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Spolecna matematika

Z nasledujicich 6 témat budou vybrana 2.

1.1 Zaklady diferencialniho a integralniho poctu

1.1.1 Posloupnosti realnych cisel a jejich limity
Definice (Reélna posloupnost). Redlna posloupnost (a,)2, = (a1, as,...) € R je funkcea : N — R.

Definice (Limita posloupnosti). Necht (a,) je redlnd posloupnost a L € R*, kde R* je R spolu s
+00. Potom L je limita posloupnosti (a,,), pokud:

Ve,3ng:n >ng = a, € U(L,e), U(b,e)=(b—e,b+e¢).

Piseme lim a, = L.
n—0o0

Definice (Nevlastni limita posloupnosti). Pokud L € R, pak konverguje a mluvime o limité vlastni,
pokud L = o0, pak divequje a mluvime o limité nevlastni.

Definice (Podposloupnost). (b,) je podposloupnosti posloupnosti (a,), pokud existuje takovd po-
sloupnost
VmeN:m <my<---€N,

kde ¥ : b, = apm,,. Znacime jako (b,) < (ay,).

Definice (Hromadny bod). Hromadny bod A posloupnosti (a,,), pokud je limitou néjaké podposloup-
nosti posloupnosti (ay,).

Véta (Aritmetika limit). Necht (a,), (b,) jsou posloupnosti redlngch ¢éisel s lim (a,) = K € R,

n—o0

lim (b,) = L € R*. Potom, pokud jsou vjrazy na pravych strandch definovdny, plati

n—oo

(i) lim (ap+be) = K + L ,
n—oo

(ii) lim (a, -b,) = K- L,

n—oo
K
(i) lim (%) =T pokud b, # 0 pro kazdé n > ng.
n—oo n

Véta (O dvou policajtech). Necht posloupnosti (a,), (b,), (c,) € R spliuji, Ze lim a, = lim b, =
n— o0

n—oo
aceRaVn>ny: a, <c, <by,. Pak (c,) konverguje a lim ¢, = a.
n—oo

Véta (O limité a uspordddni). Necht posloupnosti (a,), (b,) € R magi limity lima, = A € R* a
limb, = B € R*. Potom:

(i) A< B = dng:VYn>ng plati a, < by,

(ii) Vn:a, <b, = A<B.



1.1.2 Rady
Definice (Rada). Rada je posloupnost (a,) C R.

Definice (Césteény soucet fady). Céstecny soucet fady (ay) je (sp) = (a1 + ag + - - + ay)

Definice (Soucet fady). Soucet fady je limita Zan = Zan =a;+ay+---:= lim(a; + as +
n=1

n—o0

-+ +ay,) =lims, € R".

Definice (Geometricka fada). Geometrickd fada je rada Z " =14q+@+- -+ + ..., kde

n=0
q € R je kvocient.
- e pro |q| <1
Definice (Soucet geometrické rady). Z q" = { +oo proq>1
n=0

neexistuje pro q < —1

Definice (Absolutné konvergentni fada). Rada > a, je absolutné konvergentni, pokud konverguje
rada Y |ay,|.

o0

1
Definice (Harmonickd rada). Harmonickou fadu definujeme jako h, = Z —, kde s € R. Plati, Ze
nS
n=1
h,, konverguje, pokud s > 1, jinak diverguje.
1.1.3 Realné funkce jedné realné proménné
Definice (Okoli bodu). e-okoli bodu b € R, kde £ € R™ je interval
Ul,e) :=(b—¢e,b+e)={reR:d(z,a) < e}, pro metriku d.

Definice (Prstencové okoli bodu). Prstencové okoli bodu b = P(b,e) := (b—¢€,b) U (b,b+¢).
Definice (Limita funkce v bodé). Funkce f md v bodé a € R* limitu A € R*, kdyz

Ve > 0,30 > 0,Vx € P(a,0) = f(x) e U(A,e), tedy lim f(z)= A.

Tr—a

Definice (Jednostrannd limita funkce). Podobné, jen Vo € P*(a,d) ...

Véta (Vztah limit funkce s uspoiddanim). Necht ¢ € R* a funkce f, g, h jsou definované na néjakém
prstencovém okoli bodu c.

(1) Magi-li funkce f, g v bodé ¢ limitu o lim f(z) > lim g(x), pak 3§ > 0 takové, Ze f(x) > g(z) pro
Tr—cC Tr—cC
kazdé x € P(c,d). (Limita zachovdvd ostré nerovnosti.)

(2) Existuge-li 6 > 0 : f(x) > g(x) pro kazdé x € P(c,d), a maji-li funkce f,g limitu v bodé c,
potom lim f(z) > lim g(x). (Limita zachovdvd neostré nerovnosti.)
Tr—C Tr—cC

(3) Ezistuje-li 6 > 0: f(x) < h(x) < g(x) pro kazdé x € P(c,d) a lim f(z) = limg(x) = A € R*,

Tr—C Tr—C

potom i lim h(z) = A. (O dvou policagtech.)
r—c
Definice (Spojitost funkce v bodé). Funkce f je spojita v bodé a € R, pokud
Ve > 0,30 > 0,Vz € P(a,0) = f(x) € U(f(a),e).

Neboli funkce f je v bodé a spojitd, pokud lim f(z) = f(a).

r—a



Definice (Limita slozené funkce). Necht a,b,c € R* a nechl funkce maji limity lim g(x) = b a
Tr—a

lirri f(z) = e. Slozena funkce md potom limitu lim f(g(x)) = ¢ <= plati jedna z podminek:

r—r Tr—a

(i) f(x) je spojitd v c,
(ii) 36,Vx € P(a,0) : b ¢ g(x), tedy na néjakém prstencovém okoli funkce nenabyvd hodnotu b.

Definice (Spojitost na intervalu). Funkce je spojitd na intervalu, je-li spojitd v kaZdém vnitinim
bodu a jednostrané spojitd v mezich.

Véta (Nabyvani mezihodnot). Funkce spojitd na intervalu nabyvd vsech hodnot mezi mezemi inter-
valu. Tedy pro a,b,c € R; a < b; f : [a,b] — R je spojitd a f(a) 2 ¢ 2 f(b), pak Id € (a,b) : f(d) = c.

Definice (Maximum). Necht M C R a f : M — R. Rekneme, Ze funkce f v bodé a € M nabjvd
svého mazxima, kdyzVr € M : f(x) < f(a). (minimum analogicky, jen opaénd nerovnost).

Véta (Princip minima a maxima). Necht a,b € R,a <b a f : [a,b] — R je spojitd funkce. Potom f
nabyvd na intervalu [a,b] svého maxima i minima.

1.1.4 Derivace a jeji aplikace

Definice (Derivace funkce). Necht bod a € M je limitni bod mnoZiny M CR a f = f(z): M — R
je funkce. Potom derivace f v bodé a je limita

oy J@) = fla) o flath) — f(a)
f'(a) = lim ————~ = lim . :

r—a Tr—a h—0

Definice (Diferencovatelnost). Jestlize md f v bodé b vlastni derivaci, 7ikdme, Ze f je v b diferen-
covatelna. (Diferencovatelnost = spojitost).

Véta (Derivace slozené funkce (fetizkové pravidlo)). Necht f, g funkce a g md spojitou derivaci v x:

(f(g()))" = f'(g(z)) - g'(x).

’ Pravidlo \ Vzorec
Derivace sou¢tu (f+9))=f+¢
Derivace ndsobku (af) =af VaeR
Leibnizovo pravidlo (soucin) | (f-g)' =f"-g+ f-¢
7 I f
Derivace podilu <i> = M, g#0
g g
Elementarni funkce Derivace
Mocninna funkce (") = n:z:"fl, necR
Exponencialni funkce (") = (a®) =a"lna
1
Logaritmicka funkce (nz) =—, (log,z) =
x rlna
Goniometrické funkce (sinx) = cosx
(cosz) = —sinz
tan x)’ =1+ tan?
(tanz) = Y + tan®x
(cotx) = = —(1+ cot®x)

sm M




Véta (I'Hospitalovo pravidlo). Nechtf a € R; f, g : P(a,d) — R magi vlastni derivace, ¢ # 0 a
lim f(x) = lim g(z) = 0 nebo lim g(z) = £oo, potom:
Tr—a Tr—a Tr—a

CON {C)) 0 400

lim ——= kud posledni limita existuje. -, —
o g(w) e g(n) OO 0 Ee

Véta plati i pro P*(a,d) a pro a = +oo.

Definice (Tayloriiv polynom funkce). Necht Vn € N: f, f'...., f®= D U(b,§) = R a If™(b) € R.
Potom Tayloruv polynom funkce f rddu n se stredem v bodé b je

nofk)
JM@:Zif%—M

Véta (Taylorova tada funkce). Md-li funkce f v bodé a € R derivace vSech tddu, rozumime pro
x € R jeji Taylorovou tadou se stredem v b radu

. fn)
TW@:Zf?%—M

~ nl
Funkce Taylortv polynom Konvergence
<k
Exponencidlni e’ = % Ve e R
k=0
o0 22k
Sinus sinx = kz::(—l)km Vex e R
Kosinus cost = » (—1) Vr e R
prd (2k)!
e k
Ptirozeny logaritmus | In(1 + z) = Z(—l)kﬂ% xr € (—1,1]
k=1

Vysetieni pribéhu funkce

Urcime definiéni obor, specidlni tvar (sudost/lichost/periodicita), limity krajnich bodu, 1. derivace,
extrémy a monotonie, 2. derivace, inflexni body a kon[vex/kav]ita, asymptoty, nacrt.

b) —
Véta (Lagrangeova). Pokud f je spojitd funkce, pak 3c € (a,b) : f'(c) = M =:z
—a

Definice (Extrémy a monotonie). Necht f md prond derivaci, potom pokud
o f'(x) =0, pak md extrém,
o f'(x) >0, pak roste (resp. f'(x) < 0 klesd).

Definice (Konvexita/ Konkavita). Necht f md druhou derivaci, potom pokud f”(x) > 0, pak je
konvexni a pokud f”(x) < 0, pak je konk&vni.

Definice (Inflexni bod). Inflexni bod je bod, ve kterém f” =0 a f' = 0 nebo f' neexistuje. (Dochdzi
ke zméné sméru funkce).



1.1.5 Integraly a jejich aplikace
Definice (Primitivn{ funkce). Necht I C R je netrividlni interval a F,f : I — R. Potom F je

primitivni funkce k f, neboli F = [ f, pokud F' = f na celém I.

Definice (Metody vypoctu: Substituce).

Definice (Metody vypoctu: Per partes). /f’g = fg— /fg’

Elementarni funkce

Neurcity integral [ f(z)dxz (bez konst. C)

anrl
Mocninné funk "= —1
ocninng funkce [z g (n# —1)
Exponencialni funkce [ et =e,
am
[a® = (a>0,a#1)
Ina
Logaritmicka funkce [ =In|z|
Goniometrické funkce [sinz = —cosx
[ cosz =sinzx
[tanz = —In|cosz|

[ cotx = In|sinz|

Goniometrické funkee slozitéjsi | [ COSIQI =tanz
f sin?z —cotx
1 .
i = arcsinx
V1—x2
[ s = arct
[,z = arctanx

Newtontiv a Riemannuv integral: definice a souvislost.
Definice (Newtonuv integral funkce). Newtonuv integral funkce f na intervalu (a,b), a < b:

(N)/ f(x)dz = [F]? = F(b7) — F(a¥) = lim F(z) — lim F(z)

T—b— z—at

Definice (Déleni). Rozdéleni intervalu [a, b] je posloupnost P = (to, ..., t,), kde:

a=ty<ti <---<t,_1<t,=0b.

Definice (Horni/dolni Riemannuv soucet). Pro omezenou funkci f : J = [a,b] — R a rozklad P
definujeme dolni a horni soucty:

S(f, P) = ij(tj — tj—1)7 Tesp. S(f, P) = ZMJ(t] — tj—l);
j=1 j=1

kde

m; =1inf{f(z) 1 t;_1 <2 <t;}, a M;=sup{f(x):t;_1 <z <t;}.



Definice (Horni/dolni Riemannuv integral). Horni a dolni Riemannuv integrél f pres [a, b] je:

—b
/bf(x) dz = sup{s(f, P) : P déleni} a / f(z)dz = inf{S(f, P) : P déleni}

Definice (Riemannuv integrél funkce). Riemannuv integral funkce f pres [a,b] je

b b —b
(R)/ f(z)dx , pokud / f(z)dz = / f(z)dz.
Véta (Zéakladni véta analyzy 1). E] Pro Riemannouvsky integrovatelnou f a primitivni F' je

F(z) = / F(t)dt

a plati, Ze
(1) F je spojitd na [a,b] a
(2) v kazdém bodé spojitosti x € [a,b] funkce f existuje F'(x) = f(x).

Véta (Zékladni véta analyzy 2). Pokud f je Newtonovsky i Riemannovsky integrovatelnd, pak
b b
® [ 1= 1

Véta (Odhady souctu tad). Pro neklesajici (resp. nerostouci) f na intervalu [1,n] plati

G S/lnfSZf(k)

Pro neklesajici (resp. nerostouci) funkci f na intervalu [1,00) plati

Aplikace integrala.

—_

n—

T

1

Zf(/{:) konverguje < / f(z)dz konverguge.
1

00
k=1

Véta (Obsahy rovinnych utvaru). Plocha mezi dvéma funkcemi f(z) a g(x):
b
5= [ 1) - g(o)lda

b
Véta (Délka kiivky). Pro graf funkce y = f(x): L= / V14 [f(x)]?de

Véta (Objem rotacniho télesa). Zvldst pro objem a povrch rotacniho télesa:

b
e Objem wvznikly rotaci kolem osy x: 'V = 7T/ [f(z)] dz.

b
e Povrch rotacni plochy: S = 27?/ f(@)v/ 1+ [f(2)]? dx.

!Primitivni funkce lze spoé¢itat Riemannovskym integrlem.

9



1.2 Algebra a Linearni algebra

1.2.1 Algebraické struktury

Definice (Grupa). Grupa je dvojice G = (G,0), kde G je nosnd mnozina, na které je definovina
bindrni operace o : G X G — G, splnugici:

(i) Va,b,c€e G:ao(boc)=(aob)oc (asociativita),
(i) Je€e GVYae G:aoe=ecoa=a (eristence neutrdlniho proku),
(i) Vae G b€ G:aob=boa=e (existence inverzniho proku).
Pokud plati navic jeste komutativita, jednd se o Abelovskou grupu.

Definice (Podgrupa). Necht G = (G,0) a H = (H,3) jsou grupy, potom H je podgrupa grupy G,
znaceno H C G, pokud: Ya,b € H : a 6 b=aob a pokud jsou zachovany inverzni a neutrdlni prvky.

Definice (Permutace). Permutace na mnoziné [n| je bijekce p : [n] — [n].
Definice (Inverze v permutaci). Pro inverze v permutaci plati p(i) = j <= p~'(j) = i.
Definice (Znaménko permutace). Znaménko permutace p je ¢islo sgn(p) = (—1)#inver=ivp,

Definice (Téleso). Necht K je mnoZina a (®,*) jsou bindrni operace na K. Trojici K = (K, ®, %)
potom nazyvdme télesem, splriuje-li:

(i) (K, ®) tvori Abelovskou grupu s neutrdlnim prokem 0,
(ii) (K \ {0}, *) tvori Abelovskou grupu s neutrdlnim prvkem 1,
(iii) plati distributivita, tedy (Va,b,c € K):ax (b®c) =a*xbd a*c.

Definice (Charakteristika télesa). Pokud 3n € N t.Z v télese K plati 1+ 1+ ...+ 1 = 0, potom
—_—

n-krdt
nejmensi takové n je char(K) télesa K. Jinak md téleso charakteristiku 0.

Véta (Konecnd télesa). Ezistuji konecnd télesa prdavé o velikostech p™, kde p je prvocislo an > 1.

1.2.2 Soustavy linearnich rovnic

Definice (Maticovy zapis). Pro soustavu Az = b, kde A € R™ " je matice soustavy, v = (z1, ..., 2,)7
je vektor nezndmych a b je vektor pravich stran, je rozsitend matice soustavy:

ai1 -+ Qin by
Aan:

m,1  Gmn bm

Definice (Elementédrni fadkové dpravy). Elementarni fadkovou tdpravou vznikne z matice A matice
A (A~~~ A):
(1) wyndsobenim i-tého radkut € R\ {0},
(ii) prictenim j-tého Tddku k i-tému, kdyz i # j,
(iii) prictend t-nasobku j-tého radku k i-tému, kdyz j # 1,
)

(iv) prohozeni dvou rddki.
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Definice (Odstupnovany tvar matice (REF)). Matice A je v REF, pokud (a) nenulové radky jsou
serazeny podle pocédternich nul a (b) nulové Fadky jsou pod nenulovymi.
Matice je v RREF, pokud je v REF, pivoty jsou jednotkové a nad i pod pivoty jsou pouze nuly.

Definice (Pivot). Pivot je pruni nenulovy prvek a; ;i) na i-tém rddku.

Algorithm 1: Gaussova eliminace — prevod elementarnimi ipravami na REF

1 Seiad tddky podle poctu pocateénich nul.
2 Pokud maji dva nenulové rddky stejny pocet poc¢dtecnich nul (i-ty a i + 1-nf), tak od
24190 _nisobek i-tého.

1,4 (4

3 Opakuj, dokud nemaji kazdé dva nenulové fadky ruzné pocty pocatecnich nul.

1 + 1-niho odecteme

Algoritmus je konecnyj, protozZe po kroku 2. vidy vzroste celkovy pocet pocdtecnich 0 alespori o 1.

Algorithm 2: Gauss-Jordanova eliminace — pfevod na RREF

1 Seiad tadky podle poétu pocateénich nul.
2 forall pivotni prvek a; juy (prond nenulovy prvek v rddku i) do

3 Normalizuj fadek 7: vydél radek ¢ hodnotou a; ;(;)
4 forall ostatni radky k # 1 do

5 ‘ Odecti ay, j;)-nésobek fadku 7 od fadku &

6 end

7 end

8 Opakuj, dokud neni matice REF.

Algoritmus je konecnyj, protoZe v kazdé iteraci se bud zvyjsi pocet pocdtecnich nul, nebo se pivotni
prvek presune blize k diagondle.

Véta (Frobeniova). Soustava Ax = b md 7eseni <= rank(A) se rovnd hodnosti rozsirené matice.

