
Numerická matematika

Karel Velička

May 31, 2025

Obsah

1 Principles of Numerical Mathematics 4
1.1 Well-posedness . 4
1.2 Continuous Dependence on Data . 4

1.2.1 Scalar Case . 4
1.2.2 Stability . 5

1.3 Errors . 5
1.4 Floating Point Arithmetic . 5

2 Stability Analysis of Linear Systems. 6
2.1 Metody řešeńı . 6

3 Matrix norms 6
3.1 Matrix Norm . 6
3.2 Sensitivity Analysis . 7
3.3 Trojúhelńıkové soustavy . 8

3.3.1 Rounding error analysis . 8
3.4 Gaussova eliminačńı metoda (GEM) . 8

3.4.1 Postup . 8
3.4.2 LU rozklad . 8

4 Spektrálńı vlastnosti LU rozkladu 10
4.1 Zaokrouhlovaćı chyby . 10
4.2 Problémy stability . 10
4.3 Implementace LU rozkladu . 10
4.4 Pivotováńı . 10

4.4.1 Částečné pivotováńı . 11
4.4.2 Úplné pivotováńı . 11

4.5 Choleského rozklad . 11
4.6 QR rozklad . 12
4.7 Singulárńı rozklad (SVD) . 12

5 Iterative methods 13
5.1 Stacionárńı iteračńı metody . 13

5.1.1 Jacobiho metoda . 13
5.1.2 Gaussova-Seidelova metoda . 13
5.1.3 SOR metoda (Successive Overrelaxation) . 13

5.2 Konvergence iteračńıch metod . 14
5.3 Adaptivńı SOR metoda . 14

1

6 Konjugované gradienty (Krylovovy podprostorové metody) 15
6.1 Metoda největš́ıho spádu . 15
6.2 Výběr směrových vektor̊u . 15

6.2.1 Optimalita řešeńı . 16
6.3 Konjugovaná ortogonalita . 16

6.3.1 Algoritmus konjugovaných gradient̊u . 16
6.4 Celkový algoritmus konjugovaných gradient̊u . 16

7 Výpočet vlastńıch č́ısel a vektor̊u 17
7.1 Power method – Algoritmus . 17

7.1.1 Odvozeńı konvergence . 17
7.1.2 Výpočet vlastńıho č́ısla . 18

7.2 Krylovovy podprostorové metody . 18
7.2.1 Projection methods . 18
7.2.2 Implementace . 19
7.2.3 Algoritmus pro SPD matice . 19
7.2.4 Vlastnosti . 19

7.3 GMRES . 19
7.4 Aplikace na problém vlastńıch č́ısel . 19

8 Řešeńı nelineárńıch rovnic 20
8.1 Podmı́něnost problému . 20
8.2 Bisection Metoda (p̊uleńı interval̊u) . 20
8.3 Rychleǰśı metody kovergence . 21

8.3.1 Chord metoda (tětiva) . 21
8.3.2 Secant metoda (sečna) . 21
8.3.3 Newtonova metoda . 21

8.4 Metoda pevného bodu . 21
8.5 Analýza konvergence . 22
8.6 Kritéria zastaveńı iteraćı . 22

8.6.1 Reziduálńı kritérium . 22
8.6.2 Kritérium př́ır̊ustku . 23

9 Úvod do nelineárńıch systémů 24
9.1 Newtonova metoda . 24
9.2 Kořeny polynomů . 25
9.3 Hornerovo schéma . 25

9.3.1 Deflačńı postup . 26
9.4 Newton-Hornerova metoda . 26

9.4.1 Zpřesňováńı výsledk̊u . 26

10 Aproximace 27
10.1 Polynomiálńı aproximace . 27
10.2 Lagrangeova interpolace . 27
10.3 Interpolačńı chyba . 28

10.3.1 Runge̊uv jev . 28
10.3.2 Řešeńı: Čebyševovy uzly . 29

10.4 Po částech polynomiálńı interpolace . 29

2

11 Splines 30
11.1 Podmı́nky pro interpolačńı spliny . 30
11.2 Kubické spliny (k = 3) . 30
11.3 Splines in Parametric Form . 31
11.4 De Casteljauovo schéma . 31

12 Orthogonal Polynomials 33
12.1 Three-term rekurence . 33
12.2 Zobecněná Fourierova řada . 33
12.3 Chebyshev Polynomials . 34

13 Numerická Integrace 35
13.1 Quadrature rules. 35

13.1.1 Interpolatory Quadrature . 35
13.1.2 Rectangular Rule . 35
13.1.3 Midpoint Rule . 35
13.1.4 Composite Midpoint Rule . 35
13.1.5 Trapezoidal Rule . 36
13.1.6 Composite Trapezoidal Rule . 36
13.1.7 Simpson’s Rule . 36
13.1.8 Composite Simpson’s Rule . 36

13.2 Newton-Cotes Formulas . 36
13.3 Gauss Quadrature . 36

3

1 Principles of Numerical Mathematics

1.1 Well-posedness

Matematický problém je obecně formulován jako: najděme proměnnou x, t.ž.

F (x, d) = 0,

kde d je množina dat a F je funkčńı vztah mezi x a d.

Well-posed problem (stable) je typ problému, kde existuje jednoznačné řešeńı x, které spojitě
záviśı na datech d. Jinak je problém Ill-posed (nestabilńı).

1.2 Continuous Dependence on Data

Pro chyby δx a δd plat́ı vztah
F (x+ δx, d+ δd) = 0.

Problém je stabilńı, pokud existuj́ı konstanty y0 > 0 a K0 takové, že:

∀δd : ∥δd∥ ≤ y0 =⇒ ∥δx∥ ≤ K0∥δd∥

Definice 1.1 (Relative Condition Number). Relative condition number problému F (x, d) = 0 je:

K(d) := sup
δd∈D

∥δx∥/∥x∥
∥δd∥/∥d∥

Definice 1.2 (Absolute Condition Number). Absolute condition number je:

K(d) := sup
δd∈D

∥δx∥
∥δd∥

Věta 1.1. Relative condition number pro x = G(d) m̊uže být aproximováno formuĺı K(d) ≈ ∥G′(d)∥
∥G(d)∥ ||d|| .

Proof. Pokud je problém F (x, d) = 0 stabilńı, pak existuje spojitá funkce G taková, že x = G(d).
Pro jednoduchost předpokládejme, že G je diferenciovatelná, pak plat́ı:

G(d+ δd)−G(d) = G′(d) · δd+ θ(||δd||), δd→ 0.

Potom tedy dostaneme absolute contition number:

Kabs(d) = sup
δd∈D

||δx||
||δd||

= sup
δd∈D

||G(d+ δd)−G(d)||
||δd||

≈ sup
δd∈D

||G′(d)δd||
||δd||

≈ sup
δd∈D

||G′(d)||���||δd||
�

��||δd||
,

Kabs(d) ≈ ∥G′(d)∥.

Relative condition number je:

K(d) ≈ ∥G
′(d)∥

∥G(d)∥
||d|| .

1.2.1 Scalar Case

Pro skalárńı funkci x = f(d) ∈ R, kde d je vstup, x výstup a f diferencovatelná funkce, je

K(d) ≈ |f
′(d)|
|f(d)|

|d|.

Pokud jeK(d) velké, pak je problém ill-conditioned, naopak pro maléK(d) (≈ 1) je well-conditioned.

4

1.2.2 Stability

Mějme matematický stabilńı problém:

F (x, d) = 0, x ∈ X , d ∈ D,

a mějme diskretizaci tohoto problému, kterou dostaneme aproximaćı:

Fn(xn, dn) = 0, xn ∈ Xn, dn ∈ Dn.

Očekáváme, že řešeńı xn diskrétńıho problému Fn(xn, dn) = 0 konverguje xn → x, pro n→∞.
Pokud pro pro každé (x, d) plat́ı Fn(x, d)→ 0 pro m→∞, pak je aproximace př́ıpustná.

Jelikož je Fn(xn, dn) = 0 nový problém, můžeme definovat jeho condition number jako:

Kn(dn) = sup
δ∈Dn

∥δxn∥/∥xn∥
∥δdn∥/∥dn∥

Pokud Kn(dn) je malé, pak je metoda well-conditioned, pokud je Kn(dn) velké, pak je metoda ill-
conditioned.

Pokud Fn(xn, dn) = 0 je stabilńı, pak existuje spojitá funkce Gn taková, že xn = Gn(dn).
Pro jednoduchost předpokládejme, že je Gn diferencovatelná, potom:

Kn(dn) ≈
∥G′

n(dn)∥
∥Gn(dn)∥

1.3 Errors

Real World F (x, d) = 0 Fn(xn, dn) = 0 x̂n

em en ên

• Modeling error : Chyba em v matematickém modelu.

• Discretization error : Chyba en = x− xn zp̊usobená diskretizaćı.

• Computational error : Chyba ên = xn − x̂n zp̊usobená konečnou přesnost́ı výpočt̊u.

Celkovou chybu poč́ıtáme jako e = em + en + ên.

1.4 Floating Point Arithmetic

Reálné č́ıslo x je reprezentováno s konečným počtem byt̊u jako fl(x).

Vlastnost 1.1. Pokud x ∈ R a xmin < |x| < xmax (bez podtečeńı / přetečeńı), pak

fl(x) = x(1 + δ), |δ| ≤ u,

kde u je tzv. machine precision.

Důsledek 1.1. Relativńı chyba je:

Erel(x) =
|x− fl(x)|
|x|

≤ u

5

2 Stability Analysis of Linear Systems.

Uvažujme soustavu lineárńıch rovnic Ax = b, kde A ∈ Rm×m je matice koeficient̊u, b ∈ Rm je vektor
pravé strany, a x ∈ Rm je hledaný vektor řešeńı. Pro stabilńı problém plat́ı ekvivalentńı podmı́nky:

• A je regulárńı (existuje A−1),

• det(A) ̸= 0,

• rank(A) = m,

• Všechna vlastńı č́ısla matice A jsou λj ̸= 0.

2.1 Metody řešeńı

Pro spoč́ıtáńı x můžeme použ́ıt buď př́ımé, nebo iteračńı metody:

Př́ımé metody. Poskytuj́ı přesné řešeńı v konečném počtu krok̊u (např. Gaussova eliminace).

Použ́ıvá se třeba Cramerovo pravidlo (je ale výpočetně náročné): xj =
Aj

det(A)
.

Iteračńı metody. Generuj́ı posloupnost aproximaćı xn → x. Jsou vhodné pro rozsáhlé soustavy,
kde př́ımé metody nejsou efektivńı.

3 Matrix norms

Definice 3.1 (Condition Number Matrix). Condition number matice A je:

K(A) = ∥A∥ · ∥A−1∥

kde ∥ · ∥ je maticová norma.

3.1 Matrix Norm

Indukovanou normu znač́ıme: ∥A∥ = maxv
∥Av∥
∥v∥ . Pokud plat́ı ||Av|| ≤ ||A|| · ||v||, nazýváme ji

compatible, pokud plat́ı ||AB|| ≤ ||A|| · ||B||, nazýváme ji submultiplicative.
Eucleidean norm je K2(A) = ||A||2 · ||A−1||2 = λn/λ, pokud je A SPD a λi vlastńı č́ısla.

Definice 3.2 (Matrix Norm). ||·|| : Rn×n → R ≥ 0, pokud:

1. ||A|| ≥ 0 ∧ ||A|| = 0 ⇐⇒ A = 0

2. ||αA|| = |α| ||A||

3. ||A+B|| ≤ ||A||+ ||B||

Definice 3.3 (Consistency Compatibility). ||Ax|| ≤ ||A|| · ||x||, kde ||A|| je matrix norm a ||x|| je
vector norm.

• Speciálńı př́ıpady:

– ∥A∥1 = maxj
∑

i |aij|, maximálńı součet sloupce,

– ∥A∥∞ = maxi
∑

j |aij|, maximálńı součet řádku,

– ∥A∥2 =
√

ρ(ATA), spektrálńı norma – max ‘scale‘ by which matrix can ‘stretch‘ vector,

– Frobeniova norma: ∥A∥F =
√∑

i,j |aij|2.

6

3.2 Sensitivity Analysis

Zkoumáme, zda je problém well, nebo ill-conditioned.

Věta 3.1. Předpokládejme, že A + δA je invertovatelná, ∥A−1∥∥δA∥ < 1 a b ̸= 0, pak pro relativńı
chybu řešeńı plat́ı:

∥δx∥
∥x∥

≤ K(A)

1−K(A)∥δA∥
∥A∥

(
∥δb∥
∥b∥

+
∥δA∥
∥A∥

)
kde K(A) = ∥A∥∥A−1∥ je condition number matice A.

Proof.
(A+ δA)(x+ δx) = b+ δb ⇐⇒ x+ δx = (A+ δA)−1(b+ δb)

Nejprve vyjádř́ıme δx:

δx = (A+ δA)−1(b+ δb)− x = (A+ δA)−1(b+ δb− (A+ δA)x)

= (A+ δA)−1(��b+ δb−��Ax− (δA)x)

= [A(I + A−1δA)]−1(δb− (δA)x) = (I + A−1δA)−1A−1(δb− (δA)x)

Pro normu δx tedy:

||δx|| ≤
∣∣∣∣(I + A−1δA)−1A−1(δb− (δA)x)

∣∣∣∣
≤
∣∣∣∣(I + A−1δA)−1

∣∣∣∣ ∣∣∣∣A−1
∣∣∣∣ ||δb− (δA)x||

≤
∣∣∣∣(I + A−1δA)−1

∣∣∣∣ ∣∣∣∣A−1
∣∣∣∣ (||δb|| − ||δA|| ||x||)

Předpokládejme, že ∥A−1δA∥ ≤ ∥A−1∥∥δA∥ < 1, pak v́ıme, že (I + A−1δA)−1 existuje a

I = I − A+ A ⇐⇒ (I − A)−1 = I + A(I − A)−1∣∣∣∣(I − A)−1
∣∣∣∣ ≤ 1 +

∣∣∣∣A(I − A)−1
∣∣∣∣∣∣∣∣(I − A)−1

∣∣∣∣ ≤ 1 + ||A||
∣∣∣∣(I − A)−1

∣∣∣∣
(1− ||A||)

∣∣∣∣(I − A)−1
∣∣∣∣ ≤ 1 ⇐⇒

∣∣∣∣(I − A)−1
∣∣∣∣ ≤ 1

1− ||A||

Proto, jelikož ∥A−1δA∥ ≤ ∥A−1δA∥ < 1:

∥(I + A−1δA)−1∥ ≤ 1

1− ∥A−1δA∥
≤ 1

1− ∥A−1∥∥δA∥

Plat́ı tedy:

||δx|| ≤ ||A−1||
1− ||A−1|| ||δA||

(||δb||+ ∥δA∥ ||x||)

∥δx∥
∥x∥

≤ ∥A−1∥
1− ∥A−1∥∥δA∥

(
∥δb∥
∥x∥

+ ∥δA∥
)

A protože Ax = b a ∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥ =⇒ ∥x∥ ≥ ∥b∥
∥A∥ , tak dostáváme:

∥δx∥
∥x∥

≤ ∥A−1∥
1− ∥A−1∥∥δA∥

(
∥δb∥
∥x∥

+ ∥δA∥
)
≤ ||A−1|| ||A||

1− ||A−1|| ||A||
(

∥δA∥
∥A∥

) (∥δb∥
∥b∥

+
∥δA∥
∥A∥

)
,

Kde K(A) = ||A−1|| ||A||.

7

3.3 Trojúhelńıkové soustavy

Forward substitution. Pro dolńı trojúhelńıkovou soustavu Lx = b:

x1 =
b1
l11

,

xi =
1

lii

(
bi −

i−1∑
j=1

lijxj

)
, i = 2, . . . , n

Backward substitution. Pro horńı trojúhelńıkovou soustavu Ux = b:

x1 =
bn
lnn

,

xi =
1

uii

(
bi −

n∑
j=i+1

uijxj

)
, i = n− 1, . . . , 1

3.3.1 Rounding error analysis

Uvažujme dolńı trojúhelńıkovou soustavu (L+ δL)X̂ = b, kde:

• L je dolńı trojúhelńıková matice rozměru n×m

• δL představuje chyby vzniklé zaokrouhlováńım

• X̂ = x+ δx je vypočtené řešeńı s chybou

Za předpokladu n ·u < 1 (kde u je jednotkové zaokrouhleńı), plat́ı následuj́ıćı odhad relativńı chyby:

∥x− x̂∥
∥x∥

≤ nu ·K(L)

1− nu ·K(L)
= nu ·K(L) + Ø(u2)

kde K(L) = ∥L∥∥L−1∥ je condition number matice L.
Pokud u je opravdu malé, pak n ·K(L) · u neńı velké ani pro velké nebo ill-conditioned matice.

3.4 Gaussova eliminačńı metoda (GEM)

3.4.1 Postup

Transformace Ax = b na horńı trojúhelńıkový tvar Ux = c pomoćı řádkových operaćı:

• V kroku k eliminujeme sloupec k pod diagonálou pomoćı multiplikátor̊u:

mik =
a
(k)
ik

a
(k)
kk

• Aktualizace prvk̊u:
a
(k+1)
ij = a

(k)
ij −mika

(k)
kj

3.4.2 LU rozklad

GEM je ekvivalentńı rozkladu A na A = LU , kde:

• L je dolńı trojúhelńıková matice s 1 na diagonále,

• U je horńı trojúhelńıková matice.

8

´

Věta 3.2. LU rozklad existuje a je jednoznačný právě tehdy, když všechny hlavńı vedleǰśı determi-
nanty jsou nenulové.

Definice 3.4 (Diagonal Dominant Matrix (DDM)). Matice A je diagonálně dominantńı, pokud:

|aii| ≥
n∑

j=1,j ̸=i

|aij| (řádková dominance)

nebo

|aii| ≥
n∑

j=1,i ̸=j

|aji| (sloupcová dominance)

Vlastnost 3.1. Pokud A je DDM, pak existuje LU rozklad a multiplikátory splňuj́ı |lij| ≤ 1, ∀i, j.

9

4 Spektrálńı vlastnosti LU rozkladu

Determinant. Pro LU rozklad plat́ı:

det(A) = det(L) · det(U) = det(U)

protože det(L) = 1 (jedničky na diagonále).

4.1 Zaokrouhlovaćı chyby

Při výpočtu na poč́ıtači dostáváme:
A ̸= Â = L̂Û

kde L̂ a Û jsou ovlivněny zaokrouhlovaćımi chybami. Chyba rozkladu je:

Â− A = δA

Odhad chyby. Pro relativńı chybu plat́ı:

|δA| ≤ nu

1− nu
|A|

kde u je strojové epsilon.

4.2 Problémy stability

Pokud jsou pivotńı prvky malé, mohou multiplikátory být extrémně velké, což vede k nestabilitě.

Např́ıklad pro matici A =

1 2 1
1 2 + ϵ −1
0 1 1

 je multiplikátor m32 = 1/ϵ, který je velký pro malé ϵ.

4.3 Implementace LU rozkladu

Následuj́ıćı MATLAB kód implementuje LU rozklad (kji verze):

function [A] = lu_kji(A)

[n,n] = size(A);

for k = 1:n-1

A(k+1:n,k) = A(k+1:n,k)/A(k,k);

for j = k+1:n

for i = k+1:n

A(i,j) = A(i,j) - A(i,k)* A(k,j);

end

end

end

4.4 Pivotováńı

GEM selže, pokud je pivot nulový nebo bĺızký nule. Řešeńım je výměna řádk̊u.
Např́ıklad pro matici:

A =

1 2 3
2 4 5
7 8 9


výměna (permutace) druhého a třet́ıho řádku umožńı úspěšnou eliminaci. Permutace řádk̊u se
reprezentuje permutačńı matićı P :

PA = LU

10

4.4.1 Částečné pivotováńı

V podstatě A → A(2) → · · · → A(k). Viděli jsme, že malé multip-
likátory zp̊usobuj́ı nestabiliy. Idea je následuj́ıćı:

• A(k)(k:end, k)← hledáme prvek s největš́ı magnitudou

• Prohod́ıme daný řádek s k-tým řádkem

Výslednou horńı trojúhelńıkovou matici U vyjádřit obecným vzorcem:

U = A(n) = Mn−1 · Pn−1 · · ·M1 · P1 · A(1),

kde Mk jsou eliminačńı matice, Pk jsou matice permutaćı řádk̊u a A(1) = A je p̊uvodńı matice.
Definujeme celkovou permutaci a transformaci:

P = Pm−1 · · ·P1, M = Mm−1 · Pm−1 · · ·M1 · P1

Pak můžeme psát:
U = MA ⇐⇒ U = (MP−1)PA

kde MP−1 je dolńı trojúhelńıková matice. Odtud dostáváme LU rozklad pro permutovanou matici:

PA = LU

kde L = (MP−1)−1 je dolńı trojúhelńıková matice s jedničkami na diagonále.

4.4.2 Úplné pivotováńı

Zahrnuje výměnu řádk̊u i sloupc̊u:

PAQ = LU,

kde Q je permutačńı matice pro sloupce.

Částečné pivotováńı zlepšuje stabilitu oproti GEM bez pivotováńı, zat́ımco úplné pivotováńı je
stabilněǰśı, ale výpočetně náročněǰśı.

4.5 Choleského rozklad

Pokud A je SPD matice, pak existuje rozklad A = CTC , kde C je horńı trojúhelńıková matice s
kladnými diagonálńımi prvky.
Plat́ı následuj́ıćı vlastnosti:

• A = LU, D = diag(U) =⇒ C = (D−1/2)U = (D1/2)LT a tedy

LU = LD1/2D−1/2U = CTC.

• Rozklad C existuje a je jednoznačný

• Dekompozice je stabilńı.

11

4.6 QR rozklad

Pro nesingulárńı matici A ∈ Rn×n existuje rozklad:

A = QR

kde Q je ortogonálńı (QTQ = I) a R je nesingulárńı horńı trojúhelńıková matice.
(QR rozklad m̊uže být použit i u obdélńıkových matic.)

Aplikace. Při řešeńı soustavy Ax = b:

QRx = b =⇒ Rx = QT b

což lze řešit zpětnou substitućı.

4.7 Singulárńı rozklad (SVD)

Pro libovolnou matici A ∈ Cm×n existuje rozklad:

A = UΣV H

kde U ∈ Cm×m, V ∈ Cn× n jsou unitárńı a Σ obsahuje singulárńı hodnoty σ1 ≥ . . . ≥ σp ≥ 0.

Plat́ı následuj́ıćı vztahy:

AHA = V HΣH���
UUHΣV = V HΣHΣV, a

AAH = UΣV HV ΣHUH = UΣΣHUH

Nenulové prvky ΣHΣ, ΣΣH jsou |σ1|2 , |σ2|2 , . . . , |σp|2 =⇒ σi(A) =
√

λi(AHA) =
√

λi(AAH), pro
i = 1, . . . , p.
Plat́ı rank(A) = počet nenulových singulárńıch hodnot

12

5 Iterative methods

Iteračńı metody jsou vhodné pro velké matice (př́ımé metody jsou př́ılǐs náročné) a pro ř́ıdké matice
(násobeńı matice a vektoru je rychlé).
Základńı princip je následuj́ıćı:

• Začneme s počátečńı aproximaćı x0

• V každé iteraci vypoč́ıtáme novou aproximaci xk+1

• Proces opakujeme, dokud nedosáhneme požadované přesnosti

5.1 Stacionárńı iteračńı metody

Rozklad matice A na A = K − L , kde K je snadno invertovatelná matice.

(K − L)x = b ⇐⇒ Kx− Lx = b ⇐⇒ Kx = Lx+ b ⇐⇒ x = K−1Lx+K−1b.

Iteračńı proces/rekurze:
xn+1 = K−1Lxn +K−1b,

pro počátečńı odhad x0.
Pokud {xn}∞n=0 konverguje, pak pro n→∞ je x = K−1Lx+K−1b =⇒ x řešeńı.

5.1.1 Jacobiho metoda

Ćılem je zničit i-tou složku zbytku.

• Rozklad: KJ = D (diagonálńı část A), LJ = E+F =
KJ − A (ostře trojúhelńıkové části).

• Iteračńı vzorec: x(k+1) = K−1
J (LJx

(k) + b).

• Komponentně:

ξ
(m+1)
i =

1

aii

(
−
∑
j ̸=i

aijξ
(m)
j + bi

)
.

5.1.2 Gaussova-Seidelova metoda

Ćıl je podobný jako v Jacobiho metodě, akorát okamžitě aktualizujeme aproximované řešeńı.

• Rozklad: KG = D − E = L+D, LG = F = −U .

• Okamžité využit́ı vypočtených složek.

• Iteračńı vzorec: x(k+1) = K−1
G (LGx

(k) + b).

5.1.3 SOR metoda (Successive Overrelaxation)

• Zavád́ı relaxačńı parametr ω ̸= 0⇝ ωAx = ωb.

• Rozklad: ωA = (D − ωE)︸ ︷︷ ︸
K

− (ωF + (1− ω)D)︸ ︷︷ ︸
L

.

• Iteračńı vzorec: xm+1 = (D − ωE)−1[ωF + (1− ω)D]xn + ω(D − ωE)−1b.

• Pro ω = 1 přecháźı na Gaussovu-Seidelovu metodu.

13

5.2 Konvergence iteračńıch metod

Všechny předchoźı metody jsou ve formě xn+1 = Gxnf , kde G je iteračńı matice a n→∞.
Pokud xn → x, pak pro n→∞ plat́ı x = Gx+ f .

Metoda xn+1 konverguje ⇐⇒ ρ(G) < 1, kde ρ(G) je spektrálńı poloměr iteračńı matice G = K−1L.
Postačuj́ıćı podmı́nka je, aby platilo ∥G∥ < 1 pro libovolnou konzistentńı maticovou normu.

Asymptotická rychlost konvergence.

ρ = lim
n→∞

(
∥xn − x∥
∥x0 − x∥

)1/n

= ρ(G)

Definice 5.1 ((Weakly) Diagonally Dominant (DD)). Matice je diagonálně dominantńı, pokud

|aii| ≥
n∑

j=1,j ̸=i

|aij| , i = 1, . . . , n

podle řádk̊u.

Definice 5.2 (Strictly Diagonally Dominant (SDD)). Matice je striktně diagonálně dominantńı,
pokud

|aii| >
n∑

j=1,j ̸=i

|aij| , i = 1, . . . , n

podle řádk̊u.

Věta 5.1. Pro ostře diagonálně dominantńı matice konverguj́ı Jacobiho i Gaussova-Seidelova metoda.

Proof. (Pro Jacobiho).

GJ = I −D−1A = D−1(E + F) = D−1(D − A) = I −D−1A.

||GJ ||∞ = max
i=1,...,n

(
N∑
j=1

|(GJ)ij|

)
= max

i=1,...,n

N∑
j=1,j ̸=i

|aij|
|aii|

+
�

�
�

��
∣∣∣∣1− aii

aii

∣∣∣∣ < 1

Věta 5.2 (Ostrowski). Pro SPD matice konverguje SOR metoda právě když 0 < ω < 2

5.3 Adaptivńı SOR metoda

Metodu SOR můžeme zlepšit tak, že budeme měnit ω v každé iteraci pro urychleńı konvergence a
využijeme tak informace z předchoźıch iteraćı. Obecný iteračńı vzorec tak je:

xn+1 = Gnxn + fn

14

6 Konjugované gradienty (Krylovovy podprostorové metody)

Pro SPD matici A uvažujeme kvadratickou formu:

Φ(y) =
1

2
yTAy − yT b

Minimum nastává v řešeńı Ax = b, protože:

∇Φ(y) = Ay − b

Vlastnosti řešeńı

Naopak, pokud x řeš́ı Ax = b, pak:

Φ(y) =
1

2
(x+ (y − x))TA(x+ (y − x))− (x+ (y − x))T b

= Φ(x) +
1

2
(y − x)TA(y − x)

Poznámka:

Φ(y)− Φ(x) =
1

2
∥y − x∥2A =

1

2
(y − x)TA(y − x)

6.1 Metoda největš́ıho spádu

Idea:

• Směry: Xn+1 = Xn + αnPn

• Reziduum: ∇F (xn) = Axn − b = −rn

Optimalizace kroku

Pro xn+1 = xn + αnrn, jaké je nejlepš́ı αn?

Φ(xn+1) =
1

2
(xn + αpn)

TA(xn + αpn)− (xn + αpn)
T b

d

dα
Φ(xn+1) = pTnAxn + αpTnApn − pTnb

= pTn (Axn − b) + αpTnApn

αn =
pTnrn
pTnApn

6.2 Výběr směrových vektor̊u

Jak volit pn?

• Pokud pn = rn = −∇Φ(xn) → gradientńı metoda

• Chceme vylepšit. Chceme minimalizovat rozd́ıl:

Φ(xn) =
1

2
∥xn − x∥2A

tj. minimalizovat A-normu chyby

Poznámka:
xn = x0 + α0p0 + α1p1 + · · ·+ αn−1pn−1

⇒ xn ∈ x0 + span{p0, . . . , pn−1}

15

6.2.1 Optimalita řešeńı

∥x− xn∥A = min
z∈x0+span{p0,...,pn−1}

∥x− z∥A

Pythagorova věta:

∥x− z∥2A = ∥x− xn∥2A + ∥z − xn∥2A ≥ ∥x− xn∥2A

Podmı́nka:
pj ⊥A (x− xn)⇔ pTj A(x− xn) = 0⇔ pTj rn = 0

pro j = 0, . . . ,m− 1

6.3 Konjugovaná ortogonalita

0 = pTj rn = pTj (Axn − b) = pTj (A(xn−1 + αn−1pn−1)− b)

= pTj rn−1 − αn−1p
T
j Apn−1

Pro j = m− 1:

αn−1 =
pTn−1rn−1

pTn−1Apn−1

Pro j = 0, . . . ,m− 2:
pTj rn−1 = 0 a pTj Apn−1 = 0

⇒ {p0, . . . , pn−1} tvoř́ı A-ortogonálńı bázi

6.3.1 Algoritmus konjugovaných gradient̊u

Předpokládejme p0 = r0 = b− Ax0

Obecný směr:
pn = rn − βn−1pn−1 − · · · − β0p0

Podmı́nka A-ortogonality:

βj =
pTj Arn

pTj Apj

6.4 Celkový algoritmus konjugovaných gradient̊u

1. Inicializace: p0 = r0 = b− Ax0

2. Výpočet kroku:

αn =
∥rn∥2

pTnApn

3. Aktualizace řešeńı: xn+1 = xn + αnpn

4. Aktualizace rezidua: rn+1 = rn − αnApn

5. Výpočet koeficientu:

βn =
∥rn+1∥2

∥rn∥2

6. Aktualizace směru: pn+1 = rn+1 − βnpn

16

7 Výpočet vlastńıch č́ısel a vektor̊u

Výpočet vlastńıch č́ısel (eigenvalues) a vlastńıch vektor̊u (eigenvectors) je kĺıčový pro mnoho aplikaćı:

• Inženýrstv́ı: analýza vibraćı a rezonanćı

• Poč́ıtačové vědy: PageRank (Google) je v jádru problém vlastńıch vektor̊u

Matematický problém: Av = λv, v ̸= 0, kde

A = V ΛV −1 nebo V JV −1,

pro Λ diagonálńı matici a J Jordanovu matici. Plat́ı také AV = ΛV .

7.1 Power method – Algoritmus

Předpokládejme, že A je diagonalizovatelná s |λ1| > |λ2| ≥ · · · ≥ |λn|. Vlastńı č́ıslo λ1 má algebraic
multiplicity 1 a nazýváme ho dominantńım.
Algoritmus:

1. Zvoĺıme q(0) ∈ Cn s ∥q(0)∥2 = 1

2. Iterace:


z(k) = Aq(k−1)

q(k) = z(k)/∥z(k)∥2
γ(k) = (q(k))HAq(k)

Pro γ(k) → λ aproximuje dominantńı vlastńı č́ıslo a odpov́ıdaj́ıćı vlastńı vektor.

7.1.1 Odvozeńı konvergence

Matematickou indukćı dokážeme:

q(k) =
Akq(0)

∥Akq(0)∥
, ∀k ≥ 1

Předpokládáme, že A = XΛX−1 je diagonalizovatelná, kde X je báze Cn:

q(0) =
n∑

i=1

αixi, αi ∈ C

a plat́ı Axi = λixi.
Aq(0) = α1λ1x1 + α2λ2x2 + · · ·+ αmλmxm

A2q(0) = α1λ
2
1x1 + α2λ

2
2x2 + · · ·+ αmλ

2
mxm

Obecně:

Akq(0) = α1λ
k
1

x1 +
n∑

i=2

αi

α1

(
λi

λ1

)k

xi︸ ︷︷ ︸
y(k)


Za předpokladu |λi|

|λ1| < 1 pro i = 2, . . . , n dostáváme:(
λi

λ1

)k

→ 0 pro k → +∞ =⇒ y(k) → 0

=⇒ q(k) =
α1λ

k
1(x1 + y(k))

∥α1λk
1(x1 + y(k))∥2

→ βkx1 směr vlastńıho vektoru x1

Např. pro λ1 > 0 a α1 ∈ R: q(k) → x1.

17

Věta 7.1. Nechť A splňuje předchoźı předpoklady a α1 ̸= 0. Pak existuje C > 0 takové, že:

∥q̃(k) − x1∥2 ≤ C

∣∣∣∣λ2

λ1

∣∣∣∣k , k ≥ 1

kde:

q̃(k) =
q(k)

∣∣∣∣Akq(0)
∣∣∣∣
2

α1λk
1

= x1 +
n∑

i=2

αi

α1

(
λi

λ1

)k

xi

Proof. Předpokládejme xi, že ∥xi∥2 = 1. Pak:∥∥∥∥∥x1 +
n∑

i=2

(
αi

α1

(
λi

λ1

)k

xi

)
− x1

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=2

(
αi

α1

(
λi

λ1

)k

xi

)∥∥∥∥∥
2

=

=

∣∣∣∣∣∣
n∑

i=2

(
αi

α1

(
λi

λ1

)k
)2
∣∣∣∣∣∣
1/2

≤
∣∣∣∣λ2

λ1

∣∣∣∣k︸ ︷︷ ︸
největš́ı hodnota

(
n∑

i=2

∣∣∣∣αi

α1

∣∣∣∣2
)1/2

︸ ︷︷ ︸
C

.

Poznámka 7.1. Čı́m menš́ı
∣∣∣λ2

λ1

∣∣∣, t́ım rychleǰśı konvergence.

7.1.2 Výpočet vlastńıho č́ısla

Pro normalizovaný vlastńı vektor ∥x1∥2 = 1:

xH
1 Ax1 = xH

1 (λ1x1) = λ1x
H
1 x1 = λ1 =⇒ (q(k))HAq(k) = γ(k) → λ1.

Pro reálné symetrické matice plat́ı:

|λ1 − γ(k)| ≤ K|λ1 − λn|
∣∣∣∣λ2

λ1

∣∣∣∣2k .
7.2 Krylovovy podprostorové metody

Ćılem je projekce velkého problému na menš́ı podprostor s podobnými vlastnostmi. Pomáhá nám s:

• řešeńım soustav Ax = b,

• výpočetem vlastńıch č́ısel,

• výpočetem maticových funkćı.

7.2.1 Projection methods

Pro A ∈ RN×N , x0, b ∈ RN :

• Vyhledávaćı podprostor: Sm ⊆ RN ; hledáme aproximaci xm ∈ x0 + Sm,

• Constraints space: Cm ⊆ RN , s rm = b− Axm ⊥ Cm.

Definice 7.1 (Krylov̊uv podprostor).

Km(A, v) = span{v, Av,A2v, . . . , Am−1v}.

(Pokud u ∈ Km(A, v), pak u = α0v + α1Av + . . .+ αm−1A
m−1v = pm−1(A)v.)

18

Uvažme Sm = Km(A, r0), kde r0 = b− Ax0 pro x0 initial guess.
Všimněme si, že A(x − x0) = Ax − Ax0 = b − Ax0 = r0. Řešeńı Ay = r0, x = y + x0 je tedy
ekvivalentńı k řešeńı Ax = b.

xm ∈ x0 +Km(A, r0) =⇒ xm − x0 ∈ Km(A, r0) =⇒ xm − x0 = pm−1(A)r0

kde xm = x0 + Vmtm s Vm báźı Km(A, r0) a vektorem tm.
Dále plat́ı x− x0 = A−1(r0), tedy A(x− x0) = r0.

Idea: aproximace polynomu x− x0 = A−1r0 ≈ pm−1(A)r0 = xm − x0.

Constraint Space. C = Km(A, r0). Nechť rm ⊥ C a předpokládejmem že Vm je ortogonálńı báźı
pro Km(A, r0).

V T
m rm = 0 = V T

m (b− Axm) = V T
m (b− A(x0 + Vmtm)) =

= V T
m (b− Ax0 − AVmtm) = V T

m r0 − V T
mAVmtm =⇒

=⇒

{
V T
mAVmtm = V T

m r0,

xm = x0 + VmTm.

7.2.2 Implementace

1. Sestroj́ıme ortonormálńı bázi Vm prostoru Km(A, r0)
2. Řeš́ıme projekci:

Hm = V T
mAVm

Hmtm = V T
m r0

xm = x0 + Vmtm

7.2.3 Algoritmus pro SPD matice

1. Inicializace: p0 = r0 = b− Ax0

2. Pro m = 0, 1, . . . :

αm =
∥rm∥2

pTmApm

xm+1 = xm + αmpm

rm+1 = rm − αmApm

βm =
∥rm+1∥2

∥rm∥2

pm+1 = rm+1 + βmpm

7.2.4 Vlastnosti

xm+1 ∈ x0 +Km(A, r0), dále rm+1 ⊥ Km(A, r0) a minimalizuje ∥x− xm∥A.

7.3 GMRES

Pro obecné matice: Sm = Km(A, r0), Cm(A, r0) = AKm(A, r0). Je dobře definováno pro A nesin-
gulárńı. Minimalizuje ∥rn∥.

7.4 Aplikace na problém vlastńıch č́ısel

Idea: Hm = V T
mAVm =⇒ σ(Hm) ≈ σ(A)

19

8 Řešeńı nelineárńıch rovnic

Hledáme kořen α ∈ C funkce f : I = (a, b) ⊆ R→ R takový, že: f(α) = 0.

Iteračńı metody. Metody generuj́ıćı posloupnost {x(k)} splňuj́ıćı:

lim
k→+∞

x(k) = α

Definice 8.1. Posloupnost {x(k)} konverguje k α s řádem p ≥ 1 právě když existuje C > 0 a k0 ∈ N
takové, že:

|x(k+1) − α|
|x(k) − α|p

≤ C ∀k ≥ k0

Metodě generuj́ıćı {x(k)} ř́ıkáme řád p. A pokud C < α, x(k) → α, pak C nazýváme faktor
konvergence.

8.1 Podmı́něnost problému

Problém F (x, d) = 0 s řešeńım x = G(d) má podmı́něnost:

K(d) ≈ ∥G′(d)∥ · ∥d∥
∥G(d)∥

, Kabs(d) ≈ ∥G′(d)∥

Hledáńı kořen̊u. Pro f(x) = φ(x)− d = 0 a α = φ−1(d), problém je well-posed:

K(d) ≈ |d|
|α||f ′(α)|

, Kabs(d) ≈
1

|f ′(α)|

8.2 Bisection Metoda (p̊uleńı interval̊u)

Princip. Počátečńı interval I0 = [a, b] s f(a)f(b) < 0, f spojitá =⇒ existuje α ∈ (a, b) s f(α) = 0.

Algoritmus.

1. x(k) = a(k)+b(k)

2

2. Pokud f(x(k))f(a(k)) < 0, pak a(k+1) = a(k), b(k+1) = x(k)

3. Jinak a(k+1) = x(k), b(k+1) = b(k)

Konvergence.

|x(k) − α| < |b− a|
2k+1

Konverguje globálně, ale pomalu. Pro přesnost |x(k) − α| < ε potřebujeme |Ik| < ε:

b− a

2k+1
< ε ⇐⇒ 2k+1 > ε

b− a

ε

⇐⇒ log2(2
k+1) > log2

(
b− a

ε

)
⇐⇒ k > log2

(
b− a

ε

)
− 1.

k > log2

(
b− a

ϵ

)
− 1

20

8.3 Rychleǰśı metody kovergence

Idea. Taylor̊uv rozvoj kolem kořene α:

f(α) = 0 ≈ f(x) + (α− x)f ′(x),

jelikož α známe, nahrad́ıme ho s xk+1 a źıskáme iteračńı metodu danou řešeńım rovnice

f(x(k)) + (x(k+1)−x(k) − x)f ′(x(k)) = 0.

Aproximujeme qk ≈ f ′(x(k) a źıskáme

x(k+1) = x(k) − q−1
k f(x(k)).

8.3.1 Chord metoda (tětiva)

Dáno následuj́ıćım vztahem. Řád konvergence je p = 1.

qk = q =
f(b)− f(a)

b− a

8.3.2 Secant metoda (sečna)

Dáno následuj́ıćım vztahem. Řád konvergence je p = 1+
√
5

2
≈ 1.63.

qk =
f(x(k))− f(x(k−1))

x(k) − x(k−1)

8.3.3 Newtonova metoda

Předpokládejme, že jsme schopni spoč́ıtat f ′(x) a f ′(α) ̸= 0. Pak f ′(x) ̸= 0 v sousedstv́ı α. Pro
dané x0 máme:

x(k+1) = x(k) − f(x(k))

f ′(x(k))
.

Řád konvergence: p = 2.

8.4 Metoda pevného bodu

Vždy můžeme transformovat problém z f(x) = 0 na ekvivalentńı problém x−ϕ(x) = 0, že ϕ(α) = α,
kdykoli f(α) = 0. Pak α je fixed point zobrazeńı ϕ. Iterace:

x(k+1) = ϕ(x(k)).

Věta 8.1. Předpokládejme, že:

1. ϕ : [a, b]→ [a, b]

2. ϕ ∈ C1([a, b])

3. ∃0 < k < 1 : |ϕ′(x)| < k ∀x ∈ [a, b]

Pak ϕ má právě jeden pevný bod α ∈ [a, b] a posloupnost iteraćı x(k) = ϕ(x(k−1) konverguje k α.
Dokonce

lim
k→∞

xk+1 − α

xk − α
= ϕ′(α).

Tato věta nám zajist́ı globálńı konvergenci. Lokálńı konvergenci zajǐsťuje Ostrowskiho věta.

21

Věta 8.2 (Ostrowski). Nechť ϕ je spojitě diferencovatelná v okoĺı J pevného bodu α.
Pokud |ϕ′(α)| < 1, pak existuje δ > 0 takové, že posloupnost {x(k)} konverguje k α pro všechna x(0)

splňuj́ıćı |x(0) − α| < δ.

Vlastnost 8.1. Nechť ϕ ∈ Cp+1(J), kde J je okoĺı pevného bodu α, p ≥ 0. Pokud ϕ(i)(α) = 0 pro
i = 1, . . . , p, pak odpov́ıdaj́ıćı metoda pevného bodu má řád konvergence p+ 1 a plat́ı:

lim
k→∞

x(k+1) − α

(x(k) − α)p+1
=

ϕ(p+1)(α)

(p+ 1)!

8.5 Analýza konvergence

Metoda tětiv jako metoda pevného bodu.

ϕ(x) = x− q−1f(x) = x− b− a

f(b)− f(a)
f(x)

Podmı́nky konvergence:

• ϕ ∈ C1([a, b]) ⇐⇒ f(x) ∈ C1 ∈ [a, b].

• |ϕ′(α)| = |1− f ′(a)
q
|

{
= 1 ⇐⇒ f ′(α) = 0 (kovergence neńı garantována)

< 1 ⇐⇒ 0 < q−1f ′(a) < 2 (konverguje)

Dále pokud f(b)−f(a)
b−a

a f ′(α) maj́ı stejné znaménko a
∣∣∣f(b)−f(a)

f ′(α)

∣∣∣ < 2.

Newtonova metoda.

x(k+1) = x(k) − f(x(k))

f ′(x(k))
, ϕ(x) = x− f(x)

f ′(x)

Předpokládejme, že f ′(α) ̸= 0, pak ϕ′(α) = 0 a ϕ′′(α) = f ′′(α)
f ′(α)

.

Modifikovaná Newtonova metoda Pokud α má násobnost m:

x(k+1) = x(k) −m
f(x(k))

f ′(x(k))

Tato modifikace zachovává řád konvergence 2.

8.6 Kritéria zastaveńı iteraćı

Chceme vědět, kdy zastav́ıme iterováńı {x(k)} → α. Máme e(k) = α − x(k) a chceme
∣∣e(k)∣∣ < daná

hodnota.

8.6.1 Reziduálńı kritérium

f(x(k))→ 0 =⇒ Kontrolujeme velikost rezidua: |f(x(k))| < ε.
Problém: je citlivé na hodnotu |f ′(α)|:

|e(k)| ≈ |f(x
(k))|

|f ′(α)|

Chováńı v r̊uzných př́ıpadech:

• |f ′(α)| ≈ 1: test funguje dobře

• |f ′(α)| ≈ 0: chyba může být mnohem větš́ı než reziduum

• |f ′(α)| ≫ 1: test může být př́ılǐs restriktivńı

22

8.6.2 Kritérium př́ır̊ustku

|x(k+1) − x(k)| < ε

Odhad chyby:

e(k) ≈ 1

1− ϕ′(α)
(x(k+1) − x(k))

Chováńı v závislosti na ϕ′(α):

• ϕ′(α) ≈ 1: špatný odhad chyby

• ϕ′(α) = 0: přesný odhad (Newtonova metoda)

• ϕ′(α) < 0: přijatelný odhad, pokud |ϕ′(α)| neńı př́ılǐs velké

23

9 Úvod do nelineárńıch systémů

Uvažujme systém nelineárńıch rovnic:

F : Rn → Rm, hledáme x∗ ∈ Rn takové, že F (x∗) = 0

Problém minimalizace funkce f : Rm → R vede na řešeńı:

F (x) = ∇f(x) = 0

kde F představuje gradient funkce f .

Definice 9.1 (Jacobianova matice). Pro x = (x1, . . . , xn)
T , F : D ⊆ Rn → Rn definujeme Jaco-

bianovu matici:

(JF (x))i,j =
∂Fi

∂xj

(x), i, j = 1, . . . , n

9.1 Newtonova metoda

Základńı algoritmus Iteračńı proces:

x(k+1) = x(k) − (JF (x
(k)))−1F (x(k))

Věta 9.1. Nechť F : Rn → Rn je C1(D) na konvexńı otevřené množině D ⊂ Rn. Nechť xα ∈ D
splňuje F (xα) = 0. Předpokládejme, že:

• Jacobiho matice J−1
F (x) existuje (je regulárńı)

• Existuj́ı konstanty R,C, L > 0 takové, že:

∥J−1
F (x)∥ ≤ C a ∥JF (x)− JF (y)∥ ≤ L∥x− y∥, ∀x, y ∈ B(xα, R)

Potom existuje r0 > 0, že ∀x(0) ∈ B(xα, r), Newtonova posloupnost {x(k)} konverguje k xα s odhadem:

∥x(k+1) − xα∥ ≤ CL∥x(k) − xα∥2

Kvadratická (2. řádu) konvergence.

Proof. Indukćı. Pro k = 0 nejprve ukážeme, že J−1
F (x(0)) existuje.

Pokud ∥A∥ < 1, pak (I − A)−1 existuje a plat́ı:

∥(I − A)−1∥ ≤ 1

1− ∥A∥

Definujme A := J−1
F (xα)JF (x

(0))− I a odhadněme normu:

∥A∥ ≤ ∥J−1
F (xα)∥∥JF (x(0))− JF (xα)∥ ≤ CL∥x(0) − xα∥ ≤ CLr

Zvoĺıme r > 0 tak, že CLr < 1
2
⇐⇒ r < 1

2CL
, a tedy I − A je invertovatelné ⇐⇒ J−1

F (x(0))
existuje. Odhadneme normu inverzńı matice:

∥J−1
F (x(0))∥ = ∥J−1

F (xα)(I − A)−1∥ ≤ ∥J−1
F (xα)∥∥(I − A)−1∥ ≤ C

1− ∥A∥
≤ 2C (protože ∥A∥ ≤ 1

2
)

Nyńı je iterace dobře definována:

x(1) = x(0) − J−1
F (x(0))F (x(0))

24

Taylor̊uv rozvoj kolem xα nám dá:

F (xα) ≈ F (x(0)) + JF (x
(0))(xα − x(0)) +O(∥xα − x(0)∥2)

Odhad chyby:

∥x(1) − xα∥ ≤ ∥J−1
F (x(0))∥ · L

2
∥x(0) − xα∥2 ≤ 2C · L

2
∥x(0) − xα∥2 = CL∥x(0) − xα∥2

Protože CLr ≤ 1
2
, dostáváme:

∥x(1) − xα∥ ≤
1

2
∥x(0) − xα∥ =⇒ x(1) ∈ B(xα, r)

Opakováńım stejných argument̊u pro k > 1 dokonč́ıme d̊ukaz věty.

9.2 Kořeny polynomů

Uvažujme polynom stupně m:

pn(x) =
n∑

j=0

ajx
j, an ̸= 0

Faktorizovaný tvar:

pn(x) = an(x− α1)
m1(x− α2)

m2 · · · (x− αk)
mk ,

k∑
j=1

mj = n

kde mj je násobnost kořene αj.

Vlastnost 9.1. Pokud jsou koeficienty aj ∈ R, pak buď αj ∈ R, nebo αj je také kořen.

9.3 Hornerovo schéma

Efektivńı reprezentace polynomu:

pn(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + anx) · · ·)

Zefektivňuje výpočty s polynomy – stač́ı jen O(n) operaćı.

Algoritmus. Algoritmus pro vyhodnoceńı polynomu pn v bodě z:

1: bm ← am
2: for k = m− 1 downto 0 do
3: bk ← ak + bk+1z
4: end for

Výsledek: b0 = pn(z)

Definujeme přidružený polynom: qn−1(x; z) = b1 + b2x+ · · ·+ bnx
n−1

Pro polynomy hn(x), gm(x), kde n > m, existuj́ı jednoznačné polynomy δ(x) a g(x) takové, že:

hn(x) = gm(x)δ(x) + g(x)

Speciálńı př́ıpad:
pn(x) = (x− z)qn−1(xjz) + b0

25

9.3.1 Deflačńı postup

1. Najdi přibližný kořen α

2. Vypočti koeficienty qn−1(x;α)

3. Polož pn−1(x) = qn−1(x;α)

4. Opakuj pro polynom nižš́ıho stupně

Pokud z je kořen, pak:
pn(x) = (x− z)qn−1(x; z)

9.4 Newton-Hornerova metoda

Kombinace Newtonovy metody a Hornerova schématu:

1. Zvol počátečńı odhad r
(0)
j bĺızko kořene rj

2. Iteruj podle Newtonovy metody:

r
(k+1)
j = r

(k)
j −

pn(r
(k)
j)

p′n(r
(k)
j)

,

kde p′n spoč́ıtáme jako p′n(x) =
d
dx
(b0 + (x − z)qn−1(x; z) = qn−1(x; z) + (x − z)q′n−1(x; z) =⇒

p′n(z) = qn−1(z; z). A tedy

r
(k+1)
j = r

(k)
j −

pn(r
(k)
j)

qn−1(r
(k)
j ; r

(k)
j)

Pro každé k je třeba poč́ıtat qn−1(x; r
(k)
j)

• Jakmile je r
(k)
j dostatečně bĺızko k rj, stop Newton.

• Po dosažeńı přesnosti: deflace.

• Nyńı má qn−1 menš́ı stupeň než pn, opakujme Newtona na qn−1(x; r
(k)
j).

Výpočetńı náročnost: 4(n− j) flop̊u pro j-tý kořen

9.4.1 Zpřesňováńı výsledk̊u

• Začni s kořeny nejmenš́ı velikosti.

• Pro zpřesněńı použij Newtonovu metodu na p̊uvodńı polynom.

• Stabilita: qn−1 může být citlivá na chyby.

26

10 Aproximace

Možné aproximace funkce f(x):

• Polynomy: {1, x, x2, . . . }

• Goniometrické funkce: {sin(x), cos(x), sin(2x), cos(2x), . . . }

• Racionálńı funkce: p(x)/q(x)

• Exponenciálńı funkce: aebx, a, b ∈ C

10.1 Polynomiálńı aproximace

Prostor polynomů stupně ≤ n:

Pn := {q(x) | q(x) je polynom s reálnými koeficienty

Interpolace. Chceme f(xi) = p(xi) pro uzly xi ∈ [a, b].

Metoda nejmenš́ıch čtverc̊u.∫ b

a

(f(x)− p(x))2dω(x) = min
q∈Pn

∫ b

a

(f(x)− q(x))2dω(x)

Diskrétńı verze:
n∑

j=0

ωj(f(xj)− pn(xj))
2 = min

q∈Pn

n∑
j=0

ωj(f(xj)− q(xj))
2

Čebyševova aproximace.

max
[a,b]
|f(x)− pn(x)| = min

q∈Pn

max
[a,b]
|f(x)− q(x)|

10.2 Lagrangeova interpolace

Pro n + 1 bod̊u (xi, yi) najdeme pn ∈ Pn splňuj́ıćı pn(xi) = yi. Lagrangeo̊uv interpolačńı polynom
stupně n definujeme jako:

li(x) =
n∏

k=0
k ̸=i

x− xk

xi − xk

,

Pokud i = j, pak li(xj) = 1, jinak 0. Nechť Ln(x) ∈ Pn je jednoznačný interpolačńı polynom:

Ln(x) :=
n∑

i=0

yili(x) =⇒ Ln(xj) = yj

Věta 10.1 (O jednoznačnosti interpolace). Pro n+1 r̊uzných bod̊u x0, . . . , xn a n+1 odpov́ıdaj́ıćıch
hodnot y0, . . . , yn, existuje právě jeden interpoluj́ıćı polynom Ln(x) ∈ Pn, že Ln(xi) = yi, i = 0, . . . , n.

Proof. Předpokládejme, že existuje polynom Pn(x) ̸= Ln(x) takový, že:

Pn(xi) = yi, i = 0, . . . , n

a Pn ∈ Pn (tj. je to polynom stupně nejvýše n). Potom:

• Rozd́ıl Ln(x)− Pn(x) je polynom stupně nejvýše n

• Plat́ı Ln(xi)− Pn(xi) = 0 pro i = 0, . . . , n

Z toho vyplývá: Ln(x)− Pn(x) = 0 ∀x =⇒ Ln(x) ≡ Pn(x).

27

10.3 Interpolačńı chyba

Předpokládejme, že hodnoty y0, . . . , ym jsou dány jako yi = f(xi), kde f je dostatečně hladká funkce.

Věta 10.2. Pro f ∈ Cn+1(I) a xi ∈ I plat́ı:

En(x) = f(x)− Ln(x) =
f (n+1)(ξ)

(n+ 1)!
ωn+1(x), x ∈ I

kde ωn+1(x) :=
∏n

k=0(x− xk) a ξ ∈ I.

Proof. Pro x = xi triviálńı. Předpokládejme, že x ̸= xi a fixujme I.
Uvažujme funkci:

G(t) := Em(t)− ωn+1(t)
Em(x)

ωn+1(x)
.

Jelikož f ∈ Cn+1(I) a E(t) ∈ Cn+1(I) =⇒ G(t) ∈ Cn+1(I) a má n+ 2 r̊uzných kořen̊u (xi a x).

Použit́ım věty: “Pokud f ∈ C ′([a, b]), pak ∃c ∈ (a, b) : f ′(c) = f(b)−f(a)
b−a

.“ dostaneme:

G′(t) má n+ 1 kořen̊u

G′′(t) má n kořen̊u

...

G(n+1)(t) má alespoň 1 kořen ξ ∈ I

Protože:
E(n+1)

n (t) = f (n+1)(t), ω(n+1)
n (t) = (n+ 1)! ,

tak dostaneme:

G(n+1)(t) = f (n+1)(t)− (n+ 1)!

ωn+1(x)
En(x)

Pro t = ξ źıskáme tvrzeńı věty.

Chyba interpolace.

En(x) =
f (n+1)(ξ)

(n+ 1)!
ωn+1(x)

Problémy:

• ωn+1(x) může r̊ust s n→∞.

• f (n+1)(s) může rychle r̊ust.

10.3.1 Runge̊uv jev

Př́ıklad (Runge). Předpoládejme, že máme funkci:

f(x) =
1

1 + 25x2
, I = [−1, 1]

s ekvidistantńımi uzly xj =
2j
n
− 1, j = 0, . . . , n. Dále předpokládejme:

∥f − Ln∥∞ := max
x∈I
|f(x)− Ln(x)| ≤ max

x∈I

|f (n+1)(x)|
(n+ 1)!

max
x∈I
|ωn+1(x)|

Pro ekvidistantńı uzly:

∥ωn+1∥∞ ≤ n!

(
2

n

)n+1

→∞

28

10.3.2 Řešeńı: Čebyševovy uzly

Xα = cos

(
2α− 1

2n
π

)
, α = 0, . . . , n,

kde Xα jsou kořeny n+ 1 čebyševových polynomů. Může být dokázáno, že:

∥ωn+1(x)∥∞ =
1

2n−1
.

10.4 Po částech polynomiálńı interpolace

Interval I rozdělen na k podinterval̊u Ij = [xj, xj+1]. Následně interpolujeme funkci f na každém Ij
za pomoci n+ 1 uzl̊u x

(i)
j , i = 0, . . . , n.

Problém: aproximace neńı diferencovatelná.

29

11 Splines

“M̊užeme slepit dohromady na části rozdělené polynomy, abychom źıskali funkci C(k)(I) ? “

Definice 11.1 (Spline). Nechť a = x0 < x1 < . . . < xn = b jsou r̊uzné uzly na I = [a, b]. Funkce
Sk(x) je spline stupně k vzhledem k uzl̊um xi pokud:

Sk|[xj ,xj+1] ∈ Pk, j = 0, . . . ,m− 1, Sk ∈ Ck−1(I)

11.1 Podmı́nky pro interpolačńı spliny

Interpolačńı podmı́nky: Sk(xj) = yj, j = 0, . . . , n.

Podmı́nky spojitosti:


Sk,j−1(xj) = Sk,j(xj)

S ′
k,j−1(xj) = S ′

k,j(xj)

S ′′
k,j−1(xj) = S ′′

k,j(xj)

pro j = 1, . . . , n− 1.

Kde Sk,j(x) = Sk|[xj ,xj+1] je polynom stupně k.

Periodické spliny.
S
(m)
k (a) = S

(m)
k (b), m = 0, . . . , k − 1

Přirozené spliny. Pro k = 2l − 1, l ≥ 2:

S
(l+j)
k (a) = S

(l+j)
k (b) = 0, j = 0, . . . , l − 2

11.2 Kubické spliny (k = 3)

S3 ∈ C2([a, b])

Interpoluje body (x0, y0), . . . , (xn, yn) a chceme určit S3:

S3(xi) = yi, S ′
3(xi) = mi, S ′′

3 (xi) = Mi, i = 0, . . . , n,

kde yi je dáno a mi,Mi muśıme dopoč́ıtat.
Restrikce S3,i−1(x) ∈ P3 =⇒ S ′′

3,i−1 ∈ P1. Na intervalu [xi−1, xi]:

S ′′
3,i−1(x) = Mi−1

xi − x

hi

+Mi
x− xi−1

hi

,

kde hi = xi − xi−1. Integraćı dostaneme:

S3,i−1(x) = Mi−1
(xi − x)3

6hi

+Mi
(x− xi−1)

3

6hi

+ Ci−1(x− xi−1) +Di−1

Konstanty Ci−1, Di−1 urč́ıme z:

S3,i−1(xi−1) = yi−1, S3,i−1(xi) = yi

Podmı́nka spojitosti v uzlech:
S ′
3,i−1(xi) = S ′

3,i(xi)

Dostáváme soustavu rovnic:

µiMi−1 + 2Mi + λiMi+1 = di, i = 1, . . . , n− 1

kde:

µi =
hi

hi + hi+1

, λi =
hi+1

hi + hi+1

30

di =

(
yi+1 − yi
hi+1

− yi − yi−1

hi

)
6

hi + hi+1

Přidáme okrajové podmı́nky:
2M0 + λ0M1 = d0

µmMn−1 + 2Mn = dn

Matice soustavy je diagonálně dominantńı:
2 λ0

µ1 2 λ1

.

µm−1 2 λm−1

µm 2




M0

M1
...

Mm−1

Mm

 =


d0
d1
...

dm−1

dm


Vlastnost 11.1. Pro f ∈ C2([a, b]) a kubický spline S3 interpoluj́ıćı f plat́ı:

1. Pro přirozený spline (S ′′
3 (a) = S ′′

3 (b) = 0)

2. Nebo spline s danými derivacemi (S ′
3(a) = f ′(a), S ′

3(b) = f ′(b))

pak plat́ı: ∫ b

a

(S ′′
3 (x))

2dx ≤
∫ b

a

(f ′′(x))2dx

Důsledek 11.1. Kubické spliny minimalizuj́ı ”energii” křivky.

11.3 Splines in Parametric Form

Mějme křivku vyjádřenou v parametrickém tvaru:

P (t) =

[
x(t)
y(t)

]
, t ∈ [0, T]

kde x(t) a y(t) jsou funkce parametru t. Křivku lze vzorkovat v bodech Pi =

[
xi

yi

]
, kde xi = x(ti),

yi = y(ti), pro i = 0, . . . , n− 1 a 0 ≤ t0 ≤ · · · ≤ tn ≤ T .

11.4 De Casteljauovo schéma

De Casteljaůuv algoritmus konstruuje Bézierovy křivky pomoćı rekurzivńı lineárńı interpolace:{
P

(0)
i (t) = Pi ∈ R2, i = 0, . . . , n− 1, t ∈ [0, 1],

P
(j)
i (t) = (1− t)P

(j−1)
i (t) + tP

(j−1)
i+1 (t), j = 0, . . . , n− 1, i = 0, . . . , n− j − 1.

Geometrická reprezentace:

P0

P1
↘→ P

(1)
0

P2
↘→ P

(1)
1

↘→ P
(2)
0

P3
↘→ P

(1)
2

↘→ P
(2)
1

↘→ P
(3)
0

...
.

31

Vlastnosti:

• P
(j)
i (t) je polynomiálńı křivka stupně j.

• Křivka je hladká.

• Interpoluje prvńı a posledńı ř́ıdićı body.

• Žádné lokálńı ovládáńı: změna jednoho ř́ıdićıho bodu ovlivńı celou křivku.

• Vlastnost konvexńıho obalu: křivka lež́ı uvnitř konvexńıho obalu ř́ıdićıch bod̊u.

Vzorec Bézierových křivek. Polynom P (n)(t) generovaný De Casteljauovým algoritmem se
nazývá Bézierova křivka:

P (n)(t) = Bn(t) :=
n∑

k=0

Pkbn,k(t), 0 ≤ t ≤ 1

kde Bernsteinovy polynomy jsou dány vztahem:

bn,k(t) =

(
n

k

)
tk(1− t)n−k =

n!

k!(n− k)!
tk(1− t)n−k.

32

12 Orthogonal Polynomials

Mějme váhovou funkci ω(x) ≥ 0 na intervalu (a, b). Definujeme:

Iω(f) :=

∫ b

a

f(x)ω(x) dx, (f, g)ω :=

∫ b

a

f(x)g(x)ω(x) dx, ∥f∥ω :=
√
(f, f)ω.

Prostor L2
ω(a, b) tvoř́ı všechny funkce f : (a, b)→ R splňuj́ıćı:

∫ b

a
f 2(x)ω(x) dx <∞.

Definice 12.1 (Ortogonalita). Posloupnost polynom̊u p0, p1, p2, . . . (kde deg(pj) = j) je orto-
gonálńı vzhledem k ω(x), pokud:

(pi, pj)ω = 0 pro i ̸= j.

Pokud jsou pj monické, tak plat́ı rekurence:

pk+1(x) = xpk(x) +
k∑

j=0

γjpj(x),

kde γk = − (xpk,pk)ω
(pk,pk)ω

.

12.1 Three-term rekurence

p−1(x) = 0, p0(x) = 1

Pk+1(x) = (x− δk)pk(x)− βkpk−1(x), k = 0, 1, . . . ,

kde αk =
(xpk, pk)ω
(pk, pk)ω

, βk =
(xpk−1, pk)ω
(pk−1, pk−1)ω

.

12.2 Zobecněná Fourierova řada

Pro libovolnou funkci f ∈ L2
ω a f̂ fourierovy koeficienty, můžeme sestrojit jej́ı rozvoj:

(Sf)(x) =
∞∑
k=0

f̂kpk(x), f̂k =
(f, pk)ω
∥pk∥2ω

.

Částečný součet fn(x) =
∑n

k=0 f̂kpk(x) konverguje k f v L2
ω:

∥f − fn∥ω → 0 pro n→∞.

Dı́ky Parsevalova rovnosti, máme:

||f ||2w =
+∞∑
k=0

f̂ 2
k · ||pk||2w

A dále, pro všechna n, plat́ı:

||f − fn||2w =

∣∣∣∣∣
∣∣∣∣∣
+∞∑
k=n1

f̂kpk(x)

∣∣∣∣∣
∣∣∣∣∣
2

w

=
+∞∑
k=n1

f̂ 2
k ||pk||2w

Pro polynom fn ∈ Pn plat́ı následuj́ıćı minimalizačńı vlastnost:

Vlastnost 12.1 (Ortogonalita ⇐⇒ Optimalita).

||f − fn||w = min
q∈Pn

||f − q||w

33

Proof. Mějme f − fn =
∑∞

k=n+1 f̂kpk. Potom ∀q ∈ Pn plat́ı (f − fn, q) = 0.
Proto f − fn je ortogonálńı k Pn. Protože fn − q ∈ Pn, dostáváme:

||f − q||2w = ∥ f − fn︸ ︷︷ ︸
⊥wPn

+ fn − q︸ ︷︷ ︸
∈Pn

∥2w = ||f − fn||2w + ||fn − q||2w ≥ ||f − fn||2w

Z toho plyne:
||f − fn||w ≤ ||f − q||w, ∀q ∈ Pn

Nav́ıc plat́ı:
||f − fn||w = ||f − q||w ⇐⇒ ||fn − q||w = 0 ⇐⇒ fn = q.

12.3 Chebyshev Polynomials

Pro ω(x) = 1√
1−x2 na (−1, 1),Chebyshev polynomials Tk(x) = cos(k arccos(x)) jsou ortogonálńı:∫ 1

−1

Tk(x)Tj(x)
dx√
1− x2

= 0 pro k ̸= j.

Normy jsou:

∥Tk∥2ω =

{
π pokud k = 0,

π/2 pokud k ̸= 0.

Chebyshevovo rozš́ı̌reńı:

(Cf)(x) =
∞∑
k=0

f̂kTk(x), f̂k =
1

ck

∫ 1

−1

f(x)Tk(x)(1− x2)−1/2 dx.

Three-term rekurence:

Tk+1(x) = 2xTk(x)− Tk−1(x), T0(x) = 1, T1(x) = x.

34

13 Numerická Integrace

Pro integrovatelnou funkci f na intervalu [a, b]:

I(f) =

∫ b

a

f(x) dx

13.1 Quadrature rules.

Aproximuj́ı I(f) vyč́ısleńım f ve vybraných bodech. Obecný př́ıstup nahrazuje f aproximaćı fn,
kterou lze snadněji integrovat:

In(f) =

∫ b

a

fn(x) dx, En(f) = I(f)− In(f)

Chyba obecně splňuje:

|En(f)| ≤
∣∣∣∣∫ b

a

(f(x)− fn(x)) dx

∣∣∣∣ ≤ (b− a)∥f − fn∥∞

13.1.1 Interpolatory Quadrature

Pro fn ∈ Pn má kvadraturńı vzorec stupeň přesnosti (degree of exactness) k, pokud:

In(f) = I(f) ∀f ∈ Pk

Interpolačńı kvadratura nahrazuje f jej́ım interpolačńım polynomem přes n + 1 bod̊u. Výsledný
vzorec má stupeň přesnosti n.

13.1.2 Rectangular Rule

Interpolace f polynomem nulového stupně (konstanta) v bodě x0 ∈ [a, b]:

In(f) =

∫ b

a

f(x0) dx = f(x0)(b− a)

Tento vzorec aproximuje integrál jako obsah obdélńıku.

13.1.3 Midpoint Rule

Zvoĺıme x0 = a+b
2
. Chybu lze analyzovat pomoćı Taylorova rozvoje. Předpokládejme primitivńı

funkci F (x) =
∫ x

a
f(t) dt. Rozš́ı̌ŕıme F (a+ h) přes a a źıskáme tak:

F (a+ h) = F (a) + F ′(a)h+
F ′′(a)

2
h2 +

F ′′′(ξ)

3!
h3 = 0 + f(a)h+

f ′(a)

2
h2 +

f ′′(ξ)

6
h3.

=⇒ E0(f) =

∫ b

a

f(t) dt− hf

(
a+ b

2

)
.

Když rozeṕı̌seme f(a+b
2
) přes a a źıskáme tak: f(a+b

2
) = f(a) + f ′(a)h

2
+ f ′′(y)h

3

8
. Všimněme si, že

a− a+b
2

= b−a
2

= h
2

=⇒ E0(f) =
h3

2

(
f ′′(ξ)

3
+ f ′′(y)

4

)
. Stupeň přesnosti: 1.

13.1.4 Composite Midpoint Rule

For uniform partition xi = a+ ih, h = b−a
m

:

I0,m(f) = h
m−1∑
k=0

f

(
xk +

h

2

)
, E0,m(f) =

b− a

24
h2f ′′(ξ)

35

13.1.5 Trapezoidal Rule

For n = 1 with nodes x0 = a, x1 = b:

I1(f) =
b− a

2
(f(a) + f(b)) , E1(f) = −

(b− a)3

12
f ′′(ξ)

Degree of exactness: 1.

13.1.6 Composite Trapezoidal Rule

For uniform partition:

I1,m(f) = h

(
f(x0)

2
+

m−1∑
k=1

f(xk) +
f(xm)

2

)
, E1,m(f) = −

b− a

12
h2f ′′(ξ)

13.1.7 Simpson’s Rule

For n = 2 with nodes x0 = a, x1 =
a+b
2
, x2 = b:

I2(f) =
b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
, E2(f) = −

(b− a)5

2880
f (4)(ξ)

Degree of exactness: 3.

13.1.8 Composite Simpson’s Rule

For uniform partition:

I2,m(f) =
h

6

(
f(x0) + 2

m−1∑
k=1

f(x2k) + 4
m∑
k=1

f(x2k−1) + f(x2m)

)
, E2,m(f) = −

b− a

180

(
h

2

)4

f (4)(ξ)

13.2 Newton-Cotes Formulas

Pro m+ 1 interpolačńıch bod̊u x0 < · · · < xm má kvadratura tvar:

Im(f) =
m∑
j=0

f(xj)ωj, ωj =

∫ b

a

lj(x) dx

kde lj jsou Lagrangeovy bázové polynomy. Chyba pro uzavřené Newton-Cotesovy vzorce je:

Em(f) =
Mm

(m+ 2)!
hm+3f (m+2)(ξ), Mm ∈ R

13.3 Gauss Quadrature

Maximalizace stupně přesnosti výběrem uzl̊u jako kořen̊u ortogonálńıch polynomů pro váhovou funkci
w(x). Výsledná Gaussova kvadratura:

In(f) =
n∑

j=0

f(xj)ωj,

dosahuje stupně přesnosti 2n+ 1 (maximálńı možný). Váhy ωj jsou kladné a dány vztahem:

ωj =

∫ b

a
lj(x)w(x) dx

lj(xj)

36

Lemma 13.1. Váhy ωj Gaussovy kvadratury jsou pozitivńı.

Proof. Předpokládejme pi(x) =
n∏

i=0,i ̸=j

(x− xj)
2. To má stupeň 2(n+ 1)− 2 = 2n < 2n+ 1.

Odtud I(pi) =
n∑

j=0

pi(xj)ωj = pi(xi)ωi.

I(pi) =

∫ b

a

pi(x)dω(x) > 0 =⇒ ωj =
I(p0)

pi(xi)
> 0

Pro pi(x) > 0,∀x.

37

