme h(v) + (v, w), tedy délku sledu, ktery vznikne rozsifenim aktudlniho sledu do v o hranu
(v, w). Pokud je tato hodnota mens{ nez h(w), tak ji h(w) pfepiSeme.

Abychom zabrénili opakovanym relaxacim téhoz vrcholu, které nic nezméni, budeme rozliSovat tii stavy vrcholu:

e nevidén ... jesté jsme ho nenavstivili,
e otevien ... zmeénilo se ohodnoceni, ¢asem chceme relaxovat,
e uzavien ... uz jsme relaxovali a neni potfeba znovu.

Y

Algoritmus 3.1. Nds$ algoritmus bude fungovat ndsledovné:

Algorithm 6 RELAXACE:
h(*) = 0o, h(u) + 0.
stav(x) < nevidén, stav(u) < otevien.
while existuji oteviené vrcholy do
v < libovolny otevieny vrchol.
stav(v) < uzavien.
for all hrany vw € F do > Relaxujeme v
if h(w) > h(v) + £(v,w) then
h(w) « h(v) 4+ £(v, w).
stav(w) < otevren.
return d(u,v) = h(v) pro vSechna v.

Véta 3.1. Spustime-li meta-algoritmus na graf bez zdpornich cykli, pak:
1. Ohodnocent h(v) vZdy odpovidd délce néjakého sledu z u do v.
2. h(v) dokonce odpovidd délce néjaké cesty z u do v.
3. Algoritmus se vZdy zastavi.
4. Po zastaveni jsou oznaceny jako uzaviené pravé ty vrcholy, které jsou dosaZitelné z u.
5. Po zastaveni maji koneéné h(v) prdvé vsechny uzaviené vrcholy.
6. Pro kazdy dosaZitelny vrchol je na konci h(v) rovno d(u,v).
Diikaz. Dokazeme jednotlivé:
1. Dokéazeme indukci podle poétu kroku algoritmu.
2. Staci rozmyslet, v jaké situaci by vytvoreny sled mohl obsahovat cyklus.
3. Cest, a tim pddem i moznych hodnot h(v) pro kazdy v, je konetné mnoho.

4. Implikace = je trividlni, pro < stac¢i uvazit neuzavieny vrchol, ktery je dosazitelny z u cestou o co nejmensim
poctu hran.

5. h(v) nastavujeme na kone¢nou hodnotu pravé v okamzicich, kdy se vrchol stavé otevienym. Kazdy otevieny
vrchol je ¢asem uzavien.

12

6. Kdyby tomu tak nebylo, vyberme si ze ,,Spatnych® vrcholu v takovy, pro néjz obsahuje nejkratsi cesta z v do v
nejmensi mozny pocet hran. Vrchol v je zajisté ruzny od u, takze ma na této cesté néjakého predchudce w.
Pritom w uz musi byt ohodnocen spravné a relaxace, kterd mu toto ohodnoceni nastavila, ho musela prohlasit
za otevieny. Jenze kazdy otevieny vrchol je pozdéji uzavien, takze w poté musel byt jesté alespon jednou
relaxovan, coz muselo snizit h(v) na spravnou vzdélenost.

3.6 Bellman-Ford-Moore algoritmus

Oteviené vrcholy udrzujeme ve fronté (relaxujeme vrchol na pocdtku fronty, nové otevirané zarazujeme na konec).
e Fdze i uzavie vSechny vrcholy faze ¢ — 1.

Pozorovani 3.2. Jedna fdze algoritmu je v ¢ase O(m). Celkem v O(nm).
Lemma 3.1. Algoritmus se zastavi po n fazich.

Diikaz. Maximdlni délka nejdelsiho sledu je n — 1 = na konci n — 1 féze se viechny h(v) nezvétsi — +1 féze
na uzavieni otevienych vrchola.]

Pozorovani 3.3. Pokud bézi déle nez n fdzi, obsahuje zdporné hrany.
Lemma 3.2. Na konci i-té faze plati Vv : h(v) < délka nejkratsiho uv-sledu s mazimdlné i hranami.
Drikaz. Indukci podle 3.

e Pro i =0 to trividlné plati.

e Pro i +— i+ 1: Uvazujme nyni vrchol v na konci (i + 1)-ni fize a néjaky nejkratsi uv sled P o i+ 1 hrandch.
Oznac¢me wv posledni hranu tohoto sledu a P’ sled bez této hrany, ktery tedy ma délku .

Podle indukéntho predpokladu je na konci i-té faze h(w) < £(P’). Tuto hodnotu ziskalo h(w) nejpozdéji v i-té
fazi, pti tom jsme vrchol w otevfeli, takze jsme ho nejpozdéji v (i + 1)-ni fdzi zavieli a relaxovali. Po této
relaxaci je ovsem h(v) < h(w) + f(w,v) < U(P") + {(w,v) = ¢(P).

3.7 Dijkstrav algoritmus

Pokud jsou vSechny délky hran nezdporné, muzeme pouzit efektivnéjsi pravidlo pro vybér vrcholu navrzené
Dijkstrou. To iké, ze vzdy relaxujeme ten z otevienych vrcholu, jehoz ohodnoceni je nejmensi.

Véta 3.2. Dijkstriv algoritmus uzavird vrcholy v potadi podle neklesajici vzddlenosti od u a kazZdy dosaZitelny
vrchol uzavie prdvé jednou.

Drikaz. Indukci dokézeme, Ze v kazdém okamziku maji vSechny uzaviené vrcholy ohodnoceni mensi nebo rovné
ohodnocenim vsech otevienych vrcholii. Na pocatku to jisté plati. Necht nyn{ uzavirame vrchol v s minimdlnim h(v)
mezi otevienymi. Béhem jeho relaxace nemtizeme zddnou hodnotu snizit pod h(v), jelikoz v grafu s nezépornymi
hranami je h(v) + £(v, w) > h(v). Hodnota zbyvajicich otevienych vrcholu tedy neklesne pod hodnotu tohoto nové
uzavieného. Hodnoty dfive uzavienych vrcholu se nemohou nijak zménit. |

Dusledek 3.1. Pocet relaci < n.
Casova slozitost O(nT; +nTx +mTp) (Insert, ExtractMin, Decrease)

3.7.1 Haldy

Datové struktura pro otevieni vrcholtu s h(_) s operacemi INSERT, EXTRACTMIN, DECREASE.
V RELAXACNICH ALGORITMECH BEZI INSERT, EXTRACTMIN v < n operacich a DECREASE v < m.

3.8 Datové struktury pro Dijkstriv algoritmus

Vsechny délky hran jsou nezéaporna celd ¢isla omezena néjakou konstantou L. VSechny vzdélenosti jsou tedy
omezeny Cislem nL, takze nam staci datova struktura schopnd uchovavat takto omezena cela cisla.

13

Datova struktura T Tx Tp Celkem

Pole 1 n 1 n?

Binani halda logn logn logn | mlogn
d-arni halda log;n | dlog;n | log;n mlolé)%
Fibonacciho halda 1 logn 1 m +nlogn

Pole prihradek 1 nL 1 m ~+ nL
Strom nad ptihradkami || log L log L logL | mlog L

Multiple pfihradky e | 1 1 m+ np ety

3.8.1 Pole prihradek

Pole indexované hodnotami 0...nL, kde i-ty prvek obsahuje seznam vrcholt, jejichz ohodnoceni = i.
e INSERT, DECREASE v O(1), budeme-li si u kazdého prvku pamatovat jeho polohu v seznamu.

e EXTRACTMIN potiebuje najit prvni neprazdnou prihradku, ale jelikoz vime, ze posloupnost odebiranych
minim je monoténni, staci hledat od mista, kde se hledani zastavilo minule.

Vsechna hleddni prihradek tedy zaberou dohromady O(nL) a cely Dijkstruv algoritmus bude trvat O(m + nL).
Prostor je stejny, coz neni moc dobré. Muzeme zlepsit.

Vsechny neprazdné piihrdadky se nachdzeji v useku pole dlouhém L + 1, takze staci indexovat (mod L+ 1). Pouze
si musime davat pozor, abychom spravné poznali, kdy se struktura vyprézdnila, coz zjistime naptiklad pomoci
pocitadla otevienych vrcholu. Prostor klesne na O(L + m).

3.8.2 Strom nad prihradkami

e INSERT, EXTRACTMIN, DECREASE v O(log L),

Celkovd slozitost Dijkstrova algoritmu vyjde , pficemz ¢as L spotfebujeme na inicializaci struktury (té se lze za
jistych podminek vyhnout, viz zminénd kapitola).

3.8.3 Multi-level prihradky

Podobné jako u tridéni ¢isel, i zde se vyplaci stavét prihradkové struktury vicetroviové. Jednotlivé hodnoty budeme
zapisovat v soustavé o zédkladu B, ktery zvolime jako néjakou mocninu dvojky, abychom mohli s ¢islicemi tohoto
zépisu snadno zachdzet pomoci bitovych operaci. Kazdé ¢islo tedy zabere nejvyse d = 1+ |logg L] &islic; pokud
bude kratsi, doplnime ho zleva nulami.

Nejvyssi patro struktury bude tvofeno polem B piihradek, v i-té z nich budou ulozena ta ¢isla, jejichz cislice
nejvyssiho fadu je rovna i. Za aktivni prohlasime tu prihradku, kterda obsahuje aktualni minimum. Prihradky
s men§imi indexy jsou prizdné a zustanou takové az do konce vypoctu, protoze halda je monoténni. Pokud
v piihrddce obsahujici minimum bude vice prvku, budeme ji rozklddat podle druhého nejvyssiho fadu na dalsich B
prihrddek atd. Celkem tak vznikne az d trovni.

Struktura bude obsahovat nasledujici data:

e Parametry L, B a d.

svvs

cvvs

e Hodnotu p predchoziho odebraného minima.

Operace INSERT vlozi hodnotu do nejhlubsi mozné prihradky. Podiva se tedy na nejvyssi uroven: pokud hodnota
patii do prihradky, ktera neni aktivni, vlozi ji pfimo. Jinak piejde o diroven nize a zopakuje stejny postup. To vse
lze provést v konstantnim case: staci se podivat, jaky je nejvyssi jednickovy bit ve XORu nové hodnoty s ¢islem p
(opét viz kapitola o vypocetnich modelech), a tim zjistit ¢islo drovné, kam hodnota patii.

Pokud chceme provést DECREASE, odstranime hodnotu z prihradky, ve které se pravé nachézi (polohu si muzeme
u kazdé hodnoty pamatovat zv14st), a znovu ji vloZzime.

tivn{ prihrddky dél (to, kterd prihrddka je na které trovni aktivni, pozndme z ¢islic hodnoty p). Pokud prihrddky
na této trovni dojdou, prazdnou troven zrusime a pokracujeme o patro vyse.

14

Jakmile najdeme neprazdnou piihradku, nalezneme v ni minimum a to se stane novym u. Pokud v pfihradce nebyly
zadné dalsi prvky, skon¢ime. V opactném piipadé zbyvajici prvky rozprostieme do prihrddek na bezprostiedné nizsi
drovni, kterou tim zalozime.

Cas straveny hleddanim minima muzeme rozdélit na nekolik ¢Asti:

e O(B) na inicializaci nové tirovné — to naictujeme prvku, ktery jsme préavé mazali;

e hledéni neprazdnych prihradek — prozkoumani kazdé prazdné prihradky naictujeme jejimu vytvoreni, coz se
rozpust{ v O(B) na inicializaci tirovné;

e zruSeni Urovné — opét natuctujeme jejimu vzniku;

e rozhazovani prvku do prihrddek — jelikoz prvky v hierarchii pfihradek putuji béhem operaci pouze doleva a

dolu (jejich hodnoty se nikdy nezvétsuji), klesne kazdy prvek nejvyse d-krat, takze staci, kdyz na vSechna
rozhazovani piispéje ¢asem O(d);

¢ hleddni minima — minimum natic¢tujeme smazanému prvku, ostatni prvky, které jsme museli projit, nauctujeme
jejich rozhazovani.

Staci tedy, aby kazdy prvek pii INSERT u zaplatil ¢as O(B + d) a jak DECREASE, tak EXTRACTMIN budou mit
konstantni amortizovanou slozitost. Dijkstruv algoritmus pak pobézi v O(m + n(B + d)).

Zbyvé nastavit parametry tak, abychom minimalizovali vyraz B + d = B + log L/log B. Vhodnd volba je B =
log L/ loglog L. Pfi nf plati

logL log L _ log L _
logB log(logL/loglog L) loglog L —logloglog L

o(B).

Tehdy Dijkstra vydd vysledek v éase O(m +n - o527).

3.8.4 Dinitzuv trik pro hrany redlné délky
4 Potencialy

4.1 Potencialy a eliminace zapornych hran.

Definice 4.1. (Potencial) budeme fikat libovolné funkci ¢ : V' — R. Pro kazdy potencidl zavedeme redukované
délky hran Cy(u,v) = £(u,v) + ¥(u) — ¥ (v). Potencidl nazveme pripustny, pokud zaddnd hrana nemd zépornou
redukovanou délku.

Pozorovani 4.1. Pro redukovanou délku libovolné cesty P z w do v plati: £y, (P) = ((P) + ¥ (u) — ¥(v).

Diikaz. Necht cesta P prochézi pies vrcholy u = wq, ..., w; = v. Potom:

ty(P) = wa(wiawiﬂ) =) (Ulwi, wigr) + Y(wi) = P(wir)).

i

Tato suma je ovsem teleskopicka, takze z ni zbude
Zf(wiawiﬂ) + ¥(wr) — P(wy) = L(P) +P(u) — ¢(v).

Disledek 4.1. Potencidlovou redukci se délky vsech cest mezi u a v zméni o tutéZ konstantu, takZe struktura
nejkratsich cest zustane nezménéna.

4.2 Heuristické 1-1 nejkratsi cesty a obousmérny Dijkstra

Muzeme spustit prohleddvani z obou koncu zdroven, tedy zkombinovat hledani od s v puvodnim grafu s hledanim
od t v grafu s obracenou orientaci hran.

Zastavime se v okamziku, kdy jsme jeden vrchol uzavieli v obou smérech. Pozor ovSem na to, Ze soucet obou
ohodnoceni tohoto vrcholu nemusi byt roven d(v,u).

Nejkratsi cesta jesté muze vypadat tak, Zze prechdzi po néjaké hrané mezi vrcholem uzavienym v jednom sméru
a vrcholem uzavienym ve sméru druhém (ponechme bez dukazu). Staci tedy béhem relaxace zjistit, zda je konec
hrany uzavieny v opacném sméru prohledavani, a pokud ano, zapocitat cestu do prubézného minima.
Obousmeérny Dijkstruv algoritmus projde sjednoceni néjaké koule okolo s s néjakou kouli okolo t, které obsahuje
nejkratsi cestu. Pruméry kouli pfitom zdvisi na tom, jak budeme béhem vypoctu stiidat oba sméry prohleddvéni.
V nejhorsim piipadé samoziejmé muzeme prohledat cely graf.

15

4.3 A* algoritmus

Jednd se o modifikaci Dijkstrova algoritmu, kterd vyuziva heuristickou funkci pro dolni odhad vzdélenosti do cile;
oznacme si ji ¢¥(v). V kazdém kroku pak uzavird vrchol v s nejmensim moznym souctem h(v) + ¢ (v) aktudlniho
ohodnoceni s heuristikou.

Intuice za timto algoritmem je jasna: pokud vime, ze néjaky vrchol je blizko od pocatacniho vrcholu s, ale bude
z néj urcité daleko do cile t, zatim ho odlozime a budeme zkoumat nadéjnéjsi varianty.

Heuristika se pritom voli podle konkrétniho problému — napt. hleddme-li cestu v mapé, muzeme pouzit vzdalenost
do cile vzdusnou carou.

Je u tohoto algoritmu zaruceno, ze vidy najde nejkratsi cestu? Na to ndm da odpovéd teorie potencialii:

Véta 4.1. Béh algoritmu A* odpovidd pribéhu Dijkstrova algoritmu na grafu redukovaném potencidlem —ip.
Presnéji, pokud oznac¢ime h* aktudini ohodnoceni v A* a h aktudlni ohodnoceni v synchronné bézicim Dijkstrovi,
bude vZdy platit h(v) = h*(v) —(s) + ¥ (v).

Diikaz. Indukef podle doby béhu obou algoritmu. Na pocatku je h*(s) i h(s) nulové a vSechna ostatn{ h* a h jsou
nekonecnd, takze tvrzenf plati. V kazdém dalsim kroku A* vybere vrchol v s nejmensim h*(v) + v (v), coz je tentyz
vrchol, ktery vybere Dijkstra (¢(s) je stdle stejné).

Uvazujme, co se stane béhem relaxace hrany vw: Dijkstra se pokus{ snizit ohodnoceni h(w) o § = h(w) — h(v) —
¢_y(v,w) a provede to, pokud ¢§ > 0. Ukdzeme, ze A* udéld totéz:

6 = (h*(w) = ¢(s) + ¥(w)) = (A" (v) = (s) + P(v)) = (€(v, w) = Y (v) + P(w))
“(w) = (s) + p(w) = h*(v) +9(s) = P(v) = L(v,w) + P(v) = P(w)
(w)

(w) — h(v) — (v, w).

Oba algoritmy tedy az na posunuti dané potencidlem pocitaji totéz. |

Dusledek 4.2. Algoritmus A* funguje jen tehdy, je-li potencidl —v pripustny.

Pi#iklad: Pro rovinnou mapu to heuristika dand euklidovskou vzddlenosti o, tedy (v) := o(v,t), spliuje:
Pfipustnost pozaduje pro kazdou hranu uv nerovnost £(u,v) — ¥ (v) + ¥ (u) > 0, tedy £(u,v) — o(v,t) + o(u,t) > 0.
Jelikoz £(u,v) > o(u,v), staci dokdzat, ze o(u,v) — o(v,t) + o(u,t) > 0, coz je ovsem trojihelnikovd nerovnost pro
metriku p.

5 APSP algoritmy a transitivni uzavér

Dosazitelnost (transitivn{ uzdvér): matice matice sousedu A vyprodukuje matici A* vzdélenosti (délek stran).
Muzeme vyfesit spusténim nxBFS, coz ndm d& slozitost ©(nm).

Pocitani vzdélenosti. L — D, kde L je matice aktudlnich délek (obsahuje L;; = [(i, j) pokud ij € E, jinak +00) a D
je matice vzdalenosti. Mizeme vytesit spusténim nx Dijkstra (s Fib. haldou), coz nam d4 sloZitost ©(n? log n+nm).
Pokud je graf husty, tak je oboji n3. Definujeme si tedy lepsi algoritmus.

5.1 Floyd-Warshall algoritmus a jeho generalizace

Funguje pro libovolny orientovany graf bez zapornych cyklu.

Ozna¢me ij délku nejkratsi cesty z vrcholu ¢ do vrcholu j pres vrcholy 1 az k (tim myslime, ze vSechny vnitin{
vrcholy cesty lezi v mnoziné {1,...,k}). Jako obvykle polozime ij = +o00, pokud zadn4 takova cesta neexistuje.
Pak plati:

DY, = délka hrany ij,
D?j = hledand vzdélenost z i do j,

Dyf; = min(D ", DIt + D’,j;l).
Prvni dvé rovnosti plynou pfimo z definice. Tteti rovnost dostaneme rozdélenim cest z ¢ do j pres 1 az k na ty,
které se vrcholu k vyhnou (a jsou tedy cestami pfes 1 az k — 1), a ty, které ho pouziji — kazdou takovou muzeme
slozit z cesty z ¢ do k a cesty z k do 7, oboji pfes 1 az k — 1.

Zbyva vytesit jednu malickost: slozenim cesty z ¢ do k s cestou z k do j nemusi nutné vzniknout cesta, protoze se
ngjaky vrchol muze opakovat. V grafech bez zépornych cyklu nicméné takovy sled nemuze byt kratsi nez nejkratsi
cesta, takze tim falesné feseni nevyrobime. (Pfesnéji: ze sledu icvfBkyvdj, kde v € 3,7, muzeme vypusténim casti
vBkyv nezdporné délky ziskat sled z ¢ do j pies 1 az k — 1, jehoz délka nemuze byt mensi nez ijfl.)

Samotny algoritmus postupné poéitd matice D°, D', ..., D™ podle uvedeného piedpisu:

Algoritmus 5.1. (Floyd-Warshall): Nihodné vybird hrany a kontrahuje je, dokud # vrcholi neklesne na £.

16

Algorithm 7 FLOYDWARSHALL(Gy, ¢):

1: D% «matice délek hran.

2: for k=1,...,ndo

3: fori,j=1,...,ndo

4 DE; < min(D;7', D7t + Dy,

5. Matice vzdalenosti <— D™.

Casova slozitost tohoto algoritmu ¢ini ©(n?). Kubickou prostorovou slozitost miizeme snadno snizit na kvadra-
tickou: Bud' si uvédomime, ze v kazdém okamziku potfebujeme jen aktudlni matici D* a piedchozi D*~1. Anebo
nahlédneme, ze muzeme D*¥~1 na DF pfepisovat na misté. U hodnot Dj; a Dy; je totiz podle definice stard i
nova hodnota stejné. Algoritmu tedy stac¢i jediné pole velikosti n x n, které na pocatku vypocétu obsahuje vstup a
na konci vystup.

5.2 Nasobeni matic

Definice 5.1. (@, ®)-soudin matic A, B € X™*" kde @ a ® jsou dvé asociativni bindrn{ operace na mnoziné X,
je matice C takova, ze

Cij = @Am ® By;.
k=1

Klasické nasobeni matic je tedy (4, -)-souéin.

5.2.1 Algebraicky pohled na nasobeni matic
5.2.2 Divide and conquer algoritmus

Na vstupu dostaneme matici sousednosti A, vystupem ma byt jeji transitivni uzdvér A* (matice dosazitelnosti).
Vsechny souciny matic v tomto oddilu budou typu (V, A).
Vrcholy grafu rozdélime na dvé mnoziny X a Y pfiblizné stejné velikosti, bez ijmy na obecnosti tak, aby matice A

méla nésledujici blokovy tvar:
_(P @
4= (& §)

kde podmatice P popisuje hrany z X do X, podmatice @ hrany z X do Y, atd.

Véta 5.1. Pokud matici A* zapiSeme rovnéz v blokovém tvaru:
« (1 J
(k1)

I=(PVQS*R)",
J = 108",

K = S*RI,

L =S*V S*RIQS".

bude platit:

Dikaz. Jednotlivé rovnosti muZeme ¢ist takto:

I: Sled z X do X vznikne opakovanim &4sti, z nichz kazda je bud'to hrana uvnitf X nebo pfechod po hrané
z X do Y nésledovany sledem uvnitt Y a pfechodem zpét do X.

J: Sled z X do Y muzeme rozdélit v misté, kdy naposledy prechdzi po hrané z X do Y. Prvni ¢dst pfitom bude
sled z X do X, druh4 sled uvniti Y.

K: Se sledem z Y do X nalozime symetricky.

L: Sled z Y do Y vede bud'to cely uvniti Y, nebo ho mtizeme rozdélit na prvnim pfechodu z Y do X a poslednim
pfechodu z X do Y. Cést pfed prvnim pfechodem povede celd uvniti Y, ¢ast mezi prechody bude tvofit sled
z X do X a konecné ¢ést za poslednim prechodem zustane opét uvniti Y.

17

5.2.3 Seideluv algoritmus

Pro G neorientovany jednotkové délky muzeme doséhnout jesté lepsich vysledki.
Matici vzdéalenosti lze spocitat v ¢ase O(n® logn) Seidelovym algoritmem.

Definice 5.2. (Druh& mocnina grafu) je graf G? na téze mnoziné vrcholii, v némz jsou vrcholy i a j spojeny
hranou pravé tehdy, existuje-li v G sled délky nejvyse 2 vedouci z 4 do j.

Pozorovani 5.1. Matici sousednosti grafu G* ziskdme z matice sousednosti grafu G jednim (V, A)-soucinem, tedy
v ¢ase O(n¥).

Algoritmus 5.2. (Seidliv) Rekurzivné: Sestrojime graf G2, rekurz{ spoéitame jeho matici vzdalenosti D’ a z
ni pak rekonstruujeme matici vzdélenosti D zadaného grafu. Rekurze konéi, pokud G? = G — tehdy je kazda
komponenta souvislosti zahusténa na uplny graf, takze matice vzdalenosti je rovna matici sousednosti.

Zbyva ukézat, jak z matice D’ spocitat matici D. Zvolme pevné i a zaméfme se na funkce d(v) = D;, ad'(v) = Dj,.
Jisté plati d’'(v) = [d(v)/2], pro¢ez d(v) je bud rovno 2d’(v) nebo o 1 nizsi. Nau¢ime se rozpoznat, jestli d(v) mé
byt sudé nebo liché, a z toho vzdy pozname, jestli je potieba jednicku odecist.

Jak vypada funkce d na sousedech vrcholu v # i? Pro alespon jednoho souseda u je d(u) = d(v) — 1 (to plati
pro sousedy, kteff{ lezi na nékteré z nejkratsich cest z v do). Pro vSechny ostatni sousedy je d(u) = d(v) nebo
d(u) = d(v) + 1.

Pokud je d(v) sudé, vyjde pro sousedy lezici na nejkratsich cestdch d'(u) = d’'(v) a pro ostatni sousedy d’(u) > d’(v),
takze prumér z d’(u) pres sousedy je alespon d’'(v). Je-li naopak d(v) liché, musi byt pro sousedy na nejkratsich
cestach d'(u) < d(v) a pro viechny ostatni d’(u) = d(v), takze prumér klesne pod d’(v).

Prumeéry pres sousedy pritom muzeme spocitat ndsobenim matic: vyndsobime matici vzdélenosti D’ matici sou-
sednosti grafu G. Na pozici ¢, j se objevi soucet hodnot D, pfes viechny sousedy k vrcholu j. Ten staci vydélit
stupném vrcholu j a hledany prumeér je na svété.

Po provedeni jednoho nédsobeni matic tedy dovedeme pro kazdou dvojici vrcholii v konstantnim ¢ase spocitat D;;
Z ng. Jedna troven rekurze proto trva O(n®) a jelikoz prumér grafu pokazdé klesne alesponn dvakrat, je tirovni
O(logn) a cely algoritmus dobéhne ve slibeném case O(n* logn).

6 Minimalni kostry

6.1 Uvod

Véta 6.1. Kostra T je minimdlni < neexistuje hrana lehkd vzhledem k T.

6.2 Cerveno-cerny algoritmus a specialni pouziti

Vsechny tradi¢ni algoritmy na hledani MST lze popsat jako specidlni pfipady nasledujiciho meta-algoritmu. Ro-
zeberme si tedy rovnou ten. Formulujeme ho pro pfipad, kdy jsou vSechny véhy hran navzdjem ruzné.

Algoritmus 6.1. (Cerveno-modry): Nihodné vybird hrany a kontrahuje je, dokud # vrcholii neklesne na (.

Algorithm 8 REDBLUE:

1: Na pocatku jsou v8echny hrany bezbarvé.
2: while lze uplatnit alespon jedno z pravidel do
3: Modré: Je € C, ze e je nejlehéi z C a nastav e < modra

v

4: Cervené: Je € K cyklus, 7e e je nejtézsi z K a nastav e < Gervensd

6.2.1 Jarnikuv algoritmus

Nechévame riist jen jeden modry strom. MST je na za¢atku prazdnd, pridavame vzdy nejlehéf hranu mezi 7' a T.

o Cervené pravidlo: zahodit vSechny hrany v ramci stromu.

e Modré pravidlo: pfFidat nejlehéi hranu spojujii 7' a T.

Kroky opakujeme, dokud se strom nerozroste pfes vSechny vrcholy.
Pii sikovné implementaci pomoci haldy dosdhneme ¢asové slozitosti O(mlogn).

18

6.2.2 Boruvkuv algoritmus

v

nalezené hrany naréz pfiddme (modré pravidlo).
Casovd slozitost je O(mlogn): Pocet stromi klesd exponencidlné, takze fdzi logn a navic kaZdou fdzi implemen-
tujeme linedrnim prichodem celého grafu.

6.2.3 Kruskaluv algoritmus

Algoritmus 6.2. (Kruskaliv): Hrany setridime vzestupné podle vah, pro kadZdou se podivdme, jestli spojuje 2
komponenty, pokud ano, tak pridime.

Algorithm 9 KRUSKAL:

: Setfidime hrany podle vah vzestupné.

: Zacneme s prazdnou kostrou (kazdy vrchol je v samostatné komponenté souvislosti).
: Bereme hrany ve vzestupném poradi.

: for all e € E do

Podivame se, zda e spojuje dvé ruzné komponenty.

if ano then e pridame ji do kostry.

else zahodime e.

Setridént je mlogm, Union-Find struktura pro komponenty je mx find, nxunioon — O(logn) = mlogn.

6.3 Boruvkuv algoritmus s kontrakcemi a filtrovanim

Algoritmus 6.3. (Borivka s kontrakcemsi): Vyjdeme z myslenky, Ze mizeme po kaZdém kroku puvodniho
Boruvkova algoritmu vzniklé komponenty souvislosti grafu kontrahovat do jednoho vrcholu a tim ziskat mensi graf,
ktery muzZeme znovu rekurzivné zmensSovat. Pro rovinné grafy tak dosdhneme linedrni ¢asové sloZitosti.

Algorithm 10 CONTRACTIVEBORUVKA:

T+ 0
2: while n > 1 do
3: S <+ {nejdelsi incidentni hrana pro kazdy vrhol}
4: Kontrakce S
5: Odstranéni smycek
6: Filtrace paralelnich hran
7: T+ TUS
return

6.4 MST v rovinnych grafech a Minorové uzaviené tiidy

Definice 6.1. (Minor): Graf H je minorem grafu G (znac¢ime H < G), pokud lze H ziskat z G mazdnim vrcholt
¢i hran a kontrahovanim hran (s odstranénim smyéek a ndsobnych hran).

Definice 6.2. (Minorova uzavienost): Tiida grafu C je minorové uzaviend, pokud kdykoliv G € C a H <X G,
plati také H € C.

Definice 6.3. (Forb): Pro tfidu grafu C definujeme Forb(C) jako ti{du vSech grafu, jejichz minorem neni zadny
graf z C. Pro zjednodusen{ znaceni budeme pro konecéné tiidy psat Forb(Gy, ..., Gy) namisto Forb({Gy, ..., Gr}).
6.5 Hustota minorové uzavienych tiid

Definice 6.4. (Hustota): Hustotou neprazdného grafu G nazveme o(G) = |E(G)|/|V(G)|. Hustotou tiidy o(C)
pak nazveme supremum z hustot v8ech neprazdnych grafu lezicich v této t¥ideé.

Véta 6.2. (o hustoté minorové uzavienych tiid): Pokud je tiida grafi C minorové uzaviend a netrividlni
(alesponi jeden graf v ni leZi a alesport jeden nelezi), pak md koneénou hustotu.

Diikaz. Ukézeme nejprve, ze pro kazdou tiidu C existuje néjaké k takové, ze C C Forb(K}).
Uz vime, ze C lze zapsat jako Forb(F) pro ngjakou t¥idu F. Oznacme F graf z F s nejmensim poctem vrcholu;
pokud existuje vice takovych, vybereme libovolny. Hledané k zvolime jako pocet vrcholu tohoto grafu.

19

Inkluze tvaru A C B je ekvivalentni tomu, ze kdykoliv néjaky graf G nelezi v B, pak nelezi ani v .A. Méjme tedy
néjaky graf G ¢ Forb(K}). Proto Kj, =< G. Ovsem trividlné plati F' < K}, a relace ,byt minorem* je tranzitivni,
takze F' < G, a proto G ¢ C.

Vime tedy, ze C C Forb(K},). Proto musi platit o(C) < o(Forb(K})). Takze postacuje omezit hustotu t¥id s jednim
zakdzanym minorem, ktery je uplnym grafem, a to plyne z nasledujici Maderovy véty. |

Dusledek 6.1. Pokud pouZivame kontrahujici Boruvkuv algoritmus na grafy leZici v néjaké netrividlni minorové
uzavrené tridé, pak vSechny grafy, které algoritmus v prubéhu vypoctu sestroji, lezi také v této tridé, takze na odhad
jejich hustoty muzZeme pouzit predchozi vétu. Opét vyjde, Ze ¢asovd slozZitost algoritmu je linedrni.

Véta 6.3. (Maderova): Pro kazdé k > 2 existuje c(k) takové, Ze kdykoliv md graf hustotu alespon c(k), obsahuje
jako podgraf néjaké délent grafu K.

6.6 Jarnikuv/Dijkstruv algoritmus s Fibonacciho haldou

Algoritmus 6.4. (Jarnik-Dijkstra): Pivodni Jarnikiv algoritmus s haldou md diky ni sloZitost O(mlogn), to
zlepsime pouzitim Fibonacciho haldy H, do které si pro kaZdy vrchol sousedici se zatim vybudovanym stromem T
ulozZime nejlevné;jsi z hran vedoucich mezi timto vrcholem a stromem T. Tyto hrany bude halda udrzovat uspordidané
podle vah.

Algorithm 11 JARNIKDIJKSTRA:

1T+ 0
2: stav(vg) < otevieny; stav(x) < nevidény
3: h(vg) + —o0; h(*) < nedefinovdno; ae(*) < nedefinovano > 'ae’ znaci aktivni hranu
4: while Jv : stav(v) = otevieny do
5: Vezmeme takové v s nejmensim h(v)
6: stav(v) + zavieny
7: T+ T U{ae(v)}
8: for all vw € E do
9: if stav(w) = nevidény then
10: stav(w) < otevieny
11: h(w) < W (vw) > ‘W’ znaéi vahu
12: ae(w) + vw
13: if stav(w) = otevieny & h(w) > W(vw) then
14: h(w) < W (vw)
return

Dostaneme tak casovou sloZitost O(m + nlogn). Pokud je ovsem m > nlogn, tak je to pouze O(m).

6.7 Fredman-Tarjan algoritmus

Algoritmus 6.5. (Fredman-Tarjan): Pivodni Jarnikiv algoritmus s haldou md diky ni sloZitost O(mlogn), to
zlepsime pouzitim Fibonacciho haldy H, do které si pro kazdy vrchol sousedici se zatim vybudovanym stromem T
ulozZime nejlevné;jsi z hran vedoucich mezi timto vrcholem a stromem T. Tyto hrany bude halda udrzovat uspordidané
podle vah.

Algorithm 12 FREDMANTARJAN:

1: T« 0.

2: while n > 1 do

3: F 0. > les
4t 202mo/n],

5: while 3v € V\ V(F) do

6: Spustime JARNIKDIJKSTRA omezeny na t polozek z vrcholu v.

7 Zastavime, kdyz:

(1) halda je prazdna,
(2) velikost haldy = t,
(3) pfipojime vrchol, ktery uz je v F.

8: Piipojime vysledny strom do F.
9: T+ TUF.
10: Kontrahujeme F'.

20

Lemma 6.1. Jedna fdze bezi v ¢ase O(m).

Diikaz. Méme O(m; + n;logt + m;). Plati m; < mp, mdme tady O(2mg + n; logt).
Za t do logaritmu substituujeme 2/270/71 a dostaneme tak n; log 2[270/71 € ny-O(22).

(

Dostaneme tak celkem O(3mg) = O(my). [|

X

2
2’ kX
Definice 6.5. (Tower function) je zjednoduseni znaceni pro 2 T k = 2 } . Inverzn{ funkci znaéime log™ k.

2771»;
t

Pozorovani 6.1. Pocet stromu v F; < = nip1 < %
Véta 6.4. Fredman-Tarjan béz v case O(m -log" n).

Dikaz.

2mg (Poz. 6.1.) 2wG-t;
b — 2o/ 5 925 S PR

Dostali jsme tedy t; ;1 > 2%. VyuZijeme tower function a: t; > 21 i = chceme log"i.
Jedna féze je O(m), takze celkem dostaneme O(m - log™ n). |

7 LCA a RMQ

7.1 LCA - Lowest Common Ancestor

Chceme si predzpracovat zakofenény strom 7' tak, abychom dokéazali pro libovolné dva vrcholy x,y najit co nej-
rychleji jejich nejblizsiho spoleéného piedchidce.

Trividlni feSeni LCA:

e Vystoupame z = i y do kofene, oznac¢ime vrcholy na cestdch a kde se poprvé potkaji, tam je hledany
predchudce. To je linedrni s hloubkou a nepotiebuje predzpracovani.

e Lze vylepsit: Budeme stoupat z = a y stiidavé. Tak potiebujeme jen linedrné mnoho kroku vzhledem ke
vzdéalenosti spoleéného predchudce.

7.2 RMQ - Range Minimum Query

Chceme piedzpracovat posloupnost &isel ay, .. .a, tak, abychom uméli rychle pocitat ming<;<y a;.
Trividlni feSeni RMQ:
e Predpocitame viechny mozné dotazy: predzpracovani O(n?), dotaz O(1).

e Pro kazdé ¢ a j < logn predpocitdme m;; = min{a;, a;41,. .., @125 1}, ¢ili minima vSech bloku velkych jako
néjakd mocnina dvojky. Kdyz se poté nékdo zeptd na minimum bloku a;, @it1, ..., a;—1, najdeme nejveétsi k
takové, ze 2% < j — i a vratime:

min(min{a;, ..., a;4or_1 }, min{a;_ok,...,a;_1}).

Tak zvlddneme dotazy v ¢ase O(1) po predzpracovani v case O(nlogn).

7.3 Redukce z LCA na RMQ

Lemma 7.1. LCA lze prevést na RMQ s linedrnim c¢asem na predzpracovdnd a O(1) na prevod dotazu.

Diikaz. Strom projdeme do hloubky a pokazdé, kdyZ vstoupime do vrcholu (af jiz poprvé nebo se do ngj vratime),
zapiSeme jeho hloubku. LCA(z, y) pak bude nejvyssi vrchol mezi libovolnou névstévou « a libovolnou ndvstévou y.
|

Pievod z LCA vytvaif dosti specidlni instance problému RMQ. Takové, v nichz je |a; — a;41| = 1. Takovym
instancim budeme fikat RMQ+1 a budeme je umét fesit sikovnou dekompozici.

21

7.4 Dekompozice RMQ +1

Pro RMQ=1: Vstupni posloupnost rozdélime na bloky velikosti b = 1/2-logn, kazdy dotaz umime rozdélit na cast
tykajici se celych bloku a maximélné dva dotazy na ¢dsti bloku.

Vsimneme si, ze ackoliv bloku je mmnoho, jejich moznych typu (tj. posloupnosti klesani a stoupdni) je pouze
201 < \/n a bloky téhoz typu se lisi pouze posunutim o konstantu. Vybudujeme proto kvadratickou strukturu
pro jednotlivé typy a pro kazdy blok si zapamatujeme, jakého je typu a jaké ma posunuti. Celkem stravime Cas
O(n + v/n -log?n) = O(n) piedzpracovanim a O(1) dotazem.

Mimo to jesté vytvorime komprimovanou posloupnost, v niz kazdy blok nahradime jeho minimem. Tuto posloupnost
délky n/b budeme pouzivat pro ¢asti dotazt tykajici se celych blokt a pfipravime si pro ni ,logaritmickou” variantu
trivialni struktury. To nds bude stat O(% -log(%)) = O(5a5 - logn) = O(n) na piedzpracovani a O(1) na dotaz.

logn

Co jsem nestihl sepsat:

Union find.
Union-Find with unions known in advance via Frederickson’s decomposition and binary coding.

Zdroje

Cerpal predeviim z predndsek Martina Marese a jeho skript:

e Krajinou grafovych algoritmu - skripta Martina Marese
e Pruvodce labyrintem algoritmu - skripta Martina Marese
e Prednasky za rok 2024/25 Martina Marese

e Pozndmky z hodin Anicky Kmentové (2023/24)

22

http://mj.ucw.cz/vyuka/ga/ga.pdf
http://pruvodce.ucw.cz/static/pruvodce.pdf
http://mj.ucw.cz/vyuka/2425/ga/

	Toky v sítích
	Formulace problému, základní definice
	Ford-Fulkerson algoritmus
	Základní věty (min-cut/max-flow, integrality)
	Hledání bipartitního párování za pomoci toků
	Symetrické formulace (průtok)
	Dinitzův algoritmus
	Speciální sítě (ubíráme na obecnosti)
	Jednotkové kapacity: c=1; O(mn)
	Jednotkové kapacity znovu a lépe: c=1; O(m3/2)
	Jednotkové kapacity a jeden ze stupňů roven 1: c=1; (+, -)=1; O(n1/2 m)
	Třetí pokus pro jednotkové kapacity bez omezení na stupně vrcholů v síti: c=1; O(n2/3 m)
	Obecný odhad pro celočíselné kapacity: cN; O(|f|n + nm)
	Škálování kapacit

	Pravděpodobnostní hledání řezů
	Disjunktní cesty
	Pravděpodobnostní hledání řezů
	Náhodné kontrakce a jejich analýza
	Karger-Steinův algoritmus

	Hledání nejkratších cest
	Obecné vlastnosti
	Strasti se zápornými cykly
	Prefixová vlastnost
	Stromy nejkratších cest
	Relaxační schéma
	Bellman-Ford-Moore algoritmus
	Dijkstrův algoritmus
	Haldy

	Datové struktury pro Dijkstrův algoritmus
	Pole přihrádek
	Strom nad přihrádkami
	Multi-level přihrádky
	Dinitzův trik pro hrany reálné délky

	Potenciály
	Potenciály a eliminace záporných hran.
	Heuristické 1-1 nejkratší cesty a obousměrný Dijkstra
	A* algoritmus

	APSP algoritmy a transitivní uzávěr
	Floyd-Warshall algoritmus a jeho generalizace
	Násobení matic
	Algebraický pohled na násobení matic
	Divide and conquer algoritmus
	Seidelův algoritmus

	Minimální kostry
	Úvod
	Červeno-černý algoritmus a speciální použití
	Jarníkův algoritmus
	Borůvkův algoritmus
	Kruskalův algoritmus

	Borůvkuv algoritmus s kontrakcemi a filtrováním
	MST v rovinných grafech a Minorově uzavřené třídy
	Hustota minorově uzavřených tříd
	Jarníkův/Dijkstrův algoritmus s Fibonacciho haldou
	Fredman-Tarjan algoritmus

	LCA a RMQ
	LCA - Lowest Common Ancestor
	RMQ - Range Minimum Query
	Redukce z LCA na RMQ
	Dekompozice RMQ 1