Pocet reseni Podminka

Zadné Existuje tadek (0 --- 0] b), b#0

Prave jedno # pivotu = # neznamych, zadné konflikty
Nekonecné mnoho | # pivotu < # neznamych, zadné konflikty

1.2.3 Matice

Definice (Jednotkova matice). Pro (Vn € N) je jednotkovd matice I, € R"*" definovdna vztahy:
1 kudi=j b0
pokud i = j
(In)ij = { 0
0

0
., 0
0 pokud i # j ]

0

Definice (Transponovand matice). Transponovand matice k matici A € R™ ™ je takovd matice

AT € R™™  pro kterou plati:
1 2 1 3
T — .. PUNN
Ai,j =Aj; (3 4) (2 4)

Definice (Symetrickd matice). Symetrickd matice je takovd c¢tvercovd matice A € R™*™, Ze:
Ajﬂ' = Ai,j; neboli A = AT

Definice (Inverzni matice). Inverzni matice k ctvercové matici A € R™™ je takovd matice A~! €
R™ ™ pro kterou plati:
A-ATN =1,

11



Definice (Regularni matice). Reguldrni matice je ctvercovd matice, ke které existuje inverzni matice.
FEkvivalentné, pokud je rank(A) = n.

Ekvivalentné, pokud Az = 0 md pouze trividlni reseni x = 0.

FEkvivalentné, pokud det(A) # 0.

Ekvivalentne, pokud jeji sloupce nebo rdadky jsou linedarné nezduvislé.

Ekvivalentné, pokud Zddné vlastni ¢islo neni nulové.

Definice (Singuldrni matice). Singuldrni matice je takovd matice, kterd nent reguldrni.
Definice (Rovnost matic). Dvé matice se rovnaji, A = B, pokud maji stejné rozméry m X n a
Aij=DB;; ,proi=1,...,m,j=1...,n
Definice (Soucet Matic). Bud” A, B € R™*". Pak A+ B je matice typu m X n s proky
(A+B);j=Ai;+B;; ,proi=1....mj=1,...,n

Definice (Maticovy soucin). Pro soucin dvou matic A € R™*™ a B € R"*P plati (AB) € R™*P:

(AB)Z-J' = Z Qi * bk,j
k=1

Definice (Hodnost matice). Hodnost matice A, znacend jako rank(A), je pocet pivotu v libovolné
matici A" v REF takové, Ze A ~~ A’

1.2.4 Vektorové prostory

Definice (Vektorovy prostor). Vektorovy prostor (V, @, *) nad télesem (K, @, *) je mnozina V' spolu
s bindrni operaci & na 'V a bindrni operaci skalarniho ndsobku x : K x V — V| kde:

(i) (V,®) tvori Abelovskou grupu

(il)) (MveV):1xv=uv, (kde 1 je neutrdlni prvek pro ndsobeni v K)
(iii) (Va,b e K)(Vv € V) :(a*xb)*xv=ax(bxv) — asociatavita
(iv) Va,b e K)(Vv € V) : (a®b)*xv = (a*xv) P (bxv) — distributivita
(v) Mae K)(Vu,v e V):a*x(udv)=(a*xu)®d (axv) - distributivita
Proky K se nazyvaji skalary a proky V- vektory.

Definice (Podprostor vektorového prostoru). Podprostor U wektorového prostoru V' je neprdzdnd
podmnozina U C V', spliugici uzavirenost na operaci &, * a obsahugici nulovy vektor.

Definice (Linearni kombinace). Linedrni kombinace vektori vy, ..., v, € V nad K je libovolny vektor

n
u=ay -v1+--+a, v, = E a;v;, kde aq, ...,a, € K.
i=1

Definice (Linedrni obal). Linedrni obal span(X) mnoziny X CV, kde V' je vektorovy prostor nad
K, je prunik vsech podprostoru U z 'V obsahujici X. Tedy mnoZina viech jejich linedrnich kombinact.

span(X) = ﬂ{U : X C U, Uje podprostor V'} = {Z a;v; | a; € Kyv; € X} )

=1

Definice (Linearni nezéavislost). MnoZina vektoriu X ve vektorovém prostoru V' je linedrné nezavisla,
pokud nelze nulovy vektor ziskat netrividing linedrni kombinaci vektoru z X .
Tedy, vektory vi, ..., v, jsou LN <= >  a;v; =0 md pouze trividlni 7eseni a; = ... = a, = 0.
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Definice (Baze). Baze vektorového prostoru V' je linedrné nezdvisla mnozina X, kterd generujeﬂ V.
(1) span(X) =V, kazdy vektor V je linedrni kombinaci vektoru bdze X
(2) X je linedrné nezdvisld, proto je lin. kombinace unikdtni pro kazdy vektor V.
Definice (Dimenze). Dimenze vektorového prostoru V', dim(V'), je mohutnost jeho (konecéné) baze.
Definice (Jadro). Jadro matice A € K™*" je podprostor K" tvoren resenimi soustavy Az = 0.
ker(A) = {(z € K") : Az =0}
Plati vztah: dim(ker(A)) + rank(A) = n.

Definice (Rédkovy prostor). Rédkovy prostor matice je prostor generovany jejimi rddky.
Pro matici A € K™*":

R(A) =S(A") =D x;4;.
j=1
R(A) = {(v € K") : v = ATy, y € K™}, viechny linedrni kombinace vddkii

Rddkovy prostor je kolmy na jddro, tedy R(A)* = ker(A).

Definice (Sloupcovy prostor). Sloupcovy prostor matice je prostor generovany jejimi sloupci.
Pro matici A € K™*":

S(A) = &{Au1, . Avn} = )AL
j=1
S(A) ={(u e K™):u= Azx,x € K"}, vSechny linedrni kombinace sloupci
Plati vztah: dim(R(A)) = dim(S(A)) = rank(A).

Definice (Vektor souradnic). Necht B = (vy,...,v,) je konecnd usporddand bdze vektorového pro-
storu V nad télesem K. Vektor soutadnic u € V wzhledem k bdzi B je [ulp = (ay,...,a,)" € K",
kde u=">Y""_, a;v;. Neboli, obsahuje v B koeficienty LK bazickijch vektoru B, kterd tvori u.

Véta (Steinitzova o vyméne). Necht X je koneénd LN mnozina vektorového prostoru V nad K a' Y
je systém generdtoru V. Potom plati | X| < |Y| a existuje Z, takovd Ze:

span(Z) =V, X C Z, |1Z] = Y], Z\X CY.

1.2.5 Linearni zobrazeni

Definice (Linedrni zobrazeni). Necht U a V jsou vektorové prostory nad stejnym télesem K. Potom
zobrazeni f : U — V' se nazyvd linearni zobrazeni, pokud splnuje:

(1) Vu,veU): flu+v)=f(u)+ f(v)
(2) VuelU),(VaeK): fla-u)=a- f(u)

Maticovd reprezentace LZ pro matici A a vektor u je f(u) = Au.

2Pro “X generuje V” piseme V = span(X). Prvky X jsou generatory V.

13



Definice (Matice linedrniho zobrazeni). Necht V' a W jsou vektorové prostory nad stejngm télesem
K s bazemi X = (vq,...,v,),Y = (w1, ..., w,). Matice linedrniho zobrazeni f : V. — W wvzhledem k
bazim X a'Y je [f]lxy € K™*", jejiz sloupce jsou vektory souradnic obrazi vektoru bdze X vzhledem
k bazi Y. Neboli,

Definice (Jadro linedarntho zobrazeni). Jadro linedrniho zobrazeni f: U — V je

ker(f) = {(w € U) : f(w) = 0}.
Definice (Izomorfismus prostoru). Bijektivni linedrni zobrazeni f : V. — W, nazgvdme izomorfis-

mem prostoru V- a W. Ekvivalentné, pokud je [f]xy requldrni, kde X,Y jsou bdze V,W.

1.2.6 Skalarni soucin

Definice (Skaldrni soucin). Skaldrni sou¢in na vektorovém prostoru V nad C je zobrazeni, které
pritadi kazdé dvojici vektori u,v € V' skalar (u | v) € C tak, Ze jsou splnény ndsledujici axiomy:

o VueV:(u|u)>0, rovnost pokud u =0,

o Vu,v eV :(v|u) = (ulv), (komplezné sdruzené)
o Vu,v,w €V :{utuv|w)=(u|w)+ (v]w),

o Vu,v e V.Va € C: (au | v) = alu | v).

Definice (Norma indukovand skaldrnim soucinem). Necht V' je prosor se skaldrnim soucinem nad
C nebo R, pak norma odvozend ze skaldrniho soucinu je zobrazeni V. — R prirazujici vektoru u

jeho normu ||ul| = /(u | u).
Véta (Pythagorova). Pokud V je VP nad C a x,y € V jsou kolmé, tak ||z + y||* = ||z||* + ||y||*.

Véta (Cauchy-Schwartzova nerovnost). Pro skaldrni soucin libovolnijch dvou vektori u a v ve vek-
torovém prostoru nad C plati:

[ o) < V/u | u) - (v ] o) = lul] - []o]]

Véta (Trojuhelnikova nerovnost). KazZdd norma odvozend ze skaldrniho soucinu spliuge:

[+ ol < [lull + o]

Definice (Kolmé (ortogondlni) vektory). Vektory u,v z prostoru se skaldrnim soucinem jsou kolmé,
ulv, pokud (u|v) =0.

Definice (Ortonormélni baze). Béze Z = {vy,...,v,} prostoru V se skaldrnim soucinem je orto-
normalni, pokud v; Lv; pro kazdé i # j a ||v;|| = 1 pro kazdy vektor v; € Z.

Definice (Fourierovy koeficienty). Necht Z = {v1, ..., v,} je ortonormdlni bdze prostoru'V . Pro kazdé

u €V plati: u = (ulvy)vy + ... + (u|v,)v, = Z(u|vz>vZ Koeficienty (u|v;) se nazgvaji Fourierovy.
i=1

Definice (Ortogonalni doplnék). Ortogondlni doplnék podmnoziny V' prostoru se skaldrnim souci-
nem W je V- ={ueW: (Vv e V)(ulv)}.
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Algorithm 3: Gram-Schmidtova ortogonalizace

Data: linearné nezavislé vektory xq,...,z, € V.
Result: ortonormalni béaze 2, ..., z, prostoru span{zy,...,x,}.
1 fork:=1,...,ndo
k—1
2 Yp = T — Z(xk|z]~>zj > vypocitdme kolmici
j=1
3 2k = myk > normalizujeme délku na 1
4 end

Véta. Pro konecné generovany prostor W se skaldrnim soucinem a podprostor V' plati:
(VHt =V a dimV +dimV*+ = dimW.

Definice (Ortogonélni projekce). Necht W je prostor se skaldrnim souc¢inem a V je jeho podprostor

s ortonormdlni bdzi Z = (vy,...,v,). Potom ortogonalni projekce W na V' je zobrazenipy : W — V
definované jako pz(u) = Z(u\w}w
i=1

Poznamka. Ortogondlni projekce je linedrni zobrazen.

Definice (Ortogonalni matice). Matice Q € R™ " je ortogonalni, pokud QT Q = I,,. Pro ortogondlni
matici Q tedy plati QT = QL.

Véta (Vlastnosti ortogonélnich matic). Matice Q) je ortogondlni, prdvé kdyz sloupce tvori orto-
normdlni bazi R™. Soucin ortogondlnich matic je ortogondlni matice. Ddle plati vztahy:

Q| Qy) = (x[y),  ||Qull = [[]].

1.2.7 Determinanty

Definice (Determinant). Determinant matice A € K je ddn vgrazem:

det(A) = Z sgn(p) H AipG), (Sn je grupa permutaci na mnoziné {1,...,n}).
PESH =1

Pro hornt trojuhelnikové matice je determinant roven souctu na diagondle.

Véta (Linearita determinantu). Determinant matice je linedrné zavisly na kazdém jejim tadku i
sloupci. Tedy vzhledem ke sciténi fadki a ndsobeni faddku skaldrem. Také plati det(A) = det(AT).

Véta (Multiplikativnost determinantu). Pro libovolné A, B € K : det(AB) = det(A) - det(B).
Definice (Adjungovand matice). Pro matici A € K je adjungovana matice definovdna vztahem

adj(A);; = (—1)"7 det(A™).

1
Dadle pro reguldrni matici A € K plati vztah A™' = det(4) adj(A).

Véta (Laplaceuv rozvoj). Necht A% je podmatice ziskand z A odstanénim i-tého vddku a j-tého
sloupce, potom pro libovolné A € K a jakékoli i € {1,...n} plati, Ze:

det(A) = Zaiyj(—l)iﬂ det(Ai’j) = Zai’j adJ(A)N
j=1 j=1
1 25
2 3 0 =2 (-1)*" 20 + 8- (—1)**? Lo +0-(-1)* L2 9 i943.—12-2
3 5 3 5 3 33 35
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Poznamka (Geometrickd reprezentace determinantu). Absolutni hodnota determinantu rozhoduge,
zda se dand plocha geometrického wtvaru promeénuge.

o |det| >1 = zvétsuje se,
e |det| € (0,1) = zmensuge se,
e |det| =1 = zachouvd se,

o |det| =0 = zkolabuje na mensi dimenzi.

1.2.8 Vlastni c¢isla a vlastni vektory

Definice (Vlastn{ ¢islo). Necht V' je vektorovy prostor nad K a f je linedrni zobrazeni f -V — V,
potom vlastni ¢islo zobrazeni f je jakékoli X € K, pro které existuje vektor x € V\{0}, t.2.: f(x) = Ax.

Definice (Vlastni vektor). Necht A je vlastni ¢islo, potom jemu odpovidagjici vlastni vektor je libovolns
vektor x € V, t.z.: f(x) = \x. Také, pokud o # = € ker(A — A\1I,,).

Definice (Vlastni ¢islo a Vlastni vektor matice). Jestlize V' md konec¢nou dimenzi n, pak f muze
byt reprezentovdano matici A = [f]xx € K vzhledem k néjaké bdzi X prostoru V. Vlastni éislo matice
je potom A € K a vlastni vektor matice x € K", oba splnujici Az = \x .

Véta. Viastni vektory odpovidajici stejnému vlastnimu ¢islu tvori podprostor.

Véta. Necht f : V — V je linedrni zobrazeni a \i, ..., Ny jsou riznd vlastnd ¢isla f a uy,. .., us
odpovidagici netrividlni vlastni vektory. Potom uy, ..., ux jsou linedrné nezavislé.

Poznamka. Plati, Ze rank matice je < neZ pocet nenulovijch vlastnich cisel.
Poznamka. V kazZdé matici radu n je nejvyse n vlastnich cisel.

Véta (Vlastnosti vlastnich ¢éisel). Necht A € C*" md vlastni éisla M1, ..., \, a jim odpovidajici
vlastni vektory x1, ..., x,. Pak:

(1) A je requldrni <= 0 neni jeji vlastni éislo,

(2) je-li A regquldrni, pak A=' md vlastni éisla AL M1 a vlastnd vektory xq, . . ., xp,
(3) A? md vlastni ¢isla X2, ..., N2 a vlastni vektory i, ..., T,,

(4) aA md vlastni ¢isla o)y, ..., a\, a viastni vektory x1,. .., Ty,

(5) A+ al, md vlastni ¢isla \y + «, ..., A\, + « a vlastni vektory xy, ..., x,,

(6) AT md vlastni ¢isla Ny, ..., \n, ale vlastni vektory obecné jiné.

Definice (Charakteristicky polynom). Charakteristicky polynom A € K je pa(t) = det(A — t1,).

Véta. Cislo A € K je vlastnim cislem matice A € K <= \ je korenem charakteristického polynomu
pa(N). Tedy kdyz det(A — A1) = 0.

Definice (Algebraickd ndsobnost). Algebraickd ndsobnost vlastniho c¢isla A je ndsobnost \* jako
korene charakteristického polynomu pa(N).

Definice (Geometrickd ndsobnost). Geometricka ndsobnost vlastniho ¢isla A je dimenze (pod)pro-
storu jeho vlastnich vektoru. Tedy je rovna n — rank(A — A\*1,,).

Definice (Podobné matice). Matice A, B € K jsou si podobné, pokud existuje requldrni matice R
takovd, e A= RBR™' ~ AR = RB.
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Definice (Diagonalizovatelnd matice). Matice podobnd diagondlni matici je diagonalizovatelna.
Véta. Matice A je podobnd diagondlni <= prostor K" md bdzi z vlastnich vektori A.

Véta. Pro jakoukoli symetrickou matici A € K s char(K) # 2 existuje requldrni matice R takovd,
e RTAR je diagondini.

Definice (Spektralni rozklad). Diagonalizovatelnd matice A lze vyjddrit ve tvaru A = SAS™!, kde
S je reguldrni a A je diagondlnd.

Véta (Spektralni rozklad symetrickych matic). Pro kaZdou symetrickou matici A € R™™ existuje

ortogondlni Q € R™™ a diagondlni A € R™ " takové, ze A = QAQT.

1.2.9 Positivné semidefinitni a positivné definitni matice
Definice (Positivné definitni matice). Pokud symetrickd A € R™™ spliugje

Vo e R"\ {0} : 27 Az > 0,
pak je matice pozitivné definitni. Je semidefinitni, pokud plati >.

Véta (Vlastnosti positivné definitnich matic). Necht A, B € R™" jsou positivné definitni matice.
Pak plati:

1. A+ B je positivné definitni matice,
2. Pro libovolné o > 0 je aA positivné definitni matice,
3. Je-li A positivné definitni, pak je regularni a A~! je téZ positivné definitnd.
Véta (Charakterizace PD). Pro symetrickou matici A jsou ndsledugjici podminky ekvivalentni:
1. A je pozitivné definitivni
2. A ma véechna vlastni ¢asla kladnd (resp. nezdpornd pro semi)
3. Emistuje requldrni matice U, t.2.: A=UTU.

Véta (Choleskeho rozkladﬂ). Pro kazdou pozitivné definitni matici A existuje unikdtni horni troj-
tihelnikovd matice U s kladnou diagondlou, t.7.: A = UTU. Matice U se nazjvd Choleského rozklad.

Véta (Sylvestrovo kritérium). Symetricka A € R"™ ™ je positivné definitni <=  determinanty
hlavnich vedoucich podmatic Ay, ..., A, jsou kladné.

3Véta je existenéniho charakteru. Prakticky se jednd se o metodu na testovdni PD matic, slouZ k tomu algoritmus.
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1.3 Diskrétni matematika

1.3.1 Relace

Definice (Relace mezi mnozinami). Relace R € X x Y je podmnoZina kartézského soucinu dvou
mnozin X a'Y.

Definice (Relace na mnoziné). Relace R na X je podmnozina kartézského soucinu dvou identickych
mnozin, {j. X =Y — RC X x X.

Definice (Vlastnosti bindrnich relaci). Pro relaci R na X definujeme:
e Reflexivita: Vxr € X : zRx.
o Symetrie:Vr,y € X : 1Ry <= yRx. (Také: R = R™')
o Antisymetrie: Vr,y € X : xRy ANyRx — x =1y.

o Transitivita: Vr,y,z € X : tRy ANyRz — zRz. (Také: Ro R C R)

1.3.2 Ekvivalence a rozkladové tridy

Definice (Ekvivalence). Relace R na X je ekvivalentni <= je reflexioni, symetrickd a tranzitivnd.

Definice (Ekvivalencni tiida). Ekvivalencéni tiidu definujeme jako R[x] = {y € X | zRy}.

1.3.3 Castecna usporadani

Definice (Usporadani). Relace R na X je usporadani <= je reflexivni, antisymetrickd a tranzi-
tivny.

Definice (Linedrni usporadani). Uspordddni je linearni <= Vz,y € X : xRy V yRx. Neboli, pruky
jsou porovnatelné (=trichomické).

Definice (Céstecné usporadéani). Uspordddni je casteéné, kdyz nend linedrnd.

Definice (Ostré usporadani). Usporddani je ostré <= je ireflexioni — Zadny prvek neni v relaci
sam se sebou.

Definice (Minimaln{ a maximéln{ prvek). Necht (X, <) je CUM. Potom a € X je maximalni prvek,
pokud Pz € X, pro které x = a. (resp. minimélni z < a).

Definice (Nejmensi a nejvétsi prvek). Necht (X, <) je CUM. Potom a € X je nejvétsf prvek, pokud
Vo € X plati a = x. (resp. nejmensi a = x).

Definice (Retézec a antifetézec). Necht (X, =) je CUM a A C X, potom pro:
o Retézec plati, ze Ya,b € A jsou porovnatelné.
e Antifetézec plati, Ze Pa,b € A, které jsou rizné a porovnatelné.
Definice (Vyska usporadédni). Vyska usporadani v P: w(P) = maz{P}. (mazimum z délek Tetézci)

Definice (Sfika uspoiadani). Sitka uspotadani v P: a(P) = maz{|A|; A nezdvisld v P}. (mazimum
z délek antiretézeu)

Véta (O dlouhém a sirokém). Necht (X, =) je konecnd CUM, potom a(X, =) - w(X, <) > |X]|
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1.3.4 Funkce
Definice (Funkce). Funkce f: X — Y je relace f C X XY takovd, Ze (Vx € X)(3ly € Y) : xfy.

Definice (Prosté/injektivni zobrazeni). Funkce f : X — Y je prostd <= pro vdechna Y ezistuje
nejuyse jedno x, Yx € X. (nebo Vx,y : f(z) = f(y) = =z =y).

Definice (Na/surjektivni zobrazeni). Funkce f : X — Y je na <= pro vSechnaY existuje alespori
jedno x, Yx € X. (nebo Vy3dz : f(z) =y).

Definice (Bijekce). Funkce f: X — Y je bijektivni <= je prostd i na.
Véta. Necht A je n-prvkovd a B je m-prvkovd mnoZina, potom pocet funkci mezi A a B je m™.
Véta. Necht A, |A| =n a B je m-prokovd mnoZina, potom pocet prostych funkci mezi A a B je m™.

Veéta. Pocet vsech n-prvkovych podmnozin je roven 2", tedy ‘2X| =21,

1.3.5 Permutace

Definice (Permutace). Permutace je bijekce 7 : [n] — [n].
Definice (Pevny bod). Pro permutaci m a prvek x je pevny bod m(x) = z. Zobrazi se sam na sebe.

Véta. Pokud A, |A| = n je koneénd mnozina, tak permutace A je bijekce z A do A, tedy n!.

1.3.6 Kombinacni ¢isla

Definice (Mnozina vSech k-prvkovych podmnozin). Necht N je mnoZina. Potom (]]X) je mnozina
vSech k-prvkovych podmnozin mnoziny N .

N
(})-taevia-n
Definice (Kombinacni ¢éislo). Pro éisla n,k > 0 plati:

Cv_yﬁ no(n—1) .- (n—k+1) nl

k) K 1-2-.. -k Tk (n— k)
Véta. Pocet usporadanych k-tic bez opakovdni a k-prvkovych podmnoZin je roven (Z)

Véta (Vlastnosti kombinacnich ¢isel).

<
(el
o+
o
—~
&
=
o
=)
o
=
&
<
8
<
m
=
<
S
m
2z
—~
S
_|_
s
3
I
3
/‘}
N———
8
i
e
<
ko
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1.3.7 Princip inkluze a exkluze
Princip inkluze a exkluze

Véta (Princip inkluze a exkluze #1). Pro konecné Ay az A,, plati:

|->er 5 Na

k=1 IE([k]) el

Dikaz. Necht A := U A;

Leva i prava strana jsou soucty velikosti néjakych mnozin, takze se muzeme ptat, kolikrdt levé a
pravé strane prispéje kazdy prvek a € A. Vime, ze k levé prispéje jednou, chceme dokéazat, ze k pravé
také jednou. Zadefinujme si kolikrdt se zapocita #i. Necht ¢ = #i : a € A;: 216([21) ‘ﬂiel AN {a}|.
t
Pro k > t: 0-krdt. Pro k <t: (—1)"!(;)-krdt. To ndm d4 celkem Z 1)+t (k) =—(0-1)=1
k=1
O

Aplikace (Problém satnérky). Do divadla prislo n pani s n klobouky, kazdy pdn si odloZil klobouk
v Satné a po predstaveni si jej zase vyzvedl. Satndrka vsak pdnim vybrala klobouky ndhodné. Jakd je
pravdépodobnost, Ze Zadny pan nedostal svij klobouk?

Pravdépodobnost, Ze zadny pan nedostane sviij klobouk je ZRermutact bez peviého bodu

Zpormtact . Vime, ze # pocet
permutaci = n!. Nejprve spocitdme #pocet permutaci s pevnym bodem. Pro kazdy prvek i € [n]
definujeme A; = {7|m(i) = i} (permutace s pevnym bodem 7). Pak plati, ze |A;| = (n — 1), a kdyz
se podivame na velikost pruniku mnozin Ay, Ay, ..., Ay, tak je to (n — k)!. Z PIE:

_ Z(_l)k+1 Z (n _ ]{)' _ Z(_1>k+1 (Z) (n _ /{)' _ Z(_l)k+1z_!!‘

k=1 1e(Y) k=1 k=1

n

U

=1

n

Dosadime do poc¢tu permutaci bez pevného bodu: |mg| = n!— Z(—l)
k=1

n!  n!
kHE ~ —. Pravdépodobnost,
e

nl-e’t 1
ze zadny pan nedostal svij klobouk je tedy — =
n! e

k
1
Véta (Pocet surjekei). Pocet surjeket je o Z ( ) — )"
=0

Dukaz. Mame mnoziny A, |A| = n a B, |B| = k. Pocet surjekei f : A — B uréime za pomoci PIE.
Vime, Ze pocet viech funkcf mezi mnozinami je |B4| = k". Kdyz z mnoziny B* odebereme jeden
prvek, dostaneme (k — 1)", kdyz odebereme dva, dostaneme (k — 2)™ atd. Obecné ndm to pro ¢
odebranych prvku dava (k —i)".

Daéle chceme pocitat jen ¢isté surjektivni zobrazeni, nikoliv bijektivni, které nastane v ptipadé
n = k. Konkrétné: Necht g : A — B a necht ® je pocet tohoto zobrazeni. Mnozinu A rozdélime do
k casti Ay, ..., Ag, kde pro kazdou tuto ¢ast a existuje pritazeni do mnoziny B. Nastava tedy bijekce
z A do B, kde pocet bijektivnich zobrazeni odpovida k! . Celkem bychom dostali ”® = k!xpocet
f:A— B” kde f je zbyld (nami hledand) funkce na.

L P R

0
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Definice (Eulerova funkce). Zobrazeni ¢ : N — N znaci pro n € N pocet céisel k € {1,...,n — 1}
nesoudélnych s ¢islem n. Tedy jinak (n) = {k € {1,...,n — 1} | ged(k,n) = 1}|.

Vypocet eulerovy funkce za pomoci principu inkluze a exkluze Necht n = plfl p’§2 <o phm
je rozklad n na prvocinitele. Aplikujeme PIE: Pocet ¢isel < n nesoudélnijch s n ziskdme odec¢tenim
poctu nasobku vsech prvocisel p; a prictenim zpét ndsobku jejich dvojic atd.:

go(n):n—ZZjL Z - — (=" n

— Di “—~  pip; P2 Pm

1.3.8 Hallova véta
Definice (Pérovéni). Parovani v grafu G = (V, E) je mnoZina hran M C E, t.Z. kazdy vrchol patii
do nejvyse jedné hrany z M.

Definice (Vrcholové prokryti). Vrcholové prokryti v grafu G = (V, E) je mnozina vrcholu C' C 'V,
t.Z. kazda hrana obsahuje alespon jeden vrchol z C.

Definice (Systém ruznych reprezentantu). SRR v hypergrafu H = (V, E) je funkce r: E — V, t.z.:
(1) Ve € E :r(e) € e, kde r(e) je reprezentant hyperhrany e,

(2) Ve, f € E:e# f = r(e) #r(f), tedy funkce r je prostd.

Véta (Konig-Egervaty). V kazdém bipartitnim grafu md nejuétsi pdrovani stejnou velikost, jako
nejmensi vrcholové pokryti.

Véta (Hallova). Necht G je bipartitni graf s partitami A, B. Potom G md pdrovdni velikosti
Al <= VX CA:|IN(X)| > |X|.

Dikaz. Musim dokazat obé implikace.

—> Pokud existuje parovani velikosti |A], tak pro kazdou X C A existuje |X | vrcholu sparovanych
s X a ty patif do N(X). Tedy |N(X)| > |X|.

<= Pro spor. Necht M je nejvétsi parovani G, t.z.: |[M| < |A|. Existuje pokryti C, kde |C] =
|M| < |A]. Definujeme si C4y :=CNA, Cg:=CNBaX:=A\C4.
Zjistime, ze N(X) C Cp a navic, ze | X| = |A| — |C4| > |Cg| > |N(X)|, coz ndm dava spor.

]

Véta (Hallova - hypergrafové verze). Hypergraf H = (V, E) mda SRR <— VF C E: > |F.

Ue

ecF

Diikaz. Necht H = (V, E) je hypergraf a I jeho graf inci-
dence. H ma SRR <= Iy m4 parovani velikosti | E]|.

Ol <D B

partitni Hallova podminka pro Iy a partitu E. Ekvivalence ﬁ- . S
plati diky bipartitni Hallové podmince. O

Hallova podminka pro H <= VF C E: U e

Algoritmus (Nalezeni SRR v polynomidlnim case). Modelujeme bipartitni graf. Levd partita jsou
mnoziny Sy, ..., Sp,. Pravd partita prvky |J, S;. Hrana vede z S; — x, pokud = € S;. Najdeme max
parovani v bipartitnim grafu (tfeba Ford-Fulkerson — polytime) a z Hallovy véty: SRR existuje <=
parovani pokryva vSechny mnoziny S;.
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1.4 Teorie grafu

1.4.1 Zakladni pojmy teroie grafa

Definice (Graf). Graf G je uspordidand dvojice (V, E), kde V' je konec¢nd neprdzdnd mnozina vrcholi
a B C (‘2/) konecnd neprdzdnd mnoZina hran, neboli vsech dvouprvkovych podmnoZin V.

Definice (Isomorfismus grafu). Grafy G a H jsou isomorfni, pokud existuje bijekce mezi vrcholy:
Af Ve = Vg , tZ {u,v} € Bg <= {f(u), f(v)} € Ey
Definice (Podgraf). Graf H je podgrafem grafu G, pokud Vg C Vg a Eg C Eg N (V2H)
Definice (Indukovany podgraf). Podgraf H je indukovany, pokud E(H) = E(G) N (V(QH)).
Definice (Stupen vrcholu). Stupern vrcholu ‘v’ v grafu G = (V, E) je
deg(v) == |{u €V : {u,v} € E}|.
Neboli pocet hran grafu G, které obsahuji hranu s v.
Definice (k-regularni graf). Graf je k-reguldarni, pokud pro k € N plati Vu € V(G) : degq(u) = k.
Definice (Skére grafu). Skdre grafu G je posloupnost stupriu vsech vrcholi (krom usporddadni).

Definice (Doplnék grafu). Doplnék grafu G = (V, E) je graf G = (V, (‘2/) \ E).

1.4.2 Zakladni priklady grafi
Definice (Uplny graf). Uplng graf na n vreholech znacéime K,, kde V = n] a E = (‘2/)

Definice (Bipartitni graf). Graf G je bipartitni, pokud lze V' rozdélit na dvé disjunkini mnoziny V;
a Vo takové, Ze kaZdd hrana z E obsahuje jeden bod z Vi a druhy z V5.
Tedy pokud V =V, U Vs, t.2. Vi N Vy = 0. Hrany jsou mezi Vi a Vs, neboliVe € E : lenNVy| = 1.

Definice (Uplny bipartitni graf). Uplny’ bipartitni graf na n 4+ m vrcholech znacime K, ,,, kde
V =A{uy,...u,} U{vr, ...,v} (=dvé partity) a E = {{u;,v;} |1 <i<n, 1<j<m}.

Definice (Eulerovsky graf). Graf je Eulerovsky < je souvisly a vsechny vrcholy maji sudy stuperi.
Definice (Cesta). Cestu na n vrcholech znac¢ime P, kde V = [ng] a E = {{i — 1,i} | 1 <i <n}.

Definice (Kruznice). Kruznici na n vrcholech znacéime C,, kde V = [n3] a
E={{i,i+1}|1<i<n-1}U{{l,n}}.

Definice (Sled). Sled z vy do v, v grafu G je posloupnost (vy,e1,v1,€3,...,6€n,0,), pokud Vi plati
e; = {vi—1,v;}, kde v jsou vrcholy a e hrany.
(Mohou se opakovat vrcholy i hrany).

Definice (Tah). Tah z vy do v, v grafu G je posloupnost (vg,e1,v1, €2, ..., €n, Uy), pokud Vi plati
e; = {vi_1,v;}, kde v jsou vrcholy a e navzdjem rizné hrany.
(Mohou se opakovat pouze vrcholy, ne hrany).
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1.4.3 Souvislost grafu
Definice (Souvisly graf). Graf je Souvisly, pokud (Yu,v € V') existuje cesta z u do v.

Definice (Relace dosazitelnosti (ekvivalence)). Ekvivalence v grafu G je bindrni relace ~ na V(G),
t.Z. u ~ v, pokud existuje cesta zu do v.

Definice (Komponenty souvislosti). Komponenty souvislosti jsou podgrafy indukované tridami ekvi-
valence.

Definice (Vzdalenost v grafu). Vzddlenost v souvislém grafu G je definovdina jako dg : V* — R :
Vu,v : dg(u,v) je minimum z délek mezi u a v.
Pro metriku musi platit Vu,v,w € V:

o do(u,v .. je minimum z délek cest, cesty jsou také nezdporné

(
e dg(u,v) =0 < u =0 ... nikde jinde (krom dg(u,u)) vzddlenost nulovd neni

o dg(u,v) < dg(u,w) < dg(w,v) ... vzddlenost mezi uw a v je shora omezend mezi vzddlenosti
U, W aw,v

o dg(v,u) = dg(u,v)

1.4.4 Stromy
Definice (Strom). Strom je souvisly graf bez kruznic. (acyklicky graf)

Definice (Les). Les je acyklicky graf. Jeho komponenty souvislosti jsou stromy.
Definice (List). List je vrchol stupné 1.
Veéta. Kazdy strom s alespon dvema vrcholy md alespon jeden list.
Véta. Pro graf G s listem v plati, Ze G je strom <= G — v je strom.
Véta (Eulerova formule). Pro G' souvisly mdme pocet hran stromu |E(G)| = |V(G)| — 1.
Véta (Ekvivalentni charakteristiky). Pro graf G jsou ndsledujici tvrzeni ekvivalentni:

(i) G je souvisly a acyklicky (=strom)

(i) Yu,v € V(G) 3! cesta v G mezi u a v (=jednoznacnd souvislost)

(i) G je souwvisly a Ve € E(G) : G — e neni souvisly (=minimdlni souvislost)

(iv) G je acyklicky a Ve € (V(2G)) \ E: G+ e md cyklus (=mazimdlné acyklicky)

(v) G je sowvisly a |E(G)| = |V(G)| — 1 (=Eulerova formule)

Véta. V grafu G = (V, E) plati:
> degg(v) =2|E|

veV
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1.4.5 Rovinné grafy

Definice (Rovinny graf). Rovinng graf je takovy graf, pro néjz existuje néjaké nakresleni v roviné.

Definice (Rovinné nakresleni). Rovinné nakresleni G je prirazeni ruznych bodi v roviné ruznym
vrcholum G, spojené s prirazenim oblouktu kaZdé hrané z E(G) — aby bylo nakresleni rovinné, tak
zadné dva oblouky nesmi sdilet jeden bod v roviné, jediné ten koncovy.

Definice (Sténa). Sténa je oblast ohranicend hranami.

Véta (Kuratowski). Graf G je nerovinng <= G obsahuje podgraf izomorfni s délenim Ky nebo
Ks 3.

Véta (Eulerova formule). Necht G je souvisly graf nakresleny do roviny, v := |V (G)], e := |E(G)],
f := #stén nakresleni. Potom plati v — e+ f = 2. (pro ¢ pocet komponent: v—e+ f=1+c.)

Diukaz. Zvolime v pevné a pak indukci podle e.

(i) e=v—1 (G je strom), f = 1:
v+l=v—-1+2

(i) e — 1 — e: m&jme graf G s e hranami. Necht \ je hrana na kruznici v G.
Potom G' =G — X\, v =v,¢  =e—1, f' = f — 1. Nyni pouzijeme indukéni predpoklad:

v'—i—f’:e'—l—Q
vt f-I=e—-1+2
v+ f=e+2

O

Véta (Maximalni pocet hran rovinného grafu). V kazdém rovinném grafu s alespori 3 vrcholy plati:
|E| < 3|V]—6.

Dukaz. Doplnim do G hrany, az ziskdm maximalni rovinny graf G’. Takze v' = v, ¢/ > e. Kazda sténa

prispéje tfemi hranami, kadzd4 hrana dvéma sténdm, tedy 3f = 2e ~» f = %e. Nyni jen dosadime:

2
v’—e’+§e:2 — Jv—€+2=6 = e<3v—6

Veéta. V rovinném grafu existuje vrchol stupné nejuiyse 5.

Véta (O 4 barvéch). Kazdy rovinng graf lze obarvit nejuyse 4 barvami.

1.4.6 Barevnost graft

Definice (k-obarveni grafu). Obarveni grafu k barvami je ¢ : V(G) — [k] tak, Ze kdykoli {x,y} €
E(G), pak c(x) # c(y).

Definice (Barevnost grafu). Barevnost x(G) je nejmensi k takové, Ze existuje k-obarveni G.
Véta. x(G) <2 < G je bipartiini <= G nemd lichou kruznici.
Definice (Klikovost). Klikovost w(G) je rovna velikosti nejuétsi kliky (iplného podgrafu Ki) v G.

Véta (Barevnost a klikovost). x(G) > w(G).
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1.4.7 Hranova a vrcholova souvislost grafi

Definice (Hranovy tez). F' C E je hranovy 7ez v G pokud G \ F je nesouvisly.

Definice (Hranova k—souvislost). G je hranové k—souvisly, pokud neobsahuje Zddny hranovy ez
velikosti mensi nez k.

Definice (Vrcholovy fez). U C V' je vrcholovy ez v G pokud podgraf indukovany V\U je nesouvisly.

Definice (Vrcholova k-souvislost). Graf G je vrcholové k-souvisly, pokud ma alespori k + 1 vrcholi
a neobsahuje Zadny vrcholovy rez velikosti < k.

Definice (Vrcholové souvislost). Vrcholovd souvislost grafu G, znaceno K,(G), je nejvétsi k, t.z.:
G je vrcholové k-souvisly.

Véta (Menger — hranova xy verze). Pro dva rizné vrcholy x,y grafu G plati, Ze G obsahuje k € N
hranove disjunktnich cest z x doy <= G neobsahuje hranovy xy—rez velikosti mensi nez k.

Véta (Menger — vrcholova zy verze). Pro dva rizné nesousedni vrcholy x,y grafu G plati, zZe G
obsahuge k € N navzdjem vrcholove disjunktnich cest z x doy <= G neobsahuje vrcholovy xy-rez
velikosti < k.

Véta (Menger — hranova verze). Graf G je hranové k-souvisly <= mezi kaZdgmi dvéma rizngmi
vrcholy existuje k hranove disjunktnich cest.

Véta (Menger — vrcholova verze). Graf G je vrcholové k-souvisly <= mezi kazdgmi dvéma rizngmi

vrcholy existuje k navzdjem vnitiné vrcholové disjunktnich cest.

1.4.8 Orientované grafy

Definice (Otevieny eulerovsky tah). Otevieny eulerovsky tah z vy do v, je takovy tah, ktery obsahuje
vSechny vrcholy a hrany grafu pravé jednou.

Definice (Uzavieny eulerovsky tah). Uzavreny eulerovsky tah je takovy eulerovsky tah, kde vy = v,.
Definice (Orientovany graf). Orientovany graf je usporadand dvojice (V, E), kde
ECV*\{(z,z) |z €V}

Definice (Podkladovy graf). Podkladovy graf grafu G = (V, E) je graf H = (V, F), kde

Fe {{u,v} e (Z)‘ (u,v) € BV (u,u) GE}.

Neboli mnozina vsech neusporddanijch dvojic vrcholi, kde v jednom nebo druhém poradi je hrana.
Definice (Silna souvislost). Pokud pro Yu,v € V' existuje orientovand cesta z u do v.
Definice (Slaba souvislost). Pokud podkladovy graf je souvisly.
Véta. Pro orientovany graf G je ekvivalentni:
(i) je vyvdzeny a slabé souvisly
(il) md uzavieny eulerovsky tah

(iii) je vyvdZeny a silné souvisly
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1.4.9 Toky v sitich
Definice (Tokova sit). Je pétice (V, E, z,s,¢):
o V = mnozina vrcholi
e Y = mnozZina orientovanych hran E CV xV
e 2V = zdroj
o sc V\{z} = stok/ spotrebic
e c: E—[0,+00) =c(e) je kapacita hrany e
Definice (Tok). V siti (V, E,z,s,c) je funkce f : E — [0,+00) splriujici:
(i) Ve € B0 < () < cle),
(i) Yue V\{z,s}: Z fluv) = Z fow), respektive frn, = fou-

viuveEE vivuel
Definice (Velikost toku). Velikost toku f v siti (V, E, z,s,¢) je w(f) := flOut(z)] — f[In(z)].
Definice (Maximalni tok). Mazimdlni tok je takovy tok, ktery md nejvétsi velikost.

Definice (Rez). v siti (V, E, z,s,¢) je mnoZiana hran R C E, t.z.: kaZdd orientovand cesta ze z do
s md neprazdny prunik s R.

e Kapacita 7ezu R = ¢(R) = Z c(e)

eER
o Minimdlni ez je Tez, kteryy md ze vsech Tezu nejmensi kapacitu.

Definice (Nenasycend cesta). Necht f je tok v siti (V,E, z,s,c). Nenasycend cesta pro f je neore-
intovand cesta xie1xs€y ... T 165 1TpCRTrr1, kde Vi =1,... k:

e ¢; je bud doprednd hrana, tedy e; = (x;, x;y1), nebo
o ¢; je zpétnd hrana, tedy e;(T;y1, ;).
Zaroven plati f(e;) < c(e;) pro kazdou doprednou hranu a f(e;) > 0 pro kaZdou zpétnou hranu.

Definice (Zlepsujici cesta). Zlepsujici cesta pro f je nenasycend cesta ze z do s.

Algorithm 4: Ford-Fulkerson — Princip hledani mazximdlniho toku v siti.

1 f < nulovy tok

2 while existuje zlepsujici cesta P ze z — s do

3 € < min.cpp) r(e). > Rezerva r(uv) = c(uww) — f(uv) + f(vu)
4 Zvétsime tok f podél P o e. > Ve po sméru zvétsime a proti sméru zmensime f(e)
5 end

6 return tok f.

Véta. Necht f je tok v siti (V, E, z,s,¢), potom ndsledugici tvrzeni jsou ekvivalentni:
(i) f je maximdlni
(il) f nemd zlepsujici cestu

(iii) Ewistuje 7ez R, t.2.: w(f) = ¢(R).

Véta (Minimax). Necht fumax je mazimdini tok a Ry je minimdni 7ez v (V,E,z,s,c), potom

w(fmax) - C(Rmin) .
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1.5 Pravdépodobnost a statistika

1.5.1 Pravdépodobnost, jevy, prostor

Definice (Pravdépodobnost). Necht 0 je mnozina elementdrnich jevii a F C 22 je podmnoZina
P(A)=1 jev jisty

elementdrnich jevu. Potom pravdépodobnost P je funkce P : F — [0,1] = {P(A) 0 i s’
=0 jev nemoiny

Definice (Diskrétni pravdépodobnostni prostor). Diskrétni pravdépodobnostni prostor je trojice
(2, F, P), kde Q je konecnd nebo spoéetnd, F =2%; P(Q)=1; a P(A)= Z P({w}).

weA

Definice (Konecény pravdépodobnostni prostor). Konecny pravdépodobnostni prostor je diskrétni,
kde € je konecnd.

Definice (Klasicky pravdépodobnostni prostor). Klasicky pravdépodobnostni prostor je konecny, kde

P(A) = {5

Definice (Elementarni jev). Vsechny viysledky néjakého pravdépodobnostniho experimentu. Znacime

jako 2.

Definice (Slozeny jev). Slozeny jev je takovy jev, ktery neni elementdrni. SloZeny jev nastane <>
nastane néktery z elementdarnich jevi v ném obsazZeny.

Definice (Pravdépodobnost jevu). Pravdépodobnost jevu uddvd, jakou mdme Sanci, Ze dany jev
nastane.

Véta (Zakladni pravidla pro pocitani). V pravdépodobnostnim prostoru (0, F, P) plati pro A, B € F:
e ACB = P(A) < P(B),
e P(AUB)=P(A)+ P(B)— P(ANB),
e P(AJUAU...) <> . P(A).

Definice (Nezavislost ndhodnych jevi). Jevy A a B jsou nezdvislé <= P(ANB) = P(A)-P(B).

Definice (Podminéna pravdépodobnost). Podminénd pravdépodobnost je pravdépodobnost, Ze nastal
jev A za podminek, Ze nastal jev B.

P(ANB)

Véta (Bayesova véta). Necht A je jev, kde P(A) # 0 a By, ..., By, je rozklad Q na jevy t.2. Vi :
P(B;) # 0. Potom:

o PAB) - P(B)
P(Bi|A) N P(A|B;) - P(B;)

1.5.2 Nahodné veliciny a jejich rozdéleni

Definice (Nahodna veli¢ina). Ndhodnd velicina je zobrazeni X : Q — R, které Vo € R spliuge:
{weQ: X(w)<z}eF.

Definice (Diskrétni nahodnd veli¢ina). Funkci X : Q@ — R nazveme diskrétni ndhodnd veli¢ina,
pokud je obor hodnot X spocetnd mnozina a pokud Vr € R plati: {w € Q: X(w) =z} € F.
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Definice (Spojitd ndhodna veli¢ina). Ndhodnd velicina X se nazyjvd spojitd, pokud ezistuje nezd-
pornd redlnd funkce fx tak, Ze

Fy(z) = P(X < 2) = / Fa(t) dt.
Definice (Indikatorova ndhodna velicina). Pro libovolny jev A € F definujeme indikdtorovou n.v.
I Ia(w) =1 pokud w € A,  1a(w) =0 jinak.
Definice (Bernoulliho rozdéleni). Pro X ~ I4 ~ Bern(p) je
e E(X)=p,
o var(X) =p(1 —p)
(X maze byt napriklad pocet orli pri jednom hodu nespravedlivou minci.)
Definice (Geometrické rozdéleni). Pro X ~ Geom(p) je
e E(X)=1
o var(X) = %

Pro dané p € [0, 1] mdme px(k) = (1 — p)*~1p, pro k € N.
(X muze byt napriklad kolikdtym hodem minci padl proni orel.)

Definice (Binomické rozdéleni). Pro X ~ Bin(n,p) je
o E(X)=np,

e var(X) =np(l —p)

Pro dané p € [0, 1] mdme px (k) = (Z)pk(l —p)" ™ pro k €{0,...n}.

(X maze byt napriklad pocet orli pri n hodech nespravedlivou minct.)
Definice (Hypergeometrické rozdéleni). Pro X ~ Hyper(N, K,n) je

o E(X)=nX,

o var(X) =nk(1 - £)N=,

DO

Pro dané p € [0,1],n, N, K mdme px(k) = P(X = k) = 5

(X muze byt napriklad pocet vytaZengch cervenych micku prin tazich, v osudi je K cervenyjch z
N celkovijch micki.)

Definice (Poissonovo rozdéleni). Pro X ~ Pois(\) je
o E(X) =)\,
o var(X) = \.
= A

Pro dané p € [0,1] a redlné X > 0 mdme px (k) = 37>, Plati, Ze Pois(\) je limitou Bin(n,\/n).

(X muze byt napriklad pocet emailu, které dostaneme za jednu hodinu.)
Definice (Normélni rozdéleni). Pro X ~ N(0,1) je

o E(X) =0,
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o var(X) = 1.

g2
Plati, zZe fx = ¢, kde p(x) = \/%76 2.

Definice (Exponenciélni rozdéleni). Pro X ~ Exp(\) je

i E(X) - %,
o var(X) = 5.
0 pro x <0 0 pro x <0
F = —
x() {1—6_)‘5‘3 pro x>0 fx(x) {/\—e"\x pro x>0

(X maize byt napriklad c¢as pred prichodem dalsiho telefonniho hovoru do call-centra/ dotazu na
web-server/cas do dalsiho blesku v bource apod.)

Definice (Distribuéni funkce). Distribucni funkce n.v. X je funkce
Fx(z)=P(X <z)=P({we Q: X(w) <z}).
(1) Fx je neklesagici a zprava spojitd funkce

(2) lim Fx(z)=0

T—r—00

(3) lim Fx(z)=1

T—r—+00

Stfedni hodnota
Definice (Stiedni hodnota). Stredni hodnota ndhodné veliciny X je E(X) = Z P{w}) - X (w).

we

Véta (Linearita stfedni hodnoty). Necht X,Y jsou nezdvislé ndhodné veliciny a o € R, potom
EX+Y]=EX|+E)Y] a E[aX]=aE[X].
Véta. Necht XY jsou nezdvislé diskrétni ndhodné veliciny, potom E[X - Y] = E[X] - E[Y].

Definice (Markovova nerovnost). Necht X je nezdpornd ndhodnd velicina a ¥t > 1, potom plati:

PIX >t -E(X) <

B
St
Rozptyl
Definice (Rozptyl). Rozptyl n.v. X, znaceno var(X), nazveme ¢islo E((X — EX)?).
Véta. var(X) = E(X?) — E(X)?

Véta (Rozptyl souctu). Pro Xy, ..., X, nezdvislé diskrétni nebo spojité n.v. plati
var(X, + -+ X,,) = var(Xy) + - - - + var(X,,).

o0

Definice (Spojity rozptyl). Rozptyl spojité n.v. X je var(X) := E(X —p)?) = / (z—p)? fx(z)d.

— 00
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1.5.3 Limitni véty

Véta (Zékon velkych ¢isel). Necht Xy, ..., X, jsou stejné rozdélené n.n.v. se stredni hodnotou p a
rozptylem o*. Oznacme S, = (X1 + -+ + X,,)/n. Pak pro kazdé ¢ > 0 plati

lim P(|S, —u| >¢) =0.
n—oo

Rikdme, ze posloupnost S,, konverguje k pu v pravdépodobnosti, piseme S, =¥ p.

Véta (Centralni limitni véta). Necht Xi,..., X, jsou stejné rozdélené n.n.v se stredni hodnotou
a rozptylem o?. Oznacme

Y, =((Xi+-+X,) —nu)/(vn-o).
Pak Y, —¢ N(0,1). Neboli, pokud F,, je distribucni funkce Yy, tak

lim F,(z) = ®(x) Vo € R.

n—oo

Rikdme, Ze posloupnost Y, konverguje k N(0,1) v distribuci.

1.5.4 Bodové odhady

Chceme urc¢it hodnotu néjakého parametru — ¢asto stiedni hodnoty neznamého rozdéleni.

Definice (Bodovy odhad). Pro ndhodny vgbér Xi,..., X, ~ Fy a libovolnou funkci g nazveme
bodovy odhad 6,, = (X1, ..., X,):

~

e nestranny, pokud E(0,) = g(0),

e asymptoticky nestranny, pokud lim E(an) =g(0),

n—oo
e konzistentni, pokud 0, Rt g(0),
o vychyjlent bias(@n) = ]E(gn) -0
o stredni kvadratickou chybu MSE = E((@n —0)?)

Véta (Parametry vybérového momentu a rozptylu). Mdme:

_ 1 &
o X, = — E X, je konzistentni nestranny odhad p =EX; =EXy = ...
n
i=1

1 -
° Z == Z(XZ — X;)? je konzistentni asymptoticky nestranny odhad o
n
=1
~ 1 — _
o 52 = — Z(X’ — X;)? je konzistentni nestrannij odhad o>

=1

Metoda momentti. Volime takové 6, které fesi soustavu rovnic

—

m,.(0) = m,.(0) r=1,...,k
Necht r-ty moment ndhodné veliciny X je E(X") a oznacme:
e m,.(0) :=E(X") pro X ~ Fj jako r-ty moment (prumér z celé populace)
. m = %Z?:l X jako r-ty vybérovy moment (prumér z ndhod. vybéru Xi,..., X, z Fy)

—

Véta. m,(0) je nestranny konzistentni odhad pro m,.(0).
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Priklad. Necht Xi,..., X,, ~ Bern(p), kde X; = “i-ty ¢clovek je levdk”. Potom 6 = p € [0,1] a
m1(0) = E(X;) = 0. Celkem

—

1 —
m..(6) X5+ +X,) =X,

)
1.5.5 Intervalové odhady

Misto jednoho éisla s nejistym vyznamem vypocitame z dat interval [5*, @\*} .

Definice (Intervalovy odhad). Intervalovy odhad (konfidenéni interval) je interval [D, H|, ktery s
predem zvolenou pravdépodobnosti (1 — «) pokrgvd nezndamy parametr 6 populace. Cislo o se nazjvd
hladina vyznamnosti (typicky o = 0.05).

Metoda zalozend na normalni aproximaci. Tato metoda vyuzivéa centralni limitni vétu (CLV)
a je vhodnd pro velké vybéry (n > 30).

(1) Bodovy odhad: Pro stiedn{ hodnotu 6 =y pouzijeme § = X,, = £ 3" | X;.
(2) Standardni chyba (SE):

e Pokud je znamy rozptyl o2, tak SE = \/iﬁ
e Pokud rozptyl nezname, odhadneme ho pomoci vybérového rozptylu:

g . 1 & _
E="%, kde S*= § X, — X,)2
S vn’ e S n_1¢:1( )

(3) Kvantily rozdéleni:

e Pro zndmy rozptyl pouzijeme normélni rozdéleni N (0,1): z4/2 = ®7'(1 — §)
e Pro neznamy rozptyl a malé vybéry pouzijeme Studentovo t-rozdéleni s n — 1 stupni

volnosti: o
laj2 = wt(1- 5)
(4) Interval spolehlivosti:
g+ Zo/2 - SE (pro znamy rozptyl),

0+ tasa - SE (pro nezndmy rozptyl).

Aplikace. Pouziva se napriklad pro odhady prumérné vysky, hmotnosti, doby zivota.

1.5.6 Testovani hypotéz

Jedna se o metodu pro rozhodovani o platnosti ur¢itych hypotéz na zakladé pozorovanych dat.

Zakladni pristup. Postupujeme nésledovné:
(1) Formulujeme nulovou hypotézu (H,) - konzervativni tvrzeni, které testujeme (napf. ”mince
je spravedlivd”, 716k nemd dcinek”).
(2) Stanovime alternativni hypotézu (H;) - tvrzeni, které plati, pokud Hy neplati (napf. ”mince
je falesnd”, 716k ma ucinek”).
3) Zvolime testovou statistiku 7' = h(X7, ..., X,,), kterd méii odchylku dat od H,.

4) Urcéime kriticky obor W - mnozinu hodnot statistiky, pro které zamitneme H,.

5) Vypocteme pozorovanou hodnotu statistiky ¢ = h(z1,...,x,).

(3)
(4)
(5)
(6)

Rozhodneme: pokud t € W, zamitneme H, ve prospéch Hi; jinak Hy nezamitame.
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Chyby v testovani. Prii rozhodovani muzeme udélat dva typy chyb:
e Chyba 1. druhu: Zamitneme Hy, i kdyz plati.

P(chyba 1. druhu) = P(T € W|Hy) = «

e Chyba 2. druhu: Nezamitneme Hy, i kdyz neplati.

P(chyba 2. druhu) = P(T ¢ W|H;) = 8

e Sila testu: Pravdépodobnost spravného zamitnuti Hy, kdyz neplati.

1— 8= P(T € W|H,)

Hladina vyznamnosti. Hladina vyznamnosti « je pravdépodobnost chyby 1. druhu, kterou jsme
ochotni akceptovat. Typické volby jsou a = 0.05 nebo o = 0.01. Kriticky obor W pak volime, aby:

P(T € W|Hy) = a

Zakladni princip: Zamitneme Hy, pokud p-hodnota = P(T > t|Hy) < a.
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1.6 Logika

1.6.1 Syntaxe

Definice (Jazyk VL). Jazyk vyrokové logiky je uréeny neprdzdnou mnozinou vgrokovijch promeén-
nych P. Patri do néj také symboly pro logické spojky —, N\, V, —, > a zdvorky (, ).

Definice (Vyrokové formule). Vyrok v jazyce P je prvek mnoziny VFp definované ndsledovné: VFp
je meymensi mnozina splnujict

e pro kazdy prvovyrok p € P platip € VFp |

e pro kazdy vyrok ¢ € VFp je (—p) také prvek VFp

o pro kazdé o, € VFp jsou (o A1), (¢ V), (¢ = ), a (¢ <> ©) také proky VFEp.

Definice (Signatura). Signatura je dvojice (R, F), kde R, F jsou disjunktni mnoziny symboli (re-
laéni a funkéni, ty zahrnuji konstantni) spolu s dangmi aritami (tj. dangmi funkci ar: RUF — N)
a neobsahugici symbol =" (ten je rezervovany pro rovnost ).

Definice (Jazyk PL). Jazyk predikatové logiky je ddn signaturou (R, F) a uvedenim, zda jde o jazyk

s rovnosti, ¢i bez. Patri do néj spocetné mnoho promeénngych, relacni, funkéni a konstantni symboly

4

ze signatury (pripadné “="), univerzdlni a existencéni kvantifikdtory ¥, 3, symboly pro logické spojky
-, A, V, =, <> a zdvorky ().

Definice (Termy). Termy jazyka L jsou konecné ndpisy definované induktivné:

e kazZdd proménnd a kaZdy konstantni symbol z L je term,

o je-li f funkcni symbol z L arity n a jsou-lity, ..., t, termy, potom ndpis f(ty,ta, ... t,) je také
term.

MnoZinu vSech termu jazyka L oznacime Termy,.

Definice (Formule). Formule jazyka L jsou koneéné ndapisy definované induktivné. Plati stejné tri
body jako u vyroku, plus: Je-li ¢ formule a x proménnd, potom ((Vx)p) a ((Ix)p) jsou také formule.

Definice (Oteviend formule). Formule je oteviend, pokud neobsahuje Zddny kvantifikdtor.
Definice (Sentence). Formule je uzaviend (sentence), pokud nemd Zadnou volnou proménnou.
Definice (Literél). Literdl ¢ je bud prvovyrok p nebo negace prvovyroku —p.

Definice (Klauzule). Klauzule je disjunkce literdli C' = €,V ¢y V -+ -V {,. Jednotkové klauzule je
samotny literdl (n = 1) a préazdnou klauzuli (n = 0) myslime L.

Definice (CNF). Vyrok je v konjunktivni normalni formé (v CNF) pokud je konjunkci klauzuli.
Prazdny vyrok v CNF je T.

Definice (Elementarni konjunkce). Elementarni konjunkce je konjunkce literdli E = €y NloN- - -NL,y,.
Jednotkova elementarni konjunkce je samotny literdl (n = 1). Prdzdnd (n =0) je T.

Definice (DNF). Vyrok je v disjunktivni normélni formé (v DNF) pokud je disjunkci elementdrnich
konjunkci. Prazdny vyrok v DNF je L.

Véta (Prevod CNF DNF). Meéjme konecny jazyk P a libovolnou mnozinu modeli M C Mp. Potom
existuje vyrok ppnr v DNF a vijrok oong v CNF takovy, Ze M = Mp(@pnr) = Mp(@cnr). Konkrétne:

@PDNF = \/ /\pv(p)

veM peP
voe = A V7= A Voo
veEM PEP vg M peP
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e Implikace a ekvivalence: e Konjunkce (prevod do DNF):

b2 Y~ VY AWV X)~ (@A) V(0 AX)
ooy~ CoVIIA PV Y) (V) AX~ (9 AX) V(1 AY)
e Negace:
e Disjunkce (pfevod do CNF):
(P A) ~ —p V-
(o V) ~ —p At eV WAX)~ (VYA (pVX)
T~ @ (AP VX~ (pVX)A[WVX)

.

Definice (SAT). Virok ¢ je v k-CNF, pokud je v CNF a kaZdd klauzule md nejvyse k literdli.
Problém k-SAT se ptd, zda je dany k-CNF vyrok splnitelny. Pro k > 3 je k-SAT naddle NP-uplny,
kazdou CNF formuli lze zakddovat do 3-CNF vyroku.

Definice (PNF). Formule ¢ je v prenexni normélni formé (PNF), je-li tvaru

(lel) s (ann)d

kde Q; je kvantifikdtor (¥ nebo 3) a formule ¢ je oteviend. Formuli ¢' potom tikdme oteviené jadro
a (Q1x1) ... (Qnxy) je kvantifikdtorovy prefix.

Véta (Existence PNF). Ke kazdé formuli p ezistuje ekvivalentni formule v prenexni normdlni forme.

Véta (Pievod do PNF). Oznacme jako Q kvantifikdtor opacny ke Q. Necht ¢ a 1) jsou formule, a
proménnd x necht neni volnd ve formuli 1. Potom plati:

=(Qu)p ~ (Qr)-p
(Qr)e Ay ~ (Qz)(p AY)

(Qu)p Vi ~ (Qz)(p V)

(Qr)p =¥ ~ (Qu)(p — ¥)

= (Qu)p ~ (Qz)(Y — ¢)

Definice (Rezoluéni pravidlo). Méjme klauzule Cy a Cy a literdl ¢ takovy, ze £ € Cy a f € Cy. Potom
rezolventa klauzuli Cy a Cy ptes literal £ je klauzule

C = (Cr\ {€}) U (Ca\ {1}).

Definice (Rezoluéni dukaz). Rezolu¢ni dukaz (odvozeni) klauzule C' z CNF' formule S je koneéna
posloupnost klauzuli Cy, C,...,C, = C takovd, Ze pro kazdé i bud C; € S nebo C; je rezolventou
néjakych C;,Cy kde j <@ a k <.

Pokud rezoluéni dukaz existuje, tikame, Ze C' je rezoluci dokazatelnd z S, a piseme S g C.
(Rezolucni) zamitnuti CNF formule S je rezoluéni dikaz O z S, v tom pripadé je S (rezoluci)
zamitnutelna.

Definice (Rezolu¢ni strom). Rezoluéni strom klauzule C' z CNF formule S je koneény bindrni strom
s vrcholy oznacenymi klauzulems, kde

e v koreni je C,
o v listech jsou klauzule z S,

e v kazdém wvnitinim vrcholu je rezolventa klauzuli ze syni tohoto vrcholu.

Definice (Rezolu¢ni uzaveér). Rezoluéni uzaver R(S) formule S je definovdn induktivné jako nej-
mensi mnozina klauzuli spliujici:

o C € R(S) pro vsechna C € S,
o jsou-li C1,Cy € R(S) a je-li C rezolventa Cy,Cy, potom také C € R(S).
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1.6.2 Sémantika

Definice (Teorie). Teorie v jazyce P je libovolnd mnoZina vyroku v P. Jednotlivym vyrokim ¢ € T
rikame také axiomy.

Definice (Pravdivostni funkce). Pravdivostni funkce vgroku ¢ v konecném jazyce P je funkce
for: {0,1}F — {0,1} definovand induktivné:

o je-li ¢ i-ty prvovyrok z P, potom  f,p(zo,...,Tn_1) = 25,
o je-li p = (m¢'), potom  fop(xo, ..., 2n-1) = [-(fop(Zo,...,Tn 1)),
o je-li p = (¢'0O¢") kde O € {A,V,—, <>}, potom

f«p,P(x0> Ce 73:17,71) = fD(fg,/,]p(a:O, e ,SL’nfl), fcplgp(ﬂfo, Ce ,Q?nfl)).

Definice (Model jazyka VL). Model jazyka P je libovolné pravdivostni ohodnoceni v: P — {0,1}.
Mnozinu (vSech) modelu jazyka P oznacime Mp:

Mp={v|v:P— {0,1}} = {0,1}F

Definice (Model jazyka PL). Model jazyka L, nebo také L-struktura, je libovolnd struktura v sig-
nature jazyka L. Ttidu vsech modelu jazyka oznacime My,.

Definice (Struktura). Struktura v signatuie (R, F) je trojice A = (A, R, FA), kde
e A je neprdzdnd mnozina, rikdme ji doména (také univerzum ),
e RY*={RA| R e R} kde R* C A*B) je interpretace relacniho symbolu R,

o FA={fA| f € F} kde f*: A) — A je interpretace funkcniho symbolu f (specidlné pro
konstantni symbol ¢ € F mdme c* € A).

Definice (Platnost vyroku v modelu, model vyroku). Méjme vgrok ¢ v jazyce P a model v € Mp.
Pokud plati f,p(v) = 1, potom Fikdme, Ze vyrok ¢ plati v modelu v, v je modelem ¢, a piseme
v | . Mnozinu vSech modelii vyroku ¢ oznacujeme Mp(p).

Definice (Platnost teorie, model teorie). Je-li T' teorie v jazyce P, potom T plati v modelu v, pokud
kazdy axiom ¢ € T plati ve v. V tom pripadé tikame také, Ze v je modelem T, a piseme v = T.
Mnozinu vSech modeli teorie T v jazyce P oznacime Mp(T).

Definice (Sémantické pojmy). Rikdme, Ze vijrok ¢ (v jazyce P) je

e pravdivy, tautologie, plati (v logice/logicky), a piseme = ¢, pokud plati v kaZdém modelu
(jazyka P), Mp(p) = Mp,

e 17ivy, sporny, pokud nemd Zddny model, Mp(p) = 0.

e nezavisly, pokud plati v néjakém modelu, a neplati v néjakém jiném modelu, tj. nent pravdivy
ani lzivg, 0 C Ms(p) G Ms,

e splnitelny, pokud md néjaky model, tj. nent IZivy, Mp(p) # 0.

Ddle tikame, Ze vyroky ¢, (ve stejném jazyce P) jsou (logicky) ekvivalentni, piseme ¢ ~ 1 pokud
maji stejné modely, tj.
@ ~ ¢ pravé kdyz Mp(p) = Mp()).

Definice (Sémantické pojmy vzhledem k teorii). Méjme teorii T v jazyce P. Rikdme, Ze vyjrok ¢ v
jazyce P je
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pravdivy v T, dusledek T, plati v T, a piSeme T |= ¢, pokud ¢ plati v kazdém modelu teorie
T, neboli Mp(T) C Mp(yp),

1zivy v T, sporny v T', pokud neplati v Zidném modelu T, neboli Mp(p)NMp(T') = Mp(T, ) = 0.

nezavisly v T, pokud plati v nejakém modelu T', a neplati v néjakém jiném modelu T', tj. nent
pravdivy v T ani lzivg v T, O € Mp(T, ¢) € Mp(T),

splnitelny v 7', konzistentni s T', pokud plati v néjakém modelu T, tj. nend lZivy v T, Mp(T, ) #
0.

A rikdme, Ze vgroky ¢, (ve stejném jazyce P) jsou ekvivalentni v T', T-ekvivalentni, piseme @ ~p 1)
pokud plati v tychZ modelech T, tj.

@ ~p 1 prave kdyz Mp(T, p) = Mp(T, ).

Definice. Rekneme, Ze teorie T v jazyce P je

e spornd, jestlize v ni plati L (spor), ekvivalentné, jestlize nemd Zddny model,

e bezespornd (splnitelnd), pokud neni spornd, tj. mad néjaky model,

e kompletni, jestliZe neni spornd a kazdy vyrok je v ni pravdivy nebo [Zivy, ekvivalentné, pokud

mda pravé jeden model.

1.6.3 Extenze teorii

Definice (Extenze teorie). Méjme teorii T v jazyce P.

e Extenze teorie T je libovolnd teorie T v jazyce P O P spliujici Csqp(T) C Csqp (1),

e je to jednoduchd extenze, pokud P’ =P,

e je to konzervativni extenze, pokud Csqp(T') = Csqp(T") = Csqp (T") N VFp.

Skolemizace. Redukujeme otazku splnitelnosti dané teorie 1" na otazku splnitelnosti otevrené
teorie T". Celd konstrukce sestavé z nasledujicich kroku:

1.

2.

Ptevod do prenexni normdlni formy (vytykani kvantifikatoru).
Nahrazeni formuli jejich generalnimi uzavéry (abychom ziskali sentence — priddme “V”).

Odstranéni existencnich kvantifikdtoru (nahrazeni sentenci Skolemovgmi variantami — od-
stranime “Jy;” a substituujeme “f;(z1,...,x,,)").

Odstranéni zbyvajicich univerzalnich kvantifikdtoru (vysledkem jsou oteviené formule).

1.6.4 Dokazatelnost

Pokud dukaz existuje, Ize ho nalézt ‘algoritmicky’. Navic musime byt schopni algoritmicky ovérit, ze
je dany objekt opravdu korektni dukaz. Existuje-li dukaz, fikame, ze ¢ je dokazatelny z T, a piSeme
T F ¢. Po dokazovacim systému pozadujeme dvé vlastnosti:

e korektnost: je-li vyrok dokazatelny z teorie, je v ni pravdivy (T'F ¢ = T | ¢)

e uplnost: je-li vyrok pravdivy v teorii, je z ni dokazatelny (T' = ¢ = T F @)

Definice (Tablo). Kone¢né tablo z teorie T' je usporddany, polozkami oznackovany strom zkonstru-
ovany aplikaci konecné mnoha nasledujicich pravidel:
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e jednoprvkovy strom oznackovany libovolnou polozkou je tablo z teorie T,

e pro libovolnou polozkou P na libovolné vétvi V, muzZeme na konec vétve V' pripojit atomické
tablo pro polozku P,

e na konec libovolné vétve muzeme pripojit polozku T pro libovolny axiom teorie a € T.

Tablo z teorie T' je bud’ konecéné, nebo i nekoneéné: v tom pripadé vzniklo ve spocetné mnoha krocich.
Mizeme ho formdlné vyjddrit jako sjednoceni T = |J,»o 7, kde 7; jsou konecénd tabla z T, 19 je
jednoprvkové tablo, a ;11 veniklo z T; v jednom kroku.

Tablo pro polozku P je tablo, které md polozku P v koteni.

Definice (Tablo dukaz). Tablo dukaz viroku ¢ z teorie T' je sporné tablo z teorie T s polozkou Fo v
koreni. Pokud existuje, je ¢ (tablo) dokazatelny z T', piseme T & . (Definujme také tablo zamitnuti
jako sporné tablo s Ty v koreni. Pokud existuje, je ¢ (tablo) zamitnutelny z T', ¢j. plati T+ —¢.)

e Tuablo je sporné, pokud je kazdd jeho vétev spornd.
e Vétev je spornd, pokud obsahuje polozky T a Fib pro néjaky vyrok i, jinak je bezesporna.

e Tuablo je dokoncené, pokud je kazZdd jeho vétev dokoncend.

Veétev je dokoncend, pokud

— je spornd, nebo

— je kazdd jeji poloZka na této vétvi redukovand a zdaroven obsahuje polozku Ta pro kazdy
axiom o € T'.

Polozka P je redukovand na véetvi V- prochdzejici touto polozkou, pokud

— je tvaru Tp resp. F'p pro néjakou virokovou promennou p € P, nebo

— wvyskytuje se na 'V jako koren atomického tabla (tj., typicky, pri konstrukci tabla jiz doslo
k jejimu rozvoji na V).

Véta (Konecnost sporu). Je-li 7 = J,~, 7; sporné tablo, potom existuje n € N takové, Ze 1, je sporné
konecné tablo.

Dusledek (Kone¢nost dukazu). Pokud T & ¢, potom existuje i koneény tablo dikaz ¢ 2 T.

- A~ ] v - |
To ANy To <
| / \
T=ep T ToVy To—=4¢ | Te Fop
| / \ / \ |
True || F¥ T T Ty | Fo Ty | Ty Fy
Foviy Fo = Fo <4
| | / \
F-¢ FoAy Fo T Ty Fo
/ \ | | I
False | L® | Fo Fo Fy Fy Fyp o Ty

Tabulka 1.1 Atomicka tabla
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1.6.5 Veéty o kompaktnosti a uplnosti vyrokové a predikatové logiky

Véta (O kompaktnosti). Teorie md model, praveé kdyz kazda jeji konecénd ¢ast md model.

Dusledek. Spocetne nekonecny graf je bipartitni, pravé kdyz je kazdy jeho konecny podgraf bipartitni.

Véta (O uplnosti VL). Je-li vyrok ¢ pravdivy v teorii T', potom je tablo dokazatelny z T, tj.
TEy = Ttk

Véta (O uplnosti PL). Je-li sentence ¢ pravdivd v teorii T', potom je tablo dokazatelnd z T, tj.
TEy = Ttk

1.6.6 Rozhodnutelnost

Definice (Kompletn{ teorie ve VL). Teorie je kompletni, je-li bezespornd a kazdy vyrok je bud
pravdivy, nebo [Zivy. Ekvivalentné, prdve kdyZ md jeden model.

Definice (Kompletni teorie v PL). Teorie je kompletni, je-li bezespornd a kaZdd sentence je v ni bud’
pravdivd, nebo [Ziva. Ekvivalentné, prdve kdyz ma prdvé jeden model aZ na elementdrni ekvivalenci.

Definice (Elementarni ekvivalence). Struktury A, B (v témz jazyce) jsou elementdrné ekvivalentni,
pokud v nich plati tytéz sentence. Znacime A = B.

Definice (Teorie struktury). Méjme L-strukturu A. Teorie struktury A, znacime Th(A) je mnozina
vSech L-sentenct platniych v A:

Th(A) = {¢ | ¢ je L-sentence a A = ¢}

Definice (Rekurzivni axiomatizace). Teorie T' je rekurzivné axiomatizovand, pokud existuje algo-
ritmus, ktery pro kaZdou vstupni formuli ¢ dobéhne a odpovi, zda ¢ € T'.

Definice (Rozhodnutelnost). O teorii T' rikdame, Ze je

e rozhodnutelnd, pokud existuje algoritmus, ktery pro kazdou vstupni formuli ¢ dobéhne a odpovi,
zda T |= o,

e cCastecné rozhodnutelnd, pokud existuje algoritmus, ktery pro kaZdou vstupni formuli p:

— pokud T |= ¢, dobéhne a odpovi “ano”,
— pokud T B~ ¢, bud nedobéhne, nebo dobéhne a odpovi “ne”.

Véta. Necht T je rekurzivné axiomatizovand. Potom:
(i) T je ¢astecné rozhodnutelnd,
(ii) je-li T' navic kompletni, potom je rozhodnutelnd.

Definice (Rekurzivni axiomatizovatelnost). T7ida L-struktur K C My je rekurzivné axiomatizo-
vatelna, pokud existuje rekurzivné aziomatizovand L-teorie T takovd, Ze K = Mp(T). Teorie T"
je rekurzivné axiomatizovatelna, pokud je rekurzivné axiomatizovatelnd trida jejich modeli, neboli
pokud je T' ekvivalentni néjaké rekurzivné axiomatizované teorii.

Piiklady rozhodnutelnych teorii. Pro nésledujici struktury je Th(A) rekurzivné axiomatizova-
telnd, a tedy i rozhodnutelna:

o (7Z,<), jde o tzv.teorii diskrétnich linedrnich usporddani,

(Z
e (N, S,0), teorie ndslednika s nulou,
o (R, +,—,-,0,1), teorie rediné uzavrenych téles,
e (C,+,—,-,0,1), teorie algebraicky uzavienych téles charakteristiky 0.
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Spolecna informatika

Z nasledujicich 4 témat budou vybrana 2.

2.1 Automaty a jazyky

2.1.1 Regularni Jazyky

Definice (Regularni gramatika (Typ 3)). Gramatika G je regulérni, pokud obsahuje pouze pravidla:
A—wB nebo A—w, ABeV,weT".

Definice (DFA). Deterministicky kone¢ny automat (DFA) A = (Q, X, 4, qo, F') sestdvd z:
e konecné mnoziny stavi @,

e konecné neprazdné mnoziny vstupnich symbolu (abecedy) X,

prechodové funkce § : Q x ¥ — @,
e pocatecéniho stavu gy € @,
e o mnoziny koncovych (pfijimajicich) stava F C Q.
Definice (e-NFA). Nedeterministicky koneény automat s € prechody (e-NFA) A = (Q, %, 6, qo, F):
e konecné mnoziny stavu @,
e konecéné mnoziny vstupnich symbolu X,

prechodové funkce, zobrazeni § : Q x (X U{e}) — P(Q) vracejici podmnoZinu Q,

pocéatecniho stavu gy € Q,

e a mnoziny koncovych (prijimagicich) stavi F C Q.

Definice (Rozsitend prechodové funkce). Méjme prechodovou funkci § @ @ x X — Q. Rozsitenou
prechodovou funkci 6* : QQ X ¥* — @ definujeme induktivné:

e 5°(q,¢) = ¢,
e §*(q,wz) = §(6*(q,w), ), prox € ¥, w € L*.

Definice (Reguldrni vyrazy (RegE), hodnota RegE L(«))). Reguldrni vyrazy o, € RegE(Y)

nad konecnou neprdzdnou abecedou ¥ = {ay,as,...,a,} a jejich hodnota L(a) jsou definovdny in-
duktivne:
vyraz o pro hodnota L(«) = [a]
_— € prazdny tetézec L(e) = {¢}
* Zdklad 0 prazdny vyraz  L(0)={} =0
a a€yx L(a) = {a}
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vyraz hodnota
a+fB L(a+B)=Lla)UL(p)
o Indukce: af L(aB) = L(a)L(B)
o L(a*) = L(a)*
L((a)) = L(a)

Kazdy requldrni vgraz dostaneme indukci vyse, tj. trida RegFE(X) je nejmensi trida uzaviend na
uvedené operace.

2.1.2 Bezkontextové jazyky a Zasobnikovy automat

Definice (Formélni (generativni) gramatika). Formdlni gramatika je G = (V,T, P,S) sloZena z:
e koneéné mnoZiny neterminalu V,
e neprdzdné konecné mnoziny terminalu T,
e pocatecniho symbolu S € V,
e konecné mnoziny pravidel P reprezentujici rekurzivni definici jazyka. Kazdé pravidlo md tvar:
Ay »w, AecV, B,y,we (VUT),
5. leva strana obsahuje alespon jeden neterminalni symbol.

Definice (Bezkontextova gramatika (CFG)). CFG je G = (V,T, P,S) gramatika, obsahugici pouze
pravidla tvaru:
A—-w, AcV, we(VUT)".

Definice (Derivace =*). Méjme gramatiku G = (V, T, P, S).
o Rikdme, Ze a se primo prepise na w (piseme a =g w nebo a = w), jestlize:

36, v, m,ve VUT) :a=npr,w=nyw a(f =) € P.

e Rikdme, Ze o se prepise na w (piseme a =* w), jestlize:
i, B € VUT) ra=5 = f=...= b =uw,

e Posloupnost By, ..., B, nazgvdme derivaci (odvozenim).

Definice (Jazyk generovany gramatikou G). Jazyk L(G) generovany gramatikou G = (V,T, P, S)
je mnozina termindlnich tetézcu, pro které existuje derivace ze startovniho symbolu:

L(G)={weT"|S=¢w}.
Jazyk neterminalu A € V' definujeme:
L(A) ={weT" | A=¢ w}.
Definice (Zasobnikovy automat (PDA)). PDA je P = (Q, %, 1,0, qo, Zo, F), kde:
e () je konecnd mnoZina stavi,
e Y je neprdzdnd koneénd mnozZina vstupnich symboli,

o [' je neprdzdna konecnd zasobnikovd abeceda,
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0 je prechodovd funkce:
5:Q>< (ZU{E}) XF—)PF[N(QXF*),

plati §(p,a, X) > (q,7), kde ‘p’ je aktudlni stav, ‘a’ je aktudlné c¢teny symbol, ‘X’ je symbol na
vrcholu zdsobniku, ‘q’ je novy stav, do kterého automat prejde a “y’ je Tetézec zdsobnikovych
symbolu, ktery nahradi X na vrcholu zdsobniku,

qo € Q je pocdtecni stav,

Zy € T je pocatecni zdsobnikovy symbol (na zaédtku je jeding symbol na zdsobniku),

e F' je mnozina prijimagicich (koncovych) stavi; muze bijt nedefinovand.

2.1.3 Rekurzivné spocetné jazyky
Definice (Turinguv stroj (TM)). Turinguv stroj (TM) je sedmice M = (Q,%, 1,0, qo, B, F), kde:
e () je koneénd mnoZzina stavi,
e Y je konecénd neprdzdnd mnozina vstupnich symboli,
e T je konecnd mnoZina viech symboli pro pasku (T 23, QNT =0),
e § je (¢dstecnd) prechodovd funkce:
0:(Q—F)xI'=»QxTIx{L, R},
kde 6(q, X) = (p,Y, D) znamend:
— q € (Q — F) je aktudlni stav,
— X €T je aktudlni symbol na pdsku,
— p je novy stav,
— Y €T je symbol pro zapsdni do aktudlni buriky,
— D € {L, R} je smér pohybu hlavy (doleva, doprava).
e ¢y € QQ je poédtecni stav,
e B el —X je symbol pro prazdné bunky (blank),
e F' C Q je mnozina koncovych (prijimagicich) stavi.

Definice (Problémem). Problémem P myslime mnozZinu otdzek kodovatelnou retézci nad abecedou
Y s odpovédmi € {ANO, NE}. Pokud problém definujeme jakoZto mnoZinu, jde o otdzku, zda vstup
kéduje prvek dané mnoziny (napr. polynom s celociselngm korenem,).

Definice (Rozhodnutelny problém). Problém je (algoritmicky) rozhodnutelny, pokud ezistuje Tu-
ringuv stroj takovy, Ze pro kaZdy vstup w € P zastavi a navic prigme prdvé kdyz

P(w) = ANO (tj. pro P(w) = NE, zastavi v ne-prijimacim stavu).
Problém, ktery neni algoritmicky rozhodnutelny je nerozhodnutelny.

Definice (Problém zastaveni). Instanci problému zastaveni je dvojice tetézeu M,w € {0,1}*.
Problém zastaveni je najit algoritmus Halt(M,w), ktery vydd 1 pravé kdyz stroj M zastavi na vstupu
w, jinak vydd 0.

Véta (Problém zastaveni). Problém zastaveni neni rozhodnutelnyj.
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2.1.4 Chomského Hierarchie
Definice (Chomského hierarchie). Gramatiky rozdélujeme do cétyr typu:

e Gramatiky typu 0 (rekurzivné spocetné jazyky L)
Pravidla v obecné forme:
a = w, a,we (VuT),

a o obsahuje alespon jeden netermindlni symbol.

e Gramatiky typu 1 (kontextové gramatiky, jazyky L)
Pouze pravidla ve tvaru:

YAB — ywp, AeV, e (VUT), we(VUuT)".
Vygimkou je pravidlo S — €, pak se S nesmi vyskytovat na pravé strané Zddného pravidla.

e Gramatiky typu 2 (bezkontextové gramatiky, jazyky L-)

Pouze pravidla ve tvaru:
A - w, AceV, we(VUT)".

e Gramatiky typu 3 (reguldrni gramatiky, jazyky L;)
Pouze pravidla ve tvaru:
A—wB nebo A— w,

kde A, BeV aweT".

L

‘Turingovy stroje | ¢«———— | Gramatiky Typu 0

[ ——|

‘Leneérné omezené automaty‘ — ‘ Kontextové a Monoténni gramatiky‘
[——|
| |

L

‘Zzisobnikové automaty | «+——— | Bezkontextové gramatiky CFG‘

‘Koneéné automaty — b Regulérni gramatiky

Prevody
e-NFA na DFA (konstrukce podmnozin)
1. Pocatecni stav je zachovan.
2. Prijimajici stavy jsou vSechny mnoziny obsahujici néjaky prijimajici stav.
3. Kazdy novy stav odpovidd mnoziné stavi NFA. (Pro kazdy symbol z ¥ spoé¢itdme mnozinu

stavu, do kterych se NFA muze dostat, a ta tvori novy stav v DFA.)

Regularni gramatika na DFA

1. Kazdy netermindl odpovida stavu automatu + vytvoiime koncovy stav K.
2. Pocatecni stav S gramatiky je poc¢aténi stav automatu.

3. Tvar A — aB zapiseme v automatu jako A % B.

4. Tvar A — a zapiSeme v automatu jako A = K.

5. Tvar A — ¢ zapiSeme v automatu jako koncovy stav.



DFA na Regularni gramatika

1. Kazdému stavu automatu A, B, C, ... pritadime neterminal A, B,C,.. ..
2. Pocatecnimu stavu prifadime pocatecni neterminal.
3. Piechod A % A zapiSeme v gramatice jako pravidlo A — aB.

4. Pokud je stav koncovy, pridame pravidlo A — ¢.

DFA na RegEx

1. Pievedeme automat na regularni gramatiku.
2. Soucet koncovych stavii DFA bude tvorit vyslednou rovnici.
3. Nésledné dosazujeme do stavu a prevadime je na RegEx.

4. Prevod na RegEx: vyraz ve tvaru A = Aa + § prepiseme na A = Sa*.

RegEx na NFA
1. Pro kazdy RegEx symbol vytvoiime NFA s jednim pfechodem. (symbol 0 bude — O SN ©.)
2. Pokud je RegEx ve tvaru 01, pak automaty skladdme.

3. Pokud je RegEx ve tvaru 0 + 1, pak pridame e pocatecni stav, ktery jde do automatu 0 a 1 a
nasledné jsou oba svedeny do jednoho koncového stavu. (Rozdvojeni a sloucent).

4. Pokud je RegEx ve tvaru 1%, pak vytvarime cyklus.

CFG na Chomskeho normalni tvar

1. Odstranime e-pravidla, jednotkovd pravidla (A — B) a zbyteéné symboly (nedosazitelné).
2. Pro kazdy termindl a vytvoiime novy neterminal A a pridame pravidlo A — a.

3. Prevedeme pravidla do tvaru A — BC nebo A — a.

CFG na PDA
Méjme CFG gramatiku G = (V, T, P, S), a konstruujeme PDA P = ({¢},T,V UT,d,q,S).

1. Pocatecéni symbol gramatiky vlozime na zasobnik.
2. Pro netermindly A € V : §(q,e, A) = {(q,5) | A — [ je pravidlo G}.
3. Pro kazdy termindl a € T : 6(q,a,a) = {(q,¢)}. (pop)

4. Prijimani probiha prazdnym zasobnikem.
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2.2 Algoritmy a datové struktury

2.2.1 Casova slozitost algoritmu.
Definice (Casové slozitost). Necht t(x) je doba béhu pro vstup x. Potom Gasové slozitost vyipoctu:
T(n) := max{t(x) | x vstup velikosti n}.

Definice (Prostorové slozitost). Necht s(z) := “max adresa — min adresa +17 je prostor béhu pro
vstup x. Potom prostorova slozitost vypoctu je

S(n) := max{s(z) | © vstup velikosti n}.

Asymptoticka notace.

Méjme funkee f,g: N — R.
Definice (Horni odhad). f(n) € O(g(n)) <= (3¢ > 0)(Fne¥n > ng): 0< f(n) < c- gln).
Definice (Dolni odhad). f(n) € Q(g(n)) <= (3¢ > 0)(Fno¥n > ng): 0 < c-g(n) < f(n).
Definice (Tésny odhad). f(n) € O(g(n)) <= f(n) € O(g(n)) A f(n) € Qg(n)).

2.2.2 Tridy slozitosti

Definice (Ttida P). Problém L € P < existuje algoritus A a polynom f, Ze pro kazdy vstup x,
algoritmus A dobéhne v case nejuyse f(|x|) a vrdti vysledek A(x) = L(x).

Definice (Ttida NP). Problém L € NP <= 3K € P problém a polynom g, ze Vx : L(x) =1
pravé tehdy, kdyz pro néjaky retézec y délky nejuyse g(|x|) plati K(xz,y) = 1.

(“K Tesi L, ale krom vstupu x md ndpovédu y. Pokud L(x) = 1, pak musi existovat ndpovéda v,
kterou K schvali.”)

Definice (N P-tézkost). Problém je NP-tézky, pokud na néj lze prevést libovolny problém v NP.
Definice (N P-tuplnost). Problém je NP-uplny, pokud je NP-tézky a je v NP.
Definice (Prevod). Plati, ze A - B <= 3f : {0,1}* — {0,1}*, Ze Vo : A(z) = B(f(x)) a f bézi
v polytime.
Priklady prevodu:

e SAT — 3-SAT: priddme literdly: (aV 8) = (aVz) A (-xV B).

e 3-SAT — Nezavisla mnozina: klauzule tvoii trojuhelniky.
Spojujeme x s —x. Viz obrazek.

e 3-SAT — 3,3-SAT: proménné rozdélime a zaiidime stejné (¥
ohodnoceni koleckem implikaci.

e 3,3-SAT — 3D parovani
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2.2.3 Metoda rozdél a panuj

Rekurzivné délime na podproblémy — problém velikosti n na dva 3 apod.

Véta (Master). Rekurentni rovnice T'(n) = a-T(3)+©(n°), T(1) =1 md pro konstatny a > 1,b >
1,¢ > 0 reseni:

(1) pokud 3z =1, pak T'(n) = ©(n°logn),
(2) pokud 3 <1, pak T'(n) = ©(n°),
(8) pokud & > 1, pak T(n) = ©(n'°% ).

Neboli, problém rozloZime na a podproblémai velikosti 3. Vysledky slozime v ©(n°).

Merge sort.
Na vstupu n prvki, rozdélime na dvé ¢ésti |5 |, [§], na konci slijeme. Pouzijeme Master theorem:
Pro T(1) = 1, trividlné. Pro T'(n) problém délime na a = 2 podproblémy velikosti 3%;. Slijeme

nakonec dohromady v ©(n),c = 1. Celkem tedy T'(n) = 27(%) + n, coz vyhovuje piipadu (1) a
mame:

T(n) = O(nlogn).

Algorithm 5: MergeSort(ay, ..., a,)

1 if n = 1 then return a; = b,

2 T1,...,%|n/2) < MergeSort(ai,...,a[n/))

3 Yi,...,Ymy2) < MergeSort(ajn/2j41,---,0n)

4 by, ..., by < Merge(@y, ..., T nj2)s Y1y - - Yn/2])

Algorithm 6: Merge(z1, ..., Zm, Y1, -, Yn)

11+ 1,5+ 1k« 1 > zbyva slit 1, ..., Tm, Y1, ..., Yn, vysledek zx, ..., 2;in
2 while: <mAj<ndo

3 if x; <y; then

4 ‘ presuneme prvek z x: z, < x;, i< 1+ 1

5 end

6 else

7 ‘ pfesuneme prvek z y: 2z <—y;, jJ+1

8 end

9 k+—k+1

10 end

11 if ¢ < m, zkopirujeme zbyla =: 2k, ..., Zpman < iy ..., Ty
12 if j < n, zkopirujeme zbyla y: 2k, ..., Zmin < Yjs- -, Yn
13 return zi,..., Zmin

Karacubovo nasobeni.

Méme dvé ¢isla X, Y a chceme jejich soucin X - Y. Rozdélame hornich § a dolnich £ cifer.
Plati {;( : é 1(0)://22 —I—'——ZB; , pro ¢isla A, B, C, D. Sou¢in pak muzeme spocitat jako:
XY = AC - 10" + (AD + BC) - 10™? + BD.
Coz je oviem stale asymptoticky n?. MuZeme to ale jesté vylepsit — o jeden sou¢in méné — na:
XY = AC - 10" + ((A+ B)(C + D) — AC — BD) - 10"% + BD.

Méme tak T'(n) = 3T (%) + ©(n), coz vyhovuje piipadu (3) a dostévdme tak ©(n'*823) ~ n'53,
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2.2.4 Binarni vyhledavaci stromy

Definice (Vyhleddvaci strom). Pro vyhledavaci strom plati, Ze klic v kaZdém vrcholu je vétsi nez
vsechny klice v levém podstromu a je mensi neZ vsechny klice v pravém podstromu.

Definice (AVL). Rozdil v hloubkdch stromu je mazimdlné jedna. (vyvdZeny strom)
Hloubka je ©(logn).

Definice (Binarni strom). Strom magjici nejvyjse dva syny.

Zakladni operace.

Notace: v = kofen/vrchol, I(v) = levy syn v, r(v) = pravy syn v, k(v) = kli¢ v.

Show — vypise vsechny prvky Find — porovnd k(v) s pfedem hledanym klicem x
1. if v = () then return 1. if v = () then return (
2. Show(l(v)) 2. if x = k(v) then return v
3. Vypis k(v) 3. if © < k(v) then return Find(I(v), z)
4. Show(r(v)) 4. if © > k(v) then return Find(r(v), z)
Min — minimum z prvku Insert — vkladame prvek do stromu
1. if [(v) = 0 then return v 1. if v = () then vytvoiime novy v s klicem x
2. return Min(I(v)) 2. if © = k(v) then pass > x je jiZ ve stromu

3. if x < k(v) then [(v) < Insert(l(v),x)
4. if x > k(v) then r(v) < Insert(r(v),z)

Delete — odstranime prvek ze stromu

1. if I(v) = r(v) = () then return () > list
2. if I(v) = () then return r(v) > existuje pravy syn
3. if r(v) = 0 then return [(v) > existuje levy syn
4. s < Min(r(v)) > nahradime ndslednika
5. k(v) < s

6. 7(v) < Delete(r(v),s)

2.2.5 Tridéni

BubbleSort.

Primitivn{ t¥idici algoritmus. Casova slozitost je O(n?) v nejhoréim i primérném pifpadé.
Algorithm 7: BubbleSort (A = [ay,...,a,))

1 fori+ 1ton—1do
2 for j<1ton—ido
3 if A[j] > A[j + 1] then
4 | swap(A[j], A[j + 1])
5 end
6
7
8

end
end
return A
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InsertionSort.

Je efektivni pro mald pole a téméf sefazend data. Casovd slozitost je ale stéle O(n?).

Algorithm 8: InsertionSort (A = [ay, ..., a,))

1 for i+ 2 ton do

key < Ali]

j—1—1

while j > 0 and A[j] > key do
Alj +1] « A[j)
Jg—1

end

Alj 4+ 1] « key

end

10 return A

© 0w N o oA W N

Poznamka. Insertionsort je vhodny pro mald pole (typicky n < 20) a dosahuje linedrni ¢asové
sloZitosti pro témeér serazend data.
QuickSort.

Typicky piiklad algoritmu rozdél a panuj. Pramérna ¢asova slozitost: O(nlogn), v piipadé Spatného
vybéru pivota ale muzeme dosdhnout O(n?). Pamétova slozitost je O(logn) (rekurzivni zdsobnik).

Algorithm 9: QuickSort (X = [x1,...,2,))

1 if n <1 then return Y = X
2 p < vyber pivota z X

3 L < prvky X, které < p

4 P+ prvky X, které > p

5 S < prvky X, které =p

6 Rekurzivné tiidime ¢asti

7 L < Quicksort(L)
8
9

P + Quicksort(P)
return Slepime Y = (L, S, P)

Véta. Quicksort je randomizovany algoritmus, jehoZ oéekdvand casovd sloZitost je O(nlogn) pri
volbé pivota nahodnym vybérem.

Véta (O slozitosti tiidéni). Kazdy deterministicky algoritmus v porovndvacim modelu, ktery tridi
n-prvkovou posloupnost, pouzije v nejhorsim pripadé Q(nlogn) porovndni.

2.2.6 Grafové algoritmy
Prohledavani do hloubky (BFS) a do sitky (DFS).

Na vstupu méme graf G = (V, F) s poc¢ateénim vrcholem vy € V. Béhem pruchodu grafem rozlisujeme
ti1 mozné stavy vrcholu; nenalezené — jesté jsme je nepotkali, otevirené — potkali, ale neprozkoumali
hrany, které z nich vedou, a uzavrené — uz jsme prozkoumali i hrany, nadéale se nezabyvame.

Poradi: 0,1,2,3,4,5,6,7
BFS (o0 ) TOERLASLG Poradi:0,1,4,5,2,6,3,7



Algorithm 10: BFS(G, vg)

1 for kazdyv €V do
| stav(v) < nenalezeny
end
stav(vg) < otevieny
Q < v > fronta
while Q # () do
v ¢ Q.pop()
for kazdy w ndslednik vrcholu v do
if stav(w) = nenalezeny then
stav(w) < otevieny
Q.push(w)
end
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end
stav(v) < uzavieny
end

-
W

=
(S}

Pro DFS jesté definujeme pomocnd pole in(v), out(v), do kterych zaznamendme, v jakém poradi
jsme vrcholy otevirali a zavirali.

Algorithm 11: DFS(G)

for kazdy v € V do
stav(v) < nenalezeny
in(v), out(v) < nedefinovéno

end
T <+ 0 > globalni poc¢itadlo krokt
DFS2(U0)

(= I B U VN

Algorithm 12: DFS2(v)

1 stav(v) < otevieny
T+ T+1, in(v)«T
for kazdy naslednik w vrcholu v do
if stav(w) =nenalezeny then
| DFS2(w)

end

end
stav(v) <— uzavieny
T+ T+1, out(v)«T

© 00 N o oA WN

Poznamka (Slozitost BFS a DFS). Oba algoritmy pracuji v ¢ase O(n + m) a prostoru ©(n 4+ m).
Poznamka. Algoritmus DFS detekuje cykly a klasifikuje hrany

Topologické tridéni.
Acyklické orientované grafy (DAG) lze usporadat, aby vedly hrany po sméru usporadéni.

Definice (Topologické usporadani). Linedrni usporaddni < na vrcholech grafu je topologické, pokud
V{z,yt € E:x <y.

Véta. Orientovany graf md topologické uspordadini <= je DAG.

Véta. DFS opousti vrcholy v poradi oparné topologickému.
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Nejkratsi cesty v ohodnocenych grafech.

Pro hledani nejkratsi cesty v neohodnoceném grafu muzeme pouzit BFS/DFS, ale pro ohodnocené
grafy otfebujeme vétsi kanén — Dijsktruv/Bellman-Forduv algoritmus. Dijkstruv algoritmus funguje
pouze pro nezaporné hrany, Bellman-Ford i pro zaporné.

Algorithm 13: Dijkstra (G, v)
1 for kazdyjv €V do

2 stav(v) < nenalezeny

3 h(v) < +o0 > pole vzdélenosti/ ohodnoceni
4 P(v) < nedefinovéno > pole predchudcu
5 end

6 stav(vg) — otevieny

7 h(Uo) ~0

8 while Jv otevreny do

9 v <= vrchol s nejmensi hodnotou A(v)

10 for kazdy naslednik w vrcholu v do

11 if h(w) > h(v) +(v,w) then

12 h(w) < h(v) + (v, w) > (v, w) znacéi délku cesty mezi v a w
13 stav(w) < otevieny

14 P(w) < v

15 end

16 end

17 stav(v) < uzavieny

18 end

Poznamka (Slozitost Dijkstrova algoritmu). Casovd sloZitost je O(n?) nebo O(m +nlogn) s prio-
ritni frontou.

(D)
A .) ~ (A . ~ (A ~ (A = (A
QA@ @A@ C C C E
mETD B BREE

Obrazek 2.1 Vzdy vybereme vrchol s nejmensi cenou, ktery jesté nebyl vybrany.

Algoritmus (Bellman-Ford). Cas O(mn).
e Hledéani nejkratsi cesty v ohodnoceném orientovaném grafu véetné zdpornych hran.
e Divam se na hrany a aktualizuji vrcholy.
e Fronta podle poradi otevienych vrcholi ~» muzu otevirat uz jednou zaviené vrcholy.

Poznamka. Dijkstra pracuje pouze s nezdpornym ohodnocenim, Bellman-Ford i se zdpornym.

Minimalni kostry grafu.

Definice (Vaha). Véha je funkce w : E — R. Vdha w(H) podgrafu H C G je soucet vah jeho hran.

Definice (Minimalni kostra). Kostra grafu je minimélni, pokud md mezi kostrami nejmensi vihu.
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Algorithm 14: Jarnik (G,r) — G je souvisly s unikdtnimi vahami. Vrat{ minimdln{ kostru.

1 vy < libovolny vrchol grafu

2 T < strom obsahujici vy a zadné hrany

3 while H{u,v} € E:ueVrAv ¢ Vrdo

a | hranu e = {u,v} s nejmens{ takovou vahou pfiddme do T
5 end

6 return 7' = (Vr, Er)

(b) Nyni se miizeme vydat do C’/E svahami 3,2, 5. (d) Uz nam zbyva pouze vrchol E. Mame na vybér mezi vahami 1 a 5.
Vybereme nejlehéi, tedy 2. Vybereme nejleh¢i 1 a dostaneme vyslednou minimalni kostru.

9 B A B A B A B A B
o T e o e @ e e
©) &) (D) ©) ©) ® D ©) D E

(a) Zatneme v B, mame tii moznosti: A, C, E s vahami 2,2, 5. (c) Mizeme se vydat do D, E. Do A uZ jsme se dostali levn&ji nez za 3.
Vybereme libovolnou nejlehéi, napfiklad 2 do A. Mame vahy 1, 1, 5, vybereme libovolnou nejlehti za 1.

Poznamka (Slozitost Jarnikova algoritmu). V kaZdém kroku Jarnikiv algoritmus pridd nejlevnéjsi
hranu spojujici strom s movym vrcholem. Casovd sloZitost je O(|V|?) nebo O(|E| + |V|log|V]) s
prioritni frontou

Algorithm 15: Boruvka (G)

1 T« (V,0) > trividlni les
2 while T" nent souvisly do
3 Rozklad T' na komponenty souvislosti 11, ..., T}
4 Pro kazdy strom T; najdeme nejlehéi hranu e; mezi T; a zbytkem grafu
5 T+ TU{ey,... e}
6 end
7 return T'
(a) Kazdy vrchol je komponenta souvislosti. (c) Propojime nejlevnéjsi hranou vzniklé dvé komponenty.
A A A
B C B C B C
A >
D) 'E D E D E

(B) Pro kazdy vrchol najdeme souseda s nejmensi vahou.
5 8 5 7 7
A—-CB—-AC—AD—-EE—D

Poznamka (Slozitost Boruvkova algoritmu). Bortvkiv algoritmus v kazdé iteraci pridd nejlevnéjsi
hranu z kaZdé komponenty. Zdaroven pracuge i s nesouwvislymi grafy. Casovd sloZitost je O(|E|log |V ).
Vhodny pro tidké grafy.

Poznamka (Jarnik VS Boruvka). Jarnik priddvd v kazdém kroku jeden vrchol a pracuje s jednim
stromem (souvisly graf). Borivka naproti tomu priddvd vice hran najednou a pracuje s vice kompo-
nentami (nesouvisly graf)
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Toky v sitich.
Definice jednotlivych pojmu viz kapitola Teorie grafu (1.4.9)).

Algorithm 16: Ford-Fulkerson — Princip hleddni mazimdlniho toku v siti.

1 f < nulovy tok

2 while existuje zlepsujici cesta P ze z — s do

3 | €< minggp)r(e) > Rezerva r(uv) = c(uv) — f(uv) + f(vu)
4 Zvétsime tok f podél P o e. > Ve po sméru zvétsime a proti sméru zmensime f(e)
5 end

6 return tok f.
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2.3 Programovaci jazyky (Java)

2.3.1 Zaklady

Interface specifikuje kontrakty ttidy — vicenasobna dédi¢nost.

Abstrakce oddéleni interface od implementace.

Polymorfismus schopnost jedné reference odkazovat na objekty ruznych typu.
Dédiénost opétovné pouziti existujici tiidy — “extends”.

implements implementuje interface — tiida bude mit definované metody.
static clen tfidy neni vézan na instanci/ objekt, ale na celou tiidu.

protected piistu v ramci t¥idy a vSech podtiid, ale mimo tiidu neviditelna.

super() volani konstruktora predka (rodice) — kdyz dédi tiida.

1 public interface Animal {

2 void makeSound () ; // verejna abstraktni metoda

3

1

5

6 public class Pet {

7 protected String name; // pristupna v ramci tridy a v podtridach

8 public void greet () {

9 System.out.println (7 Hello-” + name) ;

10 }

1 }

12

13 public class Dog extends Pet implements Animal { // dedeni a implementace rozhrani
14 public Dog(String name) {

15 super (name) ; // volani predka, pristup k chranenemu atributu z nadtridy
16 }

17

18 @Override

19 public void makeSound () { // implementace metody z interface

20 System.out.println (”Woof” ) ;

21 }

22

23 @Override

24 public void greet () { // prepsani metody z predka/nadtridy (polymorfismus)
25 System.out.println ("Dog-” + name + 7 -says:-Woof!”);

26 }

27}

28

29 public class Main {

30 public static void main(String [] args) {

31 Animal myDog = new Dog(”Bob”); // polymorfismus: pouziti rozhrani jako typu
32 myDog . makeSound () ; // volani metody z interface

33

34 Pet myPet = (Pet) myDog; // pretypovani na nadtridu

35 myPet. greet () ; // volani prepsane metody z predka

36

37 }
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2.3.2 Vladkna

Pouzivaji se primérné dva zpusoby — Thread a Runnable.

Thread.

Thread t = new MyThread(); // vytvorime instanci tridy MyThread
t.start ();

public class MyThread extends Thread { // trida MyThread dedi od tridy Thread
@Override
public void run() { // prepisujeme metodu run
System.out.println (" Thread-is-running”);
}
}
Runnable.
Runnable r = () —> System.out.println (”Runnable-is-running”);
Thread t = new Thread(r); // vytvorime instanci Thread a predame ji instanci
t.start (); // spustime vlakno
Synchronizace.
Snaha zajistit, aby “néco” probihalo pouze v jednom vldkné najednou.
public void increment () {
synchronized (this) { // k teto casti kodu se dostane jen jeden thread najednou

this.count++;

}
}

// mnebo

public synchronized void increment () { // synchronizace cele metody
this.count++;
}

Terminologie vlaken:
e volatile = viditelnost hodnoty mezi vlakny.
e wait() = vldkno se uspi a ¢ekd na probuzeni.
e notify() = probudi ¢ekajici vldkno.
e notify All() = probudi vSechna cekajici vldkna.

e AtomicInteger = synchronized na steroidech (rychlé, bez blokace).

private volatile boolean running = true;
public void stop () {
running = false; // bez synchronized, ale s volatile

}

private AtomicInteger count = new AtomicInteger (0);
public void increment () {

count .incrementAndGet (); // atomicka operace
}
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2.3.3 Lambda funkce

// bez lambda funkce:
isEven (x) {

return x % 2 = 0;
}

// lambda funkce:
isEven = x % 2 = 0;

// bez lambda funkce:

for (String name : names) {
System.out.println (name) ;

}

// lambda funkce:

names . forEach (name —> System.out.println (name));

2.3.4 Race condition a Deadlock

Race condition = dvé nebo vice vlaken pristupuje k datium soucasné a vysledek zavisi na nacasovani
(prepise se v béhu).

Napriklad: increment () {count++; } — vice vldken najednou upravuje count.

Resend: pouzit synchronized nebo AtomicInteger.
Deadlock = dvé a vice vldken ¢ekani na zamky, které se vzajemné drzi.
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2.4 Architektura pocitacti a operacnich systému

BigEndian (MSB) 0x1A2B ~- | 1A|2B

LittleEndian (LSB) 0x1A2B ~~ |2B|1A

Operace:

OR ... " ... alesponi 1

AND ... “&” ... oboje

XOR ... “77 ... prdave 1

SHL/SHR ... “<<” ... posun k MSB doleva (resp. >> doprava)
NOT ... “~" ... opak

Reprezentace zapornych cisel.

e Stejné jako celd, ale 1. bit znaménka. (v prazi se nepouzivad)

e Jednickovy doplnék: u zapornych se prohodi 1 a 0. Funguje porovnavani i s¢itani, akorat
mame dvé nuly (07,07).

¢ Dvojkovy doplnék: MSB je znaménkovy bit. Resi dvé nuly. Negace je doplnék bita +1.

Reprezentace desetinnych ¢isel.

Za pomoci znaménka, exponentu a mantisy.

sign 8b exponent 23b mantisa

Priklad: Reprezentace cisla —234.75
e Cislo je zaporné, proto sign bude 1.
e Prevedeme 234,75 = 111010105.

e Pievedeme 0.751p = .115 na dvojkovou soustavu:

0.75-2=15 ~ 1405
05-2=1 ~  1+0
0-2=0 stop

o Vysledek je tedy: 11101010.11,

Sdileni procesoru.

e Proces: nezavisla béhova entita v OS. Ma vlastni memory space.

e Thread: v rdmci procesu, sdili procesovou pamét a “dalsf véci”.
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Virtualni pamét.

Strankovani: Virtual Address Space je rozdélena do stejnych ¢ésti (stranek) velikosti 2.
Fyzickd Address Space je také rozdélena na stejné velikosti (frame). Plati “1 page = 1 frame”.
Také “1 level page = 32 bit”.

Race condition vice vldken najednou pristupuje ke stejnym datim.
Pomtuze protected nebo scheduling.

Synchronizace.

Active: instrukce spusténé béhem ¢ekani na pristup.
Passive: ¢ast procesu je zablokovana, dokud neni povolen pristup.
SpinLock: active za pouziti TSL/CAS. Ideédlni pro kratké cekani — mald latence.

Semaphore: protected counter a fronta na ¢ekéani (threads). Kontroluje pristup ke zdroji mezi
vice vldkny. Pitkazy UP (++counter), DOWN (-counter).

Mutex: mutual exclusion. V podstaté semafor s counterem 1 — konrola, zZe jen jeden thread
pristupuje v ¢ase. Piikazy LOCK, UNLOCK.

Deadlock Vzajemné ¢ekani, které vede k zacykleni.
Nutné podminky k zacykleni:

1.
2.
3.
4.

Mutex — alespon jeden je exclusive.
Hold & wait — jeden drzi zadost pro ten druhy.
No preemption — resources nemuzou byt znovu pfijaty bez Gjmy.

Circular wait.

mutex ml, m2;

// Threadl // Thread?2
ml.lock () ; m2. lock () ;
m2. lock () ; ml.lock () ;
m2. unlock () ; ml. unlock () ;
ml. unlock () ; m2. unlock () ;
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Obecna informatika

Z nasledujicich 4 témat budou vybrana 4.

3.1 Kombinatorika

3.1.1 Vytvorujici funkce
Definice (Vytvorujici funkce). Vytvorujici funkce posloupnosti ag,aq, ... = (a,)s2, € R je funkce

o
proménné x definovdna jako soucet f(x) = Z apx”.
n=0

Gen. funkce Posloupnost Vzorec
- 1
" 1,1,1,1,...

Z'r ( ) 7 Y Y ) 1 -
TLOZOO
Za”x” (1,a,a,a®,...) !

) Y Y Y . 1 —ar
nozoo
> (@) (1,0,1,0,...) !

Y ) Y Y 1 _ ,fC2
n=0
- 1
do(=nmam o (1,-1,1,-1,..)
o 1+2
o . x
ZTLJ] (07172,3,4,...> m
n=0

Tabulka 3.2 Typické vytvorujici funkce a jejich vlastnosti.

Piiklad (Pouziti vytvorujicich funkef k feseni linedrnich rekurenci). V nékolika krocich:
e Na vstupu mame rekurentni rovnici pro a,.

e Rovnici vyndsobime z". (dostaneme tak a,z")

[e.9]
Prepiseme jako sumu, tedy Z an,x".

n=0

Sumy si pro zjednoduseni rozepiseme: S; = a2 + azz® + ... = f(z) — ayx — ay, apod.

Sumy ddme opét do rovnosti (napt. S; = Sy — S3) a vyjadiime funkei f(x).

Pokud je to potieba, rozlozime f(z) na parcidlni zlomky.

Rozepiseme f(z) jako mocninnou fadu a ziskdme explicitni vzorec pro a,,.
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>, /d
Véta (Zobecnénd binomickd véta). Pro d € R plati (1+2)' =Y ( )x” pro |z <1.
n

n=0

Definice (Catalanova ¢isla). Catalanova ¢isla (C,,)02, uddvdji pocet bindrnich stromai s n vnitrnimi
1

vrcholy. Plati
n+

2n
1 ( ), neboli pocet korektniho uzdvorkovani.
n

Piiklad (Odvozeni Catalanova ¢isla). Méjme funkci:

fo'e) n—I1
Clz) =) Cua", Co=1, a Cp=CoCh+CiCoat ..+ CraCo=> CiCri
n=0 =0

k' Y K gCnx" -y (nzl cicn,-l) =

1=0

n=1

. n

CiCpin Clz)—1=uz i (Z Ol-On_i) " =z C*x)
AN

Dostdvdme tak: C(x) =1+ zC?(x), co st miZeme zapsat jako kvadratickou rovnici:

I+Vi—dz _ C+<5L‘>

nent reSenim - diverguje
2C%(z) — Clz) +1 —> {l_jfm 9w
2x

=C"(z) konverguje k1 prix — 0

Pocitame tak dal a vyjadrime vzorec pro n-ty clen:

1—1—4z [n+1]1—\/1—4x 1
—_ = | - =

= [2" VL — 4o =
Cu= =5, 2 pl !
1 1 zBv 1 3

_ A _p\nt+1[,.n+1 . 3 48V~ n+lr n+1 2 —

= 5 = ) 2 (2

e ATV e G e MDD e (2

(n+1)! (n+1)!

e l3e@n-1) 18-.-(n—1) 24-.20 1 (20)! 1 (2n

B (n+1)! B (n+ 1)n! n! T n+l()? n+l '
3.1.2 Odhady faktorialu a kombinac¢nich ¢isel
Véta (Odhad faktoridlu). Platf odhad: e (@)” <nl<en (@y

e e
Diikaz. Rozepiseme n! za pomoci vlastnosti logaritmu jako soucet: In(n!) = Z In(i) = Z In(7).
i=1 =2

e Dolni odhad: Budeme scitat “schody” nad kiivkou:

In(z)

In(n!) > /1” In(z)dz = [zIn(z) — 2] =nln(n) —n+1

_ n\"™
TL' 2 enlnn n+1 —e (_)
e

o @it
EN )
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e Horni odhad: Podobné jako dolni odhad, jen budeme scitat “schody” pod ktivkou:

Zln n((n—1)!) <nln(n) —n+1

Ve vysledku dostaneme: nlnn—n+1>In((n—1)!)
enlnn—n—l—l Z (n . 1)|

n- enlnn—n—i-l > n

e n
n-e(—> > nl
n

- C e oy . (N\F n en\Fk
Véta (Odhad kombinac¢niho ¢isla). Pro 1 < k < n plati: <%> < (k:) < <?> )

|
Dikaz. Budeme vyuzivat vztahu (Z) = —k:‘(nn— 0!

e Dolni odhad:

k E(k—1)-...-1 ok k-1 k-2 7 1

Nerovnost plati, protoze 7 je nejmensi a zbytek je rostouci posloupnost.

e Horni odhad:

(n) nn—1)(n—-2)- .. (n—k+1) _ n* :<e-n>k

k)~ ! Ok

k: k
Nerovnost plati, protoze <—) je dolni odhad k!.
e

<n>:n(n—l)(n—Z)-...-(n—k+1)_n n-1 n-2  n-k+l_

2m 4m
Veéta (Odhad binomického &isla (™). Plati odhad: ¥Ym € Ny : —— ( > < —,

2m
Dikaz. Definujme P := (22) a dokazme, ze \}_ P < \/L_m
pooGn) __amn 1-2-3-..-2m _1-3:-5-..-(2m—1)
T T 2.9 2 (2~4'...~2m)(2‘4-...~2m) 2-4-6-...-2m
2m

e Horni odhad:

pr_ 113355 . (2m-1 @2m-1)
2.2-4-4-6-6-...-(2m) - (2m)
13 3.5 5.7 2m—3)-(2m—1) 2m—1
T 2.2 4.4 667 (2m—2)-(2m—2) (2m)- (2m)

em—1 1 to tedy P < —
————— < —, a proto te < —.
=02m)-em) " 2m P Y= om
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o Dolni odhad:
1-1-3-3:5:5-...-2m—1)-(2m —1) B

P? =
2:2:4-4-6-6-...-(2m) - (2m)
_1 3-3 5-5 (2m—1)-(2m—1) 1 -
T 224 4.6 77 2m—=2)-(2m) 2m
1 1
ZR,aprototedyP2>RaP27

3.1.3 Ramseyovy véty

Definice (Klika). Klika v grafu G = (V, E) je mnozina vrcholu, t.Z. kazdé dva jsou spojené hranou.
Nejvétsi kliku G znacime w(G).

Definice (Nezavisld mnozina). Nezdvisld mnozina v grafu G = (V, E) je mnozina vrchold, t.Z. Zddné
dva nejsou spojené hranou. Nejvétsi nezdvislou mnozinu G znacéime o(G).

Definice (Ramseyovo &islo).
R(k,l) = min{N € N | kazdy graf G na alespori N wvrcholech obsahuje w(G) > k nebo a(G) > 1}.

Véta (Ramseyova grafovd dvoubarevnd). Necht k,l € N, potom existuje N € N takové, Ze ve viech
grafech s alespori N wvrcholy, plati w(G) > k nebo a(G) > 1.

Véta (Ramseyova — nekonecnd pro dvojice). Pro kazdé t € N (pocet barev) a obarveni c: (IE) —
{1,2,...,t} ezistuje nekonecnd mnozina A C N takovd, Ze pro vsechny dvojice {ay,as} € (g) mad
c({ay,as}) stejnou hodnotu.

Diikaz (nekonecnou indukct). Postupnym rozebirdanim mnoziny N dojdeme az k hledané mnoziné A.
Indukci zaéneme tim, ze oznacime A; = N a nastavime ¢ = 1.

V mnoziné A; zafixujeme libovolny vrchol v;, zbylé vrcholy v € A; \ {v;} rozdélime do mnozin
B}, B2, ..., B! podle barvy c({v;,v}) hrany, ktera je spojuje s v;. Vime, Ze mnozina A; je nekonecna,
proto alespon jedna z uvedenych stejnobarevnych podmnozin Bg musi byt také nekonecna. Tuto
mnozinu oznac¢ime za A; 1 a pokracujeme v indukci.

Nemame zaruceno, ze pokazdé vybereme podmnozinu stejné barvy, podle které jsme vybrali
predchozi mnozinu. Protoze je ale indukce nekonec¢né, alespon jednu barvu musime zvolit nekonec-
nékrat. Vrcholy v;, které odpovidaji této barvé, tvori hledanou mnozinu A. O

Véta (Ramseyova — nekonecénd pro p-tice). Pro kazdét € N (pocet barev), p € N a obarveni c : (i) —

{1,2,...,t} existuje nekonecnd mnozina A C N, takovd Ze pro vsechny p-tice {a1,...,a,} € (’2) md
c{a1,...,a,}) steynou hodnotu.

Véta (Ramseyova — koneéné pro p-tice). Pro kazdé t € N (pocet barev), p € N, existuje N € N t.2.
Vn > N a obarvend c : ({1"1'0""}) —{1,2,...,t} existuje konecnd mnozina A C {1,...,n} velikosti k,
takovd, Ze pro vsechny p-tice {ay,...,a,} € (?) md c({ay,...,a,}) stejnou hodnotu.

Odhady Ramseyova cisla.
Véta. Necht R(k,1) = R(1,1) = 1. Pak plati R(k,l) < R(k —1,1) + R(k,l — 1) — 1 a z toho:

Rk D) < <k+l—2) (k;r_lIQ)

Véta. Necht (}) - (%)( 2)"' < 1. Potom R(k,k) >n
Disledek. Pro Vk > 3: R(k, k) > 2~/2,
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3.1.4 Extremalni kombinatorika

Extrémalni kombinatorika studuje mazimdlni nebo minimdlni velikosti mnozin (nebo struktur), které
spliuji urcité vlastnosti, ¢asto za podminek vylucujicich jiné konfigurace. Naptiklad kolik hran muze
mit graf bez trojuhelniku.

Definice. Pron € N a graf H definujeme ex(n, H) jako nejuétsi |E| na n vrcholech v grafu G =
(V, E), neobsahujici H jako podgraf.

ex(n,H) = max{|E|;G = (V,E) : |V| =n,H C G}.
Pifklad. Napiiklad ex(n, K5) = |E (K|, | 47)| = [3] - [3] = %

Definice (Turanuv graf). Turanuv graf na n vrcholech s r partitami, znaceny T, je uplny r-

partiting graf na n vrcholech, jehoZ partity maji velikosti [*] a []. Potom t,, = pocet hran T,.,.

1 2
Véta (Turdn). Vr > 2: ex(n, K,4q) =t,, = (1 - —) %
r

(Neboli, jak by mél vypadat graf s co nejvice hranami, aby neobsahoval K, jako podgraf).

Definice (k-uniformni hypergraf). k-uniformni hypergraf je dvojice (V| E), kde E je mnozina k-
prvkovych podmmnozin V.

Definice. f(n,k) := Nejuétsi pocet hyperhran v k-uniformnim hypergrafu na n vrcholech, v némz
zZadné dve hyperhrany nejsou disjunktni.

Poznamka. Pron <k : f(n,k) =0, protoZe neezistuji hyperhrany.
Poznamka. Pro k <n < 2k: f(n, k) = (Z), protoze kazdé dvé mnoZiny z (‘g) se protinagi.
Definice (Slunecnice). Slunecnice se stredem S a l listky je l-tice mnozin Ly,...,L; takovd, Ze

Vigj:LinL;=S. Tedy £ = {{1} Ue | € e ({2’;:,171})}_

Véta (Erdos-Ko-Rado). Pro libovolné k a n > 2k plati f(n, k) = (Zj)

L,
Lg | [ Lo
A \ |
\
Ls J { Ls
Ly

Obrazek 3.2 Priklad slune¢nice pro ! = 6, s mnozinami L1, ..., Lg a stfedem S = L1NLoNL3NLsNLsNLg.
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3.1.5 Samoopravné kédy

Definice (Abeceda a slovo). Abeceda ¥ je konecnd mnozina symboli. Slovo délky n je posloupnost
n symbolu. Vsechna slova délky n je ¥n.

Definice (Hammingova vzdalenost). Pro z,y € Z% je Hammingova vzdalenost

d(x,y) == i € [n] - ; # yil.
Definice (Hammingova vdha). Hammingova véha ||z|| := |i € [n] : z; # 0].

Definice (Minimélni vzdalenost). Minimalni vzdélenost pro kéd C' € Z% je minimum z Hamingovych
vzddlenosti:

A(C) = miré d(z,y).

7Y
Definice ((n, k,d)-k6d). (n,k,d)-kéd je mnoZina C € Z3 takovd, Ze |C] = 2F a A(C) = d.
Definice (Linedrni kéd). Linearni kéd je kod C € Z3, ktery je vektorovy podprostor 7.

Definice (Generujici matice kédu C'). Generujici matice kédu C' pro linedrni (n, k, d)-kéd je matice
G € 75", jejiz rddky tvori bdzi C.

Definice (Kédovani). Necht C je (n,k,d)-kéd pro k € N, tak kédovani pro C' je bijekce Z5 — C.
Definice (Dekddovani). Dekédovani (n, k, d)-kédu C' je funkce g : Z5 — C' takovd, Ze

Ve € Z3 : d(z,g(x)) = mind(z, y)
yeC

. Neboli prirazujeme nejblizsi slovo; slovo s nejmensi vzdalenosti.
Definice (Dudlni kéd k C' “orotgonalni doplnék”). Dudlni kéd k C' je
Ct = {{z,y) =0y € Zy Vo € C}.

Definice (Kontrolni matice). Necht C' je linedrni (n, k,d)-kéd. Kontrolni matice kédu C' je matice,
jejiz vadky tvori bdzi C*.
Definice (Hammingovy kédy). Necht r € N,r > 2, necht K, je matice s r 7idky a 2" — 1 sloupci,

jejiz sloupce jsou nenulové a ruzné. Potom Hammingovy kédy H,. jsou kody s kontrolni matici K.

Definice (Koule). Koule B(x,t) := {d(z,y) <t |y € Z5} je okoli poloméru t kolem x v Z3.

t
Véta (Hammingiv odhad). Pokud existuje (n, k, d)-kéd C, tak pro ¢t = %2 | a V(n,t) = Z (n)
on im0 N
2k < :
~ Vin,t)

Diikaz. Plyne z toho, ze z,y € C, kde z # y: B(z, [52]|) N B(y, |42]) # 0. O
Definice (Perfektni kéd). Kod C' je perfektni, pokud pro néj plati Hammingiv odhad s rovnosti.

Piiklad (Piiklady perfektnich kédu). Perfekini kody jsou napriklad Hammingovy kédy nebo “opa-
kovact kod s lichou délkou”
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3.2 Diferencialni a integralni pocet ve vice rozmérech

3.2.1 Riemannuv integral

Jednorozmeérny

Definice (Déleni). Déleni intervalu [a,b] je posloupnost P = (to,...,t,), kde
a=tyg<t; <---<th_1<t,=0b

Definice (Horni/dolni Riemannovy soucty). Pro omezenou funkci f : J = [a,b] — R a déleni P
definujeme dolni a horni soucty:

P) =" "my(t; —tj_1), resp.  S(f,.P)=>_ Mt
j=1 J=1

kde
=inf{f(z):t;o1 <z <t;}, a M;=sup{f(x):t;-1 <z <t}

Definice (Horm/ dolni Riemannuv integrél). Horni a dolni Riemannuv integrél f pres [a,b] je

—b
/bf(x) dz = sup{s(f, P) : P déleni} a / f(z) dz = inf{S(f, P) : P délend}.

Definice (Riemannuv integrél funkce). Riemannuv integral funkce f pres [a,b] je:

R) /abf(a:) dz, pokud Zif(x) dz = 7if(x) dz

Definice (n-rozmérny kompaktni interval). n-rozmérny kompaktni interval (v E, ) je

Vicerozmérny

J =la1,b1] x -+ X [ay, by].
Definice (Délen{ intervalu). Délen{ intervalu J je posloupnost déleni P = (P!, ..., P"):
Pl ia;=tjo<tj1 < <tjn_1<tjn, =Dbj.
Definice (Cihly intervalu). Intervalim
[t tine1] X o X [t tnin1]

rikame cihly déleni P. MnoZinu vsech cihel znacime B(P).
Je to skoro disjunktni déleni intervalu J. Ruzné cihly z B(P) se totiz setkdvaji jen v podmnoZindch
okraju, tedy v mnozZindch objemu 0, diky cemuZ plati:

vol(J) =) {vol(B) : B € B(J)}.

Definice (“Supremum/infimum” na kompaktnim intervalu). Je ddna omezend f : J — R na n-
rozmeérném kompaktnim intervalu J a B C J je n-rozmérny kompakini podinterval intervalu J.
Polozme

m(f, B) = inf{f(x): ¢ € B} a M(f,B) =sup{f(x) : ¢ € B}.

Definice (Horni/dolni soucty). Pro déleni P intervalu J a omezenou funkci f: J — R definujeme

ss(f,P) =Y _{m(f,B)-vol(B): B € B(P)},
=> {M(f,B) - vol(B) : B € B(P)}.
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Definice ((Horni/dolni) Riemannuv integral). Mnoziny {s(f, P) | P déleni} a {S(f,P) | P délent}
jsou shora/zdola omezené a muzeme definovat dolni/horni Riemannuv integral funkce f pres J jako

/ f(z)dx = sup{s(f, P) | P déleni} a / f(x)de = inf{S(f, P) | P déleni}.
g

J

Jsou-li si rovny, mame Riemannuv integral funkce f pres J, znacime:

d b g
/Jf(a:) x  nebo prosté /Jf

Véta (Kritérium existence Riemannova integrdlu). Riemanniv integrdl [, f(x)dx existuje prdvé
kdyz Ve > 0 existuje déleni P takové, Ze

SJ(f,P)—SJ(f,P)<8

Véta (Riemannuv integrél pro spojité funkce). Kazdd spojitda funkce f : J — R na n-rozmérném
kompaktnim intervalu md Riemanniv integrdl [ e

Véta (Fubiniova véta). Vezméme soucin J = J' x J" C K.y, intervali J' C E,,, J" C E,. Necht
existuje

[ e

a necht pro kazdé x € J', resp. y € J", eristuge

fx,y)dx a f(x,y)dy

J/ Jll

[y = [ ([ soevay) ax= [ ([ rocyrix) ay

3.2.2 Funkce vice proménnych

Potom je

Definice (Parcidlni derivace). Pro funkci f(x1,...,z,) a bod a definujme funkci

ok(t) = flar,...,ak—1, t, Qp1, .. 0n)
Parcialni derivacdﬂ funkce f podle proménné xy, v bodé a je (obvykld) derivace funkce ¢y v bodé ay,

lim o (ar + h) — drar) — lim fla, ..., ap—1, ax + h, apