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1 Principles of Numerical Mathematics

1.1 Well-posedness

Matematicky problém je obecné formulovan jako: najdéme proménnou z, t.z.
F(z,d) =0,

kde d je mnozina dat a I je funkéni vztah mezi z a d.

Well-posed problem (stable) je typ problému, kde existuje jednoznacné feseni x, které spojité
zavisi na datech d. Jinak je problém Ill-posed (nestabilni).

1.2 Continuous Dependence on Data

Pro chyby 6z a dd plati vztah
F(z + dz,d+ éd) = 0.

Problém je stabilni, pokud existuji konstanty yo > 0 a K, takové, Ze:
Vod - [|6d]| < yo = [[0x]] < Kol|od]|

Definice 1.1 (Relative Condition Number). Relative condition number problému F(x,d) =0 je:

16 ||/[]
K(d) := sup ———~
saep [|0d]|/]|d]]
Definice 1.2 (Absolute Condition Number). Absolute condition number je:
1]
K(d) := sup =
O 5 Tl
Véta 1.1. Relative condition number pro x = G(d) muze byt aproximovdno formuli K (d) ~ (d H l|d|| .

Proof. Pokud je problém F(x,d) = 0 stabilni, pak existuje spojita funkce G takovd, ze © = G(d).
Pro jednoduchost predpokladejme, ze G je diferenciovatelnd, pak plati:

G(d+dd) — G(d) = G'(d) - 6d + 6(||6d||), dd — 0.
Potom tedy dostaneme absolute contition number:

||| |G(d + éd) — G(d)|| |G (d)od|| |G (d HM
Kos(d) = su = su A sup ————— & su
bs(d) = SUp 15 = sup od] S el e
Kas(d) = ||G'(d)]).

Relative condition number je:

e @l
D~ el

||d]].
1.2.1 Scalar Case

Pro skalarni funkci x = f(d) € R, kde d je vstup, x vystup a f diferencovatelna funkce, je

|f(d)]
()]

Pokud je K(d) velké, pak je problém ill-conditioned, naopak pro malé K(d) (= 1) je well-conditioned.

K(d) ~ |d].
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1.2.2 Stability
Meéjme matematicky stabilni problém:
F(z,d)=0, ze€X, deD,
a méjme diskretizaci tohoto problému, kterou dostaneme aproximaci:

Fo(x,,d,) =0, z,€X,, d, €D,.

Ocekavame, ze teseni x,, diskrétniho problému F,(z,,d,) = 0 konverguje x,, — x, pro n — oc.
Pokud pro pro kazdé (x,d) plati F,(z,d) — 0 pro m — oo, pak je aproximace piipustné.

Jelikoz je F,,(x,,d,) = 0 novy problém, muzeme definovat jeho condition number jako:

Ko — sup 132l

~ seny [10dall/l1dn ]

Pokud K,(d,) je malé, pak je metoda well-conditioned, pokud je K,(d,) velké, pak je metoda ill-
conditioned.

Pokud F),(z,,d,) = 0 je stabilni, pak existuje spojita funkce G, takova, ze x, = G,(d,).
Pro jednoduchost ptedpokladejme, ze je GG, diferencovatelnd, potom:

s
Buldn) ~ @@

1.3 Errors

€m €n €n .
{ Real World }—{ F(z,d)=0 }<—{ F.(x,,d,) =0 ‘4—{ T

e Modeling error: Chyba e, v matematickém modelu.

e Discretization error: Chyba e, = x — x,, zpusobena diskretizaci.

e Computational error: Chyba é, = x,, — &, zpusobenda konecnou piesnosti vypocti.

Celkovou chybu pocitame jako e = e,, + e, + €,.

1.4 Floating Point Arithmetic

Redlné ¢islo z je reprezentovano s koneénym poctem bytu jako fl(x).

Vlastnost 1.1. Pokud x € R a &yin < |T| < Tmax (bez podteceni / preteceni), pak
fl(x) =2(149), I <u,

kde u je tzv. machine precision.

Dtsledek 1.1. Relativni chyba je:
o= fi@)

<u



2 Stability Analysis of Linear Systems.

Uvazujme soustavu linearnich rovnic Az = b, kde A € R™*™ je matice koeficientt, b € R™ je vektor
pravé strany, a € R™ je hledany vektor feSeni. Pro stabilni problém plati ekvivalentni podminky:

e A je reguldrni (existuje A7),
o det(A) #0,
e rank(A) =m,

e Vsechna vlastni cisla matice A jsou A; # 0.

2.1 Metody reseni

Pro spocitani  muzeme pouzit bud ptimé, nebo iteracni metody:

Piimé metody. Poskytuji presné feseni v konetném poctu kroku (napt. Gaussova eliminace).
A7

Pouziva se tieba Cramerovo pravidlo (je ale vypocetné nérocné): x; = Tt

Iteracni metody. Generuji posloupnost aproximaci x,, — x. Jsou vhodné pro rozsdhlé soustavy,
kde primé metody nejsou efektivni.

3 Matrix norms
Definice 3.1 (Condition Number Matrix). Condition number matice A je:
K(A) = [|A]l- A7

kde || - || je maticovd norma.

3.1 Matrix Norm

Indukovanou normu znacéime: ||Al = mawi. Pokud plati |[Av|| < [JA]] - ||v]|, naz§vame ji

compatible, pokud plati ||AB|| < ||4]|| - || B||, nazyvame ji submultiplicative.
Eucleidean norm je Ky(A) = ||A]], - ||A7Y||, = A/, pokud je A SPD a \; vlastni ¢&isla.
Definice 3.2 (Matrix Norm). [|-|| : R**" — R > 0, pokud:

1 JA|| > 0A Al =0 <= A=0

2. |lecAl] = |l [[Al

5. |A+ Bl < [[A]| + ||B]|

Definice 3.3 (Consistency Compatibility). ||Az|| < [|A]| - ||z||, kde ||A]| je matriz norm a ||z|| je
vector norm.

e Specidlni piipady:

— ||Alj; = max; ), |a;;|, maximalni soucet sloupce,

[Alloe = max; }_; |a;;|, maximaln{ soucet fadku,

— ||A]l2 = v/ p(AT A), spektrélni norma — max ‘scale’ by which matrix can ‘stretch vector,

Frobeniova norma: ||Al|r = Z” lai;|?.
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3.2 Sensitivity Analysis

Zkoumame, zda je problém well, nebo ill-conditioned.

Véta 3.1. Predpoklddejme, Ze A+ 0A je invertovatelnd, ||A7|||0A| <1 a b # 0, pak pro relativni
chybu Tesent plati:

el K(A) (18] [8a]
el = T ()l Sraar

kde K(A) = ||A||||[AY je condition number matice A.

Proof.
(A+5A) (v +6x) =b+0b <= 1+ 6v = (A+35A) " (b+ b)

Nejprve vyjadiime dx:

6 = (A+0A) b+ 6b) —x=(A+0A) " (b+b— (A+5A)7)
= (A+6A)" B+ 6b— AT — (6A)z)
= [A(I + A7'5A)] 1 (6b — (6A)x) = (I + A6 A) AT (6b — (6A)x)

Pro normu dz tedy:

|oz|| < |[(1 + A6 A)TATH(6b — (5A)z)]|
< ||+ A6 |||A 1HH56— (5A)z]]
< |[(7+ AT A [ []ATH] (bl — [[8A]| [][])

Predpoklddejme, ze ||AT10A|| < [|ATH|||6A|l < 1, pak vime, ze (I + A7'6A)~! existuje a

[=1-A+A = ([-A)'=I+AI-A)"
(7 =7 < 1+ []AU - )7
(=7 < 1 [IAN ][ = )|

1

A= ID I =47 <1 = [0 =07 < 7

Proto, jelikoz ||A710A| < ||A710A|| < 1:

1 1
I+ A5A)7Y < <
It = TS Ay < T A AT
Plati tedy:
1oal] < — AT isvy) 4 14 121
T AT I3AT
5] jA (Habu )
< + |[6A
Tl < T= AT sAT \ e 104

IbII

A protoze Az = b a ||b]| = ||Az|| < [|[A||||z|| = ||z|| > A tak dostavdme:

el A (1) o WAL (1 1)
< + |[6A + ,
ol = T= A=A \ el ) = g (i Ul

Kde K(A) = [[A7Y[[|A]] O



3.3 Trojuhelnikové soustavy

Forward substitution. Pro dolni trojihelnikovou soustavu Lz = b:

L}

= )
lll

i—1
1 .

Ty

Backward substitution. Pro horni trojihelnikovou soustavu Ux = b:

by,
T = )
nn

1 n
i=— | bi — iixi |, t=n-—1...,1
x um( Zujxj> 1=n

j=i+1
3.3.1 Rounding error analysis
Uvazujme dolni trojihelnikovou soustavu (L + 5L)X = b, kde:
e [ je dolni trojihelnikova matice rozméru n x m
e 0L predstavuje chyby vzniklé zaokrouhlovanim
e X =z + 0z je vypottené feseni s chybou

Za predpokladu n-u < 1 (kde u je jednotkové zaokrouhleni), plati nasledujici odhad relativni chyby:

|z — || < nu - K(L)

T ST KD =nu- K(L)+ O(u”)

kde K(L) = |[L||||IL7"|| je condition number matice L.
Pokud u je opravdu malé, pak n - K (L) - u neni velké ani pro velké nebo ill-conditioned matice.

3.4 Gaussova elimina¢ni metoda (GEM)
3.4.1 Postup

Transformace Az = b na horni trojihelnikovy tvar Ux = ¢ pomoci fadkovych operaci:

e V kroku k eliminujeme sloupec k pod diagonalou pomoci multiplikatoru:

W
ik =
(k)
A
e Aktualizace prvku:
(k+1) _ (k) _ (k)
Qg = Qg — Mgy

3.4.2 LU rozklad
GEM je ekvivalentni rozkladu A na A = LU, kde:

e L je dolni trojuhelnikova matice s 1 na diagonale,

e U je horni trojuhelnikova matice.



Véta 3.2. LU rozklad existuje a je jednoznacny pravé tehdy, kdyz vsechny hlavni vedlejsi determi-
nanty jsou nenulové.

Definice 3.4 (Diagonal Dominant Matrix (DDM)). Matice A je diagondlné dominantni, pokud:

n
lag;| > Z la;;|  (Tddkovd dominance)

=1,

nebo
n

lag| > Z laji|  (sloupcovd dominance)
j=1,i%j

Vlastnost 3.1. Pokud A je DDM, pak existuje LU rozklad a multiplikatory spliugi ;] < 1, Vi, j.



4 Spektralni vlastnosti LU rozkladu

Determinant. Pro LU rozklad plati:
det(A) = det(L) - det(U) = det(U)

protoze det(L) =1 (jednicky na diagondle).

4.1 Zaokrouhlovaci chyby

Pti vypoctu na pocitaci dostavame:

A£A=LU
kde L a U jsou ovlivnény zaokrouhlovacimi chybami. Chyba rozkladu je:
A—A=64
Odhad chyby. Pro relativni chybu plati:
04] < 4]
1 —nu

kde u je strojové epsilon.

4.2 Problémy stability

Pokud jsou pivotni prvky malé, mohou multiplikatory byt extrémné velké, coz vede k nestabilité.

1 2 1
Napiiklad pro matici A= |1 2+¢€ —1] je multiplikdtor mss = 1/€, ktery je velky pro malé e.
0 1 1

4.3 Implementace LU rozkladu
Nésledujici MATLAB kdd implementuje LU rozklad (kji verze):

function [A] = lu_kji(A)
[n,n] = size(A);
for k = 1:n-1
A(k+1:n,k) = A(k+1:n,k)/A(k,k);
for j = k+1:n
for i = k+1:n
A(i,j) = A(i,j) - AL,k * A(k,j);
end
end
end

4.4 Pivotovani
GEM selze, pokud je pivot nulovy nebo blizky nule. Resenfm je vyména Fadki.
Napriklad pro matici:
1 2 3
A=12 4 5
78 9

vyména (permutace) druhého a tfettho fddku umozni tspésnou eliminaci. Permutace fadku se
reprezentuje permutacni matici P:

PA=LU

10



4.4.1 Céisteéné pivotovani

V podstate A — A® — ... — A®_ Vidéli jsme, ze malé multip-
likatory zpusobuji nestabiliy. Idea je nasledujici:

e A®(k:end, k)< hleddme prvek s nejvétsf magnitudou % 7Y ..

e Prohodime dany radek s k-tym fadkem

Vyslednou horni trojihelnikovou matici U vyjadfit obecnym vzorcem:
U=A"™ =M, Py M- P - AV,

kde M, jsou eliminaéni matice, P, jsou matice permutaci fadkt a A = A je ptivodn{ matice.
Definujeme celkovou permutaci a transformaci:

P=PFPy P, M=My Pyny--M-P

Pak muzeme psat:
U=MA < U= (MP HPA

kde M P~! je doln{ trojihelnikova matice. Odtud dostdvame LU rozklad pro permutovanou matici:
PA=LU

kde L = (M P~1)~! je dolnf trojihelnikovd matice s jednickami na diagonéle.

4.4.2 ﬂplné pivotovani

Zahrnuje vymeénu radku i sloupcu:
PAQ = LU,

kde @ je permutacni matice pro sloupce.

Cidstecné pivotovani zlepsuje stabilitu oproti GEM bez pivotovani, zatimco dplné pivotovani je
stabilnéjsi, ale vypocetné narocné;jsi.

4.5 Choleského rozklad

Pokud A je SPD matice, pak existuje rozklad A = CTC | kde C je horni trojihelnikova matice s
kladnymi diagonalnimi prvky.
Plati nésledujici vlastnosti:

e A=LU, D =dag(U) = C = (D ?)U = (D'?)L" a tedy
LU = LD'?D™?U = C7C.
e Rozklad C existuje a je jednoznacny

e Dekompozice je stabilni.

11



4.6 QR rozklad

Pro nesingularni matici A € R"*" existuje rozklad:
A=QR

kde Q je ortogondlni (Q7Q = I) a R je nesinguldrni horn{ trojihelnikové matice.
(QR rozklad mize byt pouzit i u obdélnikovych matic.)

Aplikace. Pii teseni soustavy Ax = b:
QRx=b = Rz =Q"b
coz lze tesit zpétnou substituci.

4.7 Singularni rozklad (SVD)

Pro libovolnou matici A € C™*" existuje rozklad:

A=UxvH

kde U € C™™, V € Cn x n jsou unitarni a ¥ obsahuje singuldrni hodnoty oy > ... > 0, > 0.

- Dota vty

xL\ Ly

Plati nésledujici vztahy:
AP A = VESH gAYy = VESHYY, a
AAR = U VHYVSHUE = gy HuH

Nenulové prvky 7%, S8 jsou |oy|*, ool ..., |0, = oi(A Ni(AHA) Ni(AAH)
1=1,...,p
Plati rank(A) = pocet nenulovych singuldrnich hodnot

12
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5 Iterative methods

[tera¢ni metody jsou vhodné pro velké matice (pfimé metody jsou pfilis ndroéné) a pro Fidké matice
(ndsobeni matice a vektoru je rychlé).
Zakladni princip je nasledujici:

e ZacCneme s pocatecni aproximaci x
e V kazdé iteraci vypocitame novou aproximaci zj

e Proces opakujeme, dokud nedosdhneme pozadované presnosti

5.1 Stacionarni itera¢cni metody

Rozklad matice A na A= K — L , kde K je snadno invertovatelna matice.
(K—Lx=b & Ker—Lr=b < Kr=Lr+b < o=K 'Lv+ K 'b.

[tera¢ni proces/rekurze:
Tpo1 = K ' La, + Kb,

pro pocatecni odhad x.
Pokud {z,}>2, konverguje, pak pro n — oo je x = K 'Lz + K~'b = x fesenl.
5.1.1 Jacobiho metoda

Cilem je zni¢it i-tou slozku zbytku.

e Rozklad: K; = D (diagonélni ¢ast A), L; = E+F =
K — A (ostte trojihelnikové ¢ésti).

o Iteracn{ vzorec: z+D) = K ML 2% +b).

e Komponentné: A : b A :D
m 1 m
gt = o (—Zaijﬁj(- )+bi) . -

i#i
5.1.2 (Gaussova-Seidelova metoda

(Cil je podobny jako v Jacobiho metodé, akorat okamzité aktualizujeme aproximované feseni.
e Rozklad: K =D —-FE=L+D, Lg=F =-U.
e Okamzité vyuziti vypoctenych slozek.

e Iteraéni vzorec: 1) = K ' (Laz® + b).

5.1.3 SOR metoda (Successive Overrelaxation)

e Zavadi relaxacni parametr w # 0 ~» wAz = wb.

e Rozklad: wA = (D —wFE) — (wF + (1 —w)D).

K L
e Iteracni vzorec: 2,1 = (D — wE) HwF + (1 — w)D]z, + w(D — wE)~'b.

e Pro w = 1 prechazi na Gaussovu-Seidelovu metodu.

13



5.2 Konvergence iteracnich metod

Vsechny predchozi metody jsou ve formé z,,1, = Gz, f, kde G je iteracni matice a n — oo.
Pokud x,, — z, pak pro n — oo plati x = Gz + f.

Metoda x, 1 konverguje <= p(G) < 1, kde p(G) je spektrdlni polomér itera¢ni matice G = K~ L.
Postacujici podminka je, aby platilo ||G|| < 1 pro libovolnou konzistentni maticovou normu.

Asymptoticka rychlost konvergence.
. 1/n
n—oo \ [|lzo — =]

Definice 5.1 ((Weakly) Diagonally Dominant (DD)). Matice je diagondlné dominantni, pokud

n

‘(Z“|Z Z |Clij|, izl,...,n

=1,
podle radki.

Definice 5.2 (Strictly Diagonally Dominant (SDD)). Matice je striktné diagondlné dominantnd,
pokud

n

]aii\> Z |Clij|, izl,...,n

=1,

podle Tadki.
Véta 5.1. Pro ostre diagonalné dominantni matice konverguji Jacobiho i Gaussova-Seidelova metoda.

Proof. (Pro Jacobiho).

Gy=I-D'"A=DYE+F)=D'YD-A)=1-D"A

N N
B _ |6Lij| ()
1Gll.. = max (;MGJ)ZA) =82 2l e <
= j: 7] 7

Véta 5.2 (Ostrowski). Pro SPD matice konverguje SOR metoda pravé kdyz 0 < w < 2

5.3 Adaptivni SOR metoda

Metodu SOR muzeme zlepsit tak, ze budeme ménit w v kazdé iteraci pro urychleni konvergence a
vyuzijeme tak informace z predchozich iteraci. Obecny iterac¢ni vzorec tak je:

Tpt1 = ann + fn
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6 Konjugované gradienty (Krylovovy podprostorové metody)

Pro SPD matici A uvazujeme kvadratickou formu:

1
Oly) =5y Ay —y'b
Minimum nastava v feSeni Ax = b, protoze:
Vo(y) =Ay —b

Vlastnosti reSeni
Naopak, pokud x fesi Ax = b, pak:

2(y) = 5o+ (y —2) Al + (g — ) — (o + (y — 7))

= B(a) + 5(y — )" Aly — 1)

Poznamka: ]

1
O(y) = @(z) = Slly —2llfs = 5y —2)" Aly — @)
6.1 Metoda nejvétsiho spadu
Idea:
e Smeéry: X, 1 =X, +a,P,
e Reziduum: VF(z,) = Az, — b= —r,

Optimalizace kroku

Pro z,41 = =, + a, 1y, jaké je nejlepsi a,,?

1
O(r,41) = §(xn + app) T Az, + apy) — (2, + ap,)’b

d
@CI)(J:”H) = pfon + apZApn — pgb
= pf(Axn —b)+ ongApn
pLTn
oy =
pLAp,

6.2 Vybér smeérovych vektoru
Jak volit p,?
e Pokud p, =71, = —V®(z,) — gradientni metoda

e Chceme vylepsit. Chceme minimalizovat rozdil:

1
2(r) = gl — o}
tj. minimalizovat A-normu chyby

Poznamka:
Tp = To + Qopo +1p1 + -+ Q1P

= Ty € To + Span{pOa s >pn—1}

15



6.2.1 Optimalita feSeni

[ = @nlla = min [l — 2[4
z€xo+span{po,...,Pn—1}

Pythagorova véta:

lz = 2l% = o — @alld + NIz — zalls > llz — zall%
Podminka:

p; La (z—xy,) <:>pJTA(x—xn) = 0<:>pJT7“n =0

proj=0,....m—1

6.3 Konjugovana ortogonalita
0= pfrn - pf(Axn - b) - p?(A<In—1 + an—lpn—l) - b)
= p?rn—l - an—lp?Apn—l

Proj=m—1:

o o p£717’n71

n-1= "7 4.
pZ—lApn—l

Proj=0,...,m—2:
pira1=0 a p/Ap, 1 =0

= {po,...,Pn_1} tvoii A-ortogondlni bézi

6.3.1 Algoritmus konjugovanych gradienta

Predpokladejme py = rog = b — Axg
Obecny smeér:

Pn=Tp — Bn—lpn—l - BOPO
Podminka A-ortogonality:
5 i Ary,
7 plAp;

6.4 Celkovy algoritmus konjugovanych gradientt
1. Inicializace: pg = rg = b — Axg

2. Vypocet kroku:

_lrall?
= —
pn Apn
3. Aktualizace teSeni: x,.1 = T, + Q,p,
4. Aktualizace rezidua: r,11 =1, — @, Ap,
5. Vypocet koeficientu:
5, = 741
=
72

6. Aktualizace sméru: p,.1 = rni1 — Bubn

16



7 Vypocet vlastnich cisel a vektort

Vypocet vlastnich ¢isel (eigenvalues) a vlastnich vektoru (eigenvectors) je klicovy pro mnoho aplikaci:

e Inzenyrstvi: analyza vibraci a rezonanci
e Pocitacové vedy: PageRank (Google) je v jadru problém vlastnich vektoru
Matematicky problém: Av = \v, v # 0, kde
A=VAV™' nebo VJV

pro A diagonalni matici a J Jordanovu matici. Plati také AV = AV.

7.1 Power method — Algoritmus

Predpokladejme, ze A je diagonalizovatelnd s [Ai| > |Ag| > -+ > |\,|. Vlastni ¢islo A; mé algebraic
multiplicity 1 a nazyvame ho dominantnim.
Algoritmus:

1. Zvolime ¢ € C" s [|¢V|, =1

A0 = Ag(k=1)
2. Tterace: < ¢®) = () /|28,
B — ()T 40

Pro %) — X aproximuje dominantni vlastni &fslo a odpovidajici vlastni vektor.

7.1.1 Odvozeni konvergence

Matematickou indukei dokazeme:

Akq(O)
(k) — -4 Yk > 1
T T AR =

Predpokladdme, ze A = XAX ! je diagonalizovatelna, kde X je baze C™:
q(o) = Zai$i7 a; €C
i=1

a plati Ax; = \x;.
Aq(o) = 051)\11'1 + 0(2)\2172 + -+ Oém>\mxm

AQQ(O) = Oél)\%fl + 062)\3132 + -+ am/\?n:(:m

Obecné:

Abq® = a M\ | 2y + & <—) x;

= a1 \M
e
Za predpokladu |‘/’\\j| < 1prot=2,...,n dostavame:
A\
<)\—1) — 0prok — 4oo = y® =0
1
Ak (k)
= q(k) _ o i@ +y™) — Brx;  smeér vlastniho vektoru z;

iz + y D)
Napi. pro Ay > 0 a a; € R: ¢ — ;.

17



Véta 7.1. Necht A spliuje predchozi predpoklady a oy # 0. Pak existuje C > 0 takové, Ze:

A
® g, <C |2
$1||2 )\1

() || A%qO|| "o /N\E
A A%O, s ()
¢ B 041>\]f o i—2 (0%} ()\1) i

Proof. Predpokladejme z;, Ze ||x;||2 = 1. Pak:
k
a .
()
— \ «

i (A"
$1+;<a—1 (A_l) %) — I

g k=>1

Y

kde:

2

n E\ 2 1/2 k n 2\ 1/2
—y (@ (i) < | vl
—~ \a1 \ M N A1 =
nejveétsi hodnota\ ‘C’ g

Poznamka 7.1. Cim mensi , tim rychlejsi konvergence.

A2
A
7.1.2 Vypocet vlastniho éisla
Pro normalizovany vlastni vektor ||z |2 = 1:

e Az = 2T (\2y) = Malley = N = (W) Aq®W =B 5 ),

Pro redlné symetrické matice plati:

2k

A
A — P < KA — A f

7.2 Krylovovy podprostorové metody

Cilem je projekce velkého problému na mensi podprostor s podobnymi vlastnostmi. Pomaha nam s:
e feSenim soustav Ax = b,
e vypocetem vlastnich ¢isel,

e vypocetem maticovych funkei.

7.2.1 Projection methods
Pro A € RV*N g4, b € RV:
e Vyhleddvaci podprostor: S,, C RY; hleddme aproximaci z,, € o + Sp,
e Constraints space: C,, CRY, s 7, =b— Az, L C,,.
Definice 7.1 (Krylovuv podprostor).
Ko (A, v) = spanf{v, Av, A%v, ... A" 1},

(Pokud u € K,,(A,v), pak u = agv + a1Av+ ... + ap 1 A™ v = pp1(A)v.)

18



Uvazme S, = K,,(A, 1), kde ro = b — Az pro z; initial guess.
Vsimnéme si, ze A(x — xg) = Ar — Azg = b — Axg = ro. ReSeni Ay = rg, © = y + xo je tedy
ekvivalentni k feseni Ax = b.

Ty € Xo+ Kn(A, 1) = Ty — 10 € Kin(A,10) = Xy — 2o = p1(A)1o

kde x,, = g + Viut s Vi, bézi K, (A, ro) a vektorem t,,.
Dale plati x — zog = A7 (rg), tedy A(x — x¢) = ro.
Idea: aproximace polynomu z — zo = A7 g & pp_1(A)rg = 2, — 0.

Constraint Space. C = K,,(A,ry). Necht r,, L C a piedpoklddejmem Ze V,, je ortogonalni bazi
pro K., (A, o).

Vi, =0=VIb—- Azr,) = Vb — Alzg + Viutn)) =

VI — Azg — AVputy) = Vieg = VIAV, t, —

m

{Vn{Avmtm = Vr,
—

T = To + Vi Do

7.2.2 Implementace

1. Sestrojime ortonormalni bazi V,,, prostoru K, (A, ro)
2. Resime projekci:
H,, =V AV,

Hpt, = Virg

T = o+ Vintm

7.2.3 Algoritmus pro SPD matice
1. Inicializace: pg =19 = b — Axg

2. Prom=0,1,...:
_ Il
" phAp,

Tmt1 = Ty + QP

Tm+1 = Tm — O57nf4prn

ﬁ . ||r77’b+1||2
=
|7 |

Pmt1 = Tm1 + BmPm
7.2.4 Vlastnosti

Tmt1 € To + K (A, 1), dale 141 L K, (A, 79) a minimalizuje ||@ — 2y, || 4.

7.3 GMRES

Pro obecné matice: S, = K,,(A, o), Cn(A,10) = AK,(A,10). Je dobfe definovdano pro A nesin-
guldrni. Minimalizuje ||7,]|.

7.4 Aplikace na problém vlastnich cisel

Idea: H,, = VIAV,, = o(H,,) ~ c(A)
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8 ResSeni nelinearnich rovnic

Hledédme koten a € C funkce f : I = (a,b) C R — R takovy, ze: f(a) = 0.

Iteraéni metody. Metody generujici posloupnost {z*} spliujici:

lim 2®
k—+o00

=

Definice 8.1. Posloupnost {x®} konverguje k o s *ddem p > 1 prdvé kdy? existuje C > 0 a kg € N
takové, Ze:

(D)

|

Metode generujici {x®Y rikdme ¥dd p. A pokud C < «, ™ — «, pak C nazjvdme faktor
konvergence.

8.1 Podminénost problému
Problém F(z,d) = 0 s Fesenim = = G(d) ma podminénost:

Il

K(d) % )] - e

Kaps(d) = [|G'(d) |

Hledani kofentu. Pro f(z)=p(x) —d=0a a = ¢ '(d), problém je well-posed:

o 1
T e AV ]

8.2 Bisection Metoda (puleni intervali)

Princip. Pocdtecni interval Iy = [a,b] s f(a)f(b) <0, f spojitd = existuje a € (a,b) s f(a) = 0.

Algoritmus.
1. gk = 0
2. Pokud f(z™)f(a®) < 0, pak a**+1) = ¢®) pk+1) = g(k)

3. Jinak a**+D) = g®) p+1) — pk)

Konvergence.
|b— al
2k+1

2™ —al <
Konverguje globdlng, ale pomalu. Pro piesnost |2*) — a| < & potiebujeme |I;| < e:

b—a b—a
k+1
Rl <Eg <— 2 >€—5

= log,(2"™) > log, (b ; a)

b—
= k:>log2< ga)—l.

b—
k>log2( a)—l
€
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8.3 Rychlejsi metody kovergence

Idea. Tayloriv rozvoj kolem kotene a:
fla) =0~ f(z)+ (o — ) f'(2),
jelikoz o zname, nahradime ho s z¥*! a ziskdme iterac¢ni metodu danou FeSenim rovnice
Fa®) + (@ED=Y — ) p(2®) = 0,
Aproximujeme q; ~ f/(2*®) a ziskdme
2R — (k) qzlf(w(“)-

8.3.1 Chord metoda (tétiva)

Déno nésledujicim vztahem. R4d konvergence je p = 1.

_ f(b) = f(a)

N b—a

8.3.2 Secant metoda (se¢na)

Déno néasledujicim vztahem. R4d konvergence je p = 1+2\/g ~ 1.63.

f@®) — f(=®Y)

U= "0 — gD

8.3.3 Newtonova metoda

Predpokladejme, ze jsme schopni spocitat f'(z) a f'(a) # 0. Pak f'(z) # 0 v sousedstvi . Pro
dané o mame:
(k)
2D — (k) f(z™)

f'a®)

R4d konvergence: p = 2.

8.4 Metoda pevného bodu

Vzdy muzeme transformovat problém z f(z) = 0 na ekvivalentni problém = —¢(z) = 0, ze ¢(«a) = «,
kdykoli f(a) = 0. Pak « je fixed point zobrazeni ¢. Iterace:

2R+ — ¢<x(k))'
Véta 8.1. Predpokladejme, Ze:
1. ¢:la,b] — [a,b]
2. ¢ € C([a,b])
3. <k<1:|¢(x)] <kVrela,b

Pak ¢ md prdvé jeden pevny bod o € [a,b] a posloupnost iteract ) = ¢(2*Y konverguje k a.
Dokonce

Tato véta ndm zajisti globalni konvergenci. Lokaln{ konvergenci zajistuje Ostrowskiho véta.
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Véta 8.2 (Ostrowski). Necht ¢ je spojité diferencovatelnd v okoli J pevného bodu .
Pokud |¢'(a)| < 1, pak existuje § > 0 takové, Ze posloupnost {x®} konverguje k o pro vsechna %
spliugict |z0 — a| < 6.

Vlastnost 8.1. Necht ¢ € CPTL(J), kde J je okoli pevného bodu o, p > 0. Pokud ¢ (a) = 0 pro

1=1,...,p, pak odpovidajici metoda pevného bodu md rdd konvergence p + 1 a plati:

x(k+1) o ¢(p+1) (a)
lim =
k—oo (z(F) — q)pt1 (p+1)!

8.5 Analyza konvergence

Metoda tétiv jako metoda pevného bodu.
dx)=a—q ' flx) =2

Podminky konvergence:

e ¢ € C[a,b)) < f(x) € C' € la,b]

¢/ ()| = |1 f’(a)| =1 <= f'(a) =0 (kovergence neni garantovina)
[ 0] e — L \7
<1l <= 0<q'f(a) <2 (konverguje)

Déle pokud f(b a f'(«) majf stejné znaménko a ‘—f(l}),zj)(a)

Newtonova metoda.

(k+1) _ (k) _ f(w(k)) _ f(x)
TSy 0=
Predpokladejme, ze f'(a) # 0, pak ¢'(a) =0 a ¢"(a) = ’}l,,((z)).

Modifikovana Newtonova metoda Pokud a ma nasobnost m:

®)
L) _ o F@)
S (x®)

Tato modifikace zachovava fad konvergence 2.

8.6 Kritéria zastaveni iteraci

Chceme védét, kdy zastavime iterovani {#®} — a. Mdme e®) = a — 2® a chceme ‘e(’“)‘ < dana
hodnota.

8.6.1 Rezidudlni kritérium

f(z®) — 0 = Kontrolujeme velikost rezidua: |f(z*))| < ¢.
Problém: je citlivé na hodnotu |f'(«)|:

|f(@®)]
()]

W] = S

Chovani v ruznych pripadech:
o |f'(a)| = 1: test funguje dobte
e |f'(a)] = 0: chyba muze byt mnohem vétsi nez reziduum

o |f'(a)| > 1: test muze byt prilis restriktivni
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8.6.2 Kritérium prirtstku

|2* ) — W) < ¢

Odhad chyby: .

"1 ¢(a)

e(k) (zE+D — z(*)

Chovéni v zavislosti na ¢'(«a):
e ¢'(a) =~ 1: spatny odhad chyby
e ¢'(a) = 0: presny odhad (Newtonova metoda)

e ¢'(a) < 0: prijatelny odhad, pokud |¢'(«)| neni piilis velké
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9 Uvod do nelinedrnich systému
Uvazujme systém nelinearnich rovnic:
F:R" — R™, hleddme z* € R" takové, ze F(z*) =0
Problém minimalizace funkce f : R™ — R vede na feSeni:
F(z)=Vf(z)=0
kde F' predstavuje gradient funkce f.
Definice 9.1 (Jacobianova matice). Pro x = (xy,...,7,)7, F: D C R" — R" definujeme Jaco-

bianovu matici:

_ o,
N 8:15]-

(Jp(x))i; (), 4,j=1,...,n

9.1 Newtonova metoda

Zakladni algoritmus Iteracni proces:
g* D = 2O _ (Jp(a®) T R (2 ®)

Véta 9.1. Necht F : R* — R" je CY(D) na konvexni oteviené mnoziné D C R". Necht z, € D
spliuje F(x,) = 0. Predpokladejme, Ze:

e Jacobiho matice Jo' () existuje (je reguldrni)
o FEuxistuji konstanty R,C, L > 0 takové, Ze:

ITp' @I <C  a  |Jr(2) = Je)ll < Lllz —yll, Va,y € B(za, R)

Potom existuje rg > 0, ze V(¥ € B(zq,1), Newtonova posloupnost {x®} konverguje k x, s odhadem.:
2 — 2ol < CL|2™ — 2,

Kvadratickd (2. rddu) konvergence.

Proof. Indukci. Pro k = 0 nejprve ukazeme, ze J' (z(?) existuje.
Pokud || 4] < 1, pak (I — A)~! existuje a plati:

1

I =A< —7
1 — [l Al

Definujme A := J. (2,)Jp(2?) — I a odhadnéme normu:

1Al < 175 (@)l Tp (@) = Tr(za) | < CL|2® — zo|| < CLr

Zvolime r > 0 tak, ze C'Lr < % — r<

existuje. Odhadneme normu inverzni matice:

so7» a tedy I — A je invertovatelné <= J;'(z(0)

1
<2C  (protoze ||A] < =)

175 @) = 15" @) (I = A7 < TR @) I = A) 7| < 5

C
1— A
Nyni je iterace dobte definovana:

7+ = 40 _ ng(a;(O))F(x(O))
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Tayloruv rozvoj kolem x, nam da:
F(za) = F(2©) 4+ Jp(@ ) (e — 2) + O(||za — 2 @)
Odhad chyby:
1) RPN AT 2 L .o 2 ) 2

127 = zall < [[Jp (@) - S llz™ = 2ol <20 S|2™ = 2al|” = CL[|2™ — 24l

Protoze CLr < %, dostavame:
1) 1 (0) (1)
127 = zall < 5ll2™ = @all = 2 € Blza,7)

Opakovanim stejnych argumentu pro k£ > 1 dokoncime dukaz véty.

9.2 Koreny polynomi
Uvazujme polynom stupné m:

pn(x) = Zajxj, an, # 0
=0

Faktorizovany tvar:
k
Pule) = anle — )™ (@ = az)™ - (@ — )™, Y m;=n
7=1

kde m; je nasobnost kofene ;.

Vlastnost 9.1. Pokud jsou koeficienty a; € R, pak bud a; € R, nebo o je také koren.

9.3 Hornerovo schéma
Efektivni reprezentace polynomu:
pn(z) = ao + z(ay + x(ag + - - - + x(ap—1 + apz) -+ )

Zefektiviiuje vypocty s polynomy — staci jen O(n) operaci.

Algoritmus. Algoritmus pro vyhodnoceni polynomu p,, v bodé z:

1: b, < an,

2: for Kk =m — 1 downto 0 do
3: b, < ap + bk+12

4: end for

Vysledek: by = p,(2)

Definujeme piidruzeny polynom: ¢, 1(z;z) = by + box + -+ - + bz !
Pro polynomy h,,(z), gm(z), kde n > m, existuji jednoznaéné polynomy 6(x) a g(x) takové, ze:

hn() = gm(2)d(2) + 9()

Specialni pripad:
Pu(z) = (& — 2)gn-1(xj2) + bo
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9.3.1 Deflacni postup

1. Najdi priblizny kofen «

2. Vypocti koeficienty q,_1(z; a)

3. Poloz pp—1(x) = gn-1(x; )

4. Opakuj pro polynom nizstho stupné
Pokud z je koten, pak:

Pu(@) = (& = 2)gn-(7; 2)

9.4 Newton-Hornerova metoda

Kombinace Newtonovy metody a Hornerova schématu:

1. Zvol pocéteeni odhad r\” blizko kofene 7
2. Iteruj podle Newtonovy metody:
k))

(k+1) (k) pn<r]('
T
k:)) ’

B p;(n(-

kde p!, spocitame jako p/ (z) = %(bo + (= 2)qn1(x;2) = (3 2) + (v — 2)q,_1(z;2) =

Ph(2) = gn-1(2;2). A tedy
palry”)
P Py )

- - k). (k
Gna ()3 7)

J

Pro kazdé k je tfeba pocitat g, 1(x; Tj(k))

e Jakmile je rj(-k) dostatecné blizko k r;, stop Newton.

e Po dosazeni presnosti: deflace.

e Nyni mé g,_; mensi stupen nez p,, opakujme Newtona na ¢, _1(z; T;k)).
Vypocetni naroénost: 4(n — j) flopu pro j-ty kofen
9.4.1 Zpiesnovani vysledka

e Zacni s kofeny nejmensi velikosti.

e Pro zpresnéni pouzij Newtonovu metodu na puvodni polynom.

e Stabilita: ¢, 1 muze byt citlivd na chyby.

26



10 Aproximace

Mozné aproximace funkce f(z):
e Polynomy: {1,z,22, ...}
e Goniometrické funkce: {sin(x),cos(z),sin(2x), cos(2zx),...}
e Raciondlni funkce: p(z)/q(z)

e Exponencidlni funkce: ae®, a,b € C

10.1 Polynomialni aproximace
Prostor polynomu stupné < n:

P, :={q(z) | ¢(z) je polynom s redlnymi koeficienty
Interpolace. Chceme f(x;) = p(z;) pro uzly z; € [a,b].

Metoda nejmensich ctverci.

Diskrétni verze:

CebysSevova aproximace.

I[I;%]X |f(x) —pu(x)] = 52}2 I[rﬁ}x | f(x) — q(z)]

10.2 Lagrangeova interpolace

Pro n + 1 bodu (z;,y;) najdeme p, € P, splaujici p,(z;) = y;. Lagrangeouv interpola¢ni polynom
stupné n definujeme jako:
r — Tk

T, — x)

Pokud i = j, pak [;(z;) = 1, jinak 0. Necht L, (z) € P, je jednoznaény interpola¢ni polynom:

L,(z) = Zyili(x) = L,(z;) =y;
i=0
Véta 10.1 (O jednoznacnosti interpolace). Pro n+ 1 ruzngch bodi xy, ..., x, a n+1 odpovidajicich
hodnot yo, . . ., Yn, existuje pravé jeden interpolujici polynom L,(x) € P,, Ze L,(x;) =vy;, i =0,...,n.
Proof. Predpokladejme, ze existuje polynom P, (z) # L,(x) takovy, ze:
P (x;))=vy;, i=0,...,n

a P, € P, (tj. je to polynom stupné nejvyse n). Potom:

e Rozdil L,(x) — P,(x) je polynom stupné nejvyse n

e Plati L,(x;) — P,(z;) =0proi=0,...,n
Z toho vyplyva: L,(z) — P,(x) =0 Vr = L,(z) = P,(x). O
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10.3 Interpola¢ni chyba
Predpokladejme, Ze hodnoty yo, . . . , ym jsou dény jako y; = f(x;), kde f je dostateéné hladk4 funkce.

Véta 10.2. Pro f € C""Y(I) a z; € I plati:

(n+1)
Eu(x) = f(z) — Lo(x) = @Tfffw(x), vel

kde w1 (x) =1 (@ —xx) a § € 1.

Proof. Pro x = x; trivialni. Predpokladejme, ze x # x; a fixujme I.

Uvazujme funkci:

Wn41 (fﬂ) .

Jelikoz f € C"*(I) a E(t) € C"(I) = G(t) € C""(I) a m& n + 2 ruznych kofenu (z; a ).
Pouzitim vety: “Pokud f € C'(|a,b]), pak 3c € (a,b) : f'(c) = W.“ dostaneme:

G(t) == En(t) — wnrn (t)

G'(t) ma n + 1 kofenu

G"(t) ma n kofenu

GV (1) m4 alespon 1 kofen € € I

Protoze:
Ey(bnﬂ)(t) _ f(n—&-l)(t)’ o+ (t)=(n+1),

n

tak dostaneme:

+ 1)!
G () — D) () (n E,(z
(1) = 100 - S
Pro t = £ ziskdme tvrzeni véty. O]
Chyba interpolace.
AR
En(SC) = mwnﬂ (13)
Problémy:
® w,1(x) muze rust s n — oo.
e f"*1(s) miize rychle riist.
10.3.1 Rungeuv jev
Priklad (Runge). Predpolddejme, ze médme funkci:
f@) = gy T=111
T = —— = | —
1+ 2522’ ’
s ekvidistantnimi uzly x; = 2;] —1, 7=0,...,n. Dale predpokladejme:
|[f D ()]

_ - _ <
I = Lulle = max |/ () = Lu(o)] < ma 20 ma i 7)

2 n+1
Whnttlleo < n! | — — 00
Jenial :

Pro ekvidistantni uzly:
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10.3.2 Reseni: Cebysevovy uzly

20 — 1
Xa:cos<06 7r), a=0,...,n,
2n

kde X, jsou kofeny n + 1 ¢ebySevovych polynomu. Muze byt dokazano, ze:

1
on—1 :

oo +1(2) oo =

10.4 Po ¢astech polynomialni interpolace

Interval I rozdélen na k podintervalt I; = [x;, z;41]. Néasledné interpolujeme funkei f na kazdém I;
za pomoci n + 1 uzlu :cg.z), i=20,...,n.
Problém: aproximace neni diferencovatelna.
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11 Splines

“Miizeme slepit dohromady na édsti rozdélené polynomy, abychom ziskali funkci C®)(I) 2 «

Definice 11.1 (Spline). Nechi a = xg < x1 < ... < x, = b jsou mizné uzly na I = [a,b]. Funkce
Sk(x) je spline stupné k vzhledem k uzlim x; pokud:

Tjp1

11.1 Podminky pro interpolacni spliny

Interpola¢ni podminky: Si(z;) =vy;, j=0,...,n.
Skj—1(x;) = Sk,j(x;5)

Podminky spojitosti:¢ Sy . (7;) = S} ;(7;) proj=1,...,n—1.
Sllf/,jfl(xj) = Sllc/,j(xj)

Kde S,j(z) = Skl[e; ;.1 j€ POlynom stupné k.

Periodické spliny.
S (a) = S™M®), m=0,... k-1
Prirozené spliny. Prok=2[—-1,1>2:

Sy (a) =5 (0) =0, j=0,....1-2

11.2 Kubické spliny (k = 3)
Ss € C*([a, b))
Interpoluje body (zo,yo), - .-, (n,yn) & chceme urcit Ss:
Sg(fﬁl) = Y, Sé(ilj’l) = m;, Sé%l}) = ]\4Z Z = 0, oo,y

kde y; je dano a m;, M; musime dopocitat.
Restrikce Sz, 1(7) € P3 = Sy; ; € P1. Na intervalu [z; 1, 7]:

rT; — X T — Tj—1
Si/’)/,ifl(aj) = Mi—l hz + Mzh—l,
kde h; = x; — x;_1. Integraci dostaneme:
T; — X 3 r — T;— 3
Ssi1(z) = Mi—l( 6h, ) + Mz( 6h, Y + Cic1(r — x-1) + Dia

Konstanty C;_q, D;_; ur¢ime z:

S?),i—l(xi—l) = Yi-1, S3,i—1<xi) =Y

Podminka spojitosti v uzlech:
S:/s,zel(Ii) = S:/s@(xz)
Dostavame soustavu rovnic:
M1M171+2Mz+)\1M1+1:d“ 221,,77,—1
kde:

hi hit1

M b N Rt b
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g (YT Y Yi—Yia 6
’ hia h hi + hiq

Pridame okrajové podminky:
2Mg + )\OMl - do

,umMn—l +2M, = dn

Matice soustavy je diagonalné dominantni:

(2 )\ My do

M1 2 )\1 M1 d1
Hm—1 2 )\mfl Mmfl dmfl

hm 2 M,, dm

Vlastnost 11.1. Pro f € C?*([a,b]) a kubicky spline Ss interpolujici [ plati:
1. Pro prirozeny spline (S¥(a) = S¥(b) =0)
2. Nebo spline s dangmi derivacemi (S5(a) = f'(a), S4(b) = f'(b))

pak plati:

[ stwyar < [y

Disledek 11.1. Kubické spliny minimalizuji "energii” krivky.

11.3 Splines in Parametric Form

Méjme kiivku vyjadfenou v parametrickém tvaru:

P(t) = {m(tﬂ . te0,T]

kde x(t) a y(t) jsou funkce parametru ¢. Kiivku lze vzorkovat v bodech P; = B’} , kde z; = x(t;),

yi=y(t;),proi=0,....n—1la0<t, <---<t,<T.
11.4 De Casteljauovo schéma

De Casteljauuv algoritmus konstruuje Bézierovy krivky pomoci rekurzivni linearni interpolace:

7

POty =1 —t)PY V@) +tPY V@), j=0,...,n—1, i=0,...,n—j—1.

)

{P~(°)(t)=HeR2, i=0,....n—1 te01]

Geometricka reprezentace:
Fy
P, pY
P, pY X pP®
P PV 3 p® X p®
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Vlastnosti:
o Pz.(j ) (t) je polynomidlni kiivka stupné j.
e Kiivka je hladka.
e Interpoluje prvni a posledni fidici body.
o Z4dné lokalni ovlddéni: zmeéna jednoho Fidictho bodu ovlivni celou kiivku.

e Vlastnost konvexniho obalu: kiivka lezi uvniti konvexniho obalu fidicich bod.

Vzorec Bézierovych kiivek. Polynom P (t) generovany De Casteljauovym algoritmem se
nazyva Bézierova kiivka:

kde Bernsteinovy polynomy jsou dany vztahem:

boi(t) = (Z) th(1— )y = k‘!(nn—ik‘)!tk(l —t)" ",
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12 Orthogonal Polynomials

Meéjme véhovou funkei w(z) > 0 na intervalu (a, b). Definujeme:

b b
~ [ @@ ds, (£9). = [ f@g@) d,

Prostor L2 (a,b) tvoif viechny funkce f : (a,b) — R spliujic: fab A (x)w

Definice 12.1 (Ortogonalita). Posloupnost polynomi po,p1,pa, - - -

gondlni vzhledem k w(x), pokud:

(pi,pj)w =0 proi#j.

Pokud jsou p; monické, tak plati rekurence:
Pri1(z) = zpi(z) + Z ~pi (

__ (=pepr)w
kde 7 = (Pr-PE)w

12.1 Three-term rekurence

p-1(z) =0, po(z) =1

[fllw =V (f, fe

() dr < 0.

(kde deg(p;) = j) je orto-

Pyia(z) = (z = 0p)pe(@) — Bepe—1(x), k=0,1,...,

(ka, Pk) _ (TPr—1, Pk )w

kde « = .
(pkapk) : (pk—hpk—ﬂw

12.2 Zobecnéna Fourierova rada

Pro libovolnou funkci f € L? a f fourierovy koeficienty, muzeme sestrojit jeji rozvoj:

w2

=Y fanle), fi= (fs i)
k=0

Céstecny soucet f,(r) = Sop_, fupr(x) konverguje k f v L2
If = fall = 0 pron — oc.

Diky Parsevalova rovnosti, mame:

IFII2 = ka 1Pkl

A déle, pro vSechna n, plati:

If = falli =

400 )
Z fkpk

k=n1

k=n1

Pro polynom f,, € P, plati nasledujici minimaliza¢ni vlastnost:

Vlastnost 12.1 (Ortogonalita <= Optimalita).

1/ = fallw = min [|f = qffu
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Proof. Méjme f — f, = ZZO:nH fkpk. Potom Vq € P, plati (f — f.,q) =0.
Proto f — f, je ortogonalni k P,. Protoze f,, — q € P,, dostavame:

WF=allZ =11 f—futfu—allZ=Ilf = Fll2+ 1 fa— a2 > |If = £l

Z toho plyne:
||f_fn||w < ||f_Q||wv Vg € P,
Navic plati:
= fallo = If = dllw = llfn —dlle =0 = fa=1q.

12.3 Chebyshev Polynomials

Pro w(z) = ﬁ na (—1,1),Chebyshev polynomials Tj(x) = cos(k arccos(x)) jsou ortogonalni:

/_1Tk(x)7}(x)\/% =0 prok #j.

Normy jsou:
T2 = T pokud k =0,
Hlw /2 pokud k # 0.

Chebyshevovo rozsiteni:
o R 1 1
(CN) =) fiTu(@), fi= c_k/ F(@)T(z)(1 = 2*) 12 da.
k=0 -1

Three-term rekurence:

Tii1(x) = 22T () — Tyq(z), To(z)=1, Ti(z)==x.
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13 Numericka Integrace

Pro integrovatelnou funkei f na intervalu [a, b]:
n=[ s

Aproximuji I(f) vycislenim f ve vybranych bodech. Obecny pristup nahrazuje f aproximaci f,,
kterou lze snadnéji integrovat:

13.1 Quadrature rules.

b
:/ (@) dz, B (f) = I(f) — L(f)

Chyba obecné splnuje:

b
E.(f)] < / (@) = fule)) da| < (b— )l — full

13.1.1 Interpolatory Quadrature
Pro f, € P, mé kvadraturni vzorec stupern presnosti (degree of exactness) k, pokud:
L(f)=1(f) VfePh

Interpola¢ni kvadratura nahrazuje f jejim interpolacnim polynomem pies n + 1 bodu. Vysledny
vzorec ma stupen presnosti n.

13.1.2 Rectangular Rule

Interpolace f polynomem nulového stupné (konstanta) v bodé zg € [a, b]:

_ / F(ao) dv = f(20)(b — a)

Tento vzorec aproximuje integral jako obsah obdélniku.

13.1.3 Midpoint Rule

Zvolime xo = ‘”b. Chybu lze analyzovat pomoci Taylorova rozvoje. Predpokladejme primitivni
y y Y J

funkci F(x f f(t) dt. Rozsiiime F(a + h) pfes a a ziskame tak:

F(a N h) B F(@) ) F/(a)h . F”2< )h2 F’;'(f) W04 f(a)h n f’;(l) h? + f”ég) B3

— Bo(f) Z/bf(t)dt—hf (“‘;b).

KdyZ rozepiSeme f(%f) pres a a ziskdme tak: f(%2) = f(a) + f'(a)2 + f”(y)%s. Vsimnéme si, ze

a—tf=t=t = Eo(f)Z;(%—l— iy> Stupen pfesnosti: 1.

13.1.4 Composite Midpoint Rule

For uniform partition x; = a + ih, h = bﬁ:

m—1

D) =03 f (45 )+ Eonl) =

k=0

b—a 1"
2 (©)
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13.1.5 Trapezoidal Rule

For n = 1 with nodes xg = a, x1 = b:

b—a b—a)
0 =" o). B =" e
Degree of exactness: 1.
13.1.6 Composite Trapezoidal Rule
For uniform partition:
f z = f Tm b—a
Lim(f) =h (% + Z f(xe) + (2 ) , Bunl(f) = _ThQ‘f”(O
k=1
13.1.7 Simpson’s Rule
For n = 2 with nodes zg = a, 1 = “T“’, To = b:

L) =250 (@ + 47 (“50) +10) . Bl =S g

Degree of exactness: 3.

13.1.8 Composite Simpson’s Rule

For uniform partition:

Io(f) = 2 (f(m) +2 Z Flaar) + 43 flwae) + f(:mm)) L Eanlf) = _blgoa (g) F0e)

6
k=1 k=1

13.2 Newton-Cotes Formulas

Pro m + 1 interpola¢nich bodu zy < - -+ < x,, ma kvadratura tvar:
m b
() =Y fas 0= [ a)da
=0 a

kde [; jsou Lagrangeovy bazové polynomy. Chyba pro uzaviené Newton-Cotesovy vzorce je:

My,

hm+3 (m+2) Mm R
AR €

Em(f) =

13.3 Gauss Quadrature

Maximalizace stupné presnosti vybérem uzlu jako korenu ortogonalnich polynomtu pro vahovou funkci
w(z). Vyslednd Gaussova kvadratura:

L(f) = Zf(xnwj,

dosahuje stupné presnosti 2n + 1 (maximélni mozny). Véhy w; jsou kladné a dany vztahem:




Lemma 13.1. Vihy w; Gaussovy kvadratury jsou pozitivni.

Proof. Piedpokladejme p;(z) = H (z — ;)% To m4 stupen 2(n +1) — 2 = 2n < 2n + 1.
i=0,ij

Odtud I(p;) = Zpi(xj)wj = pix;)w;.
=0

I(p;) = / pi(z)dw(z) >0 = w; = Lw >0

Pro p;(z) > 0, V.
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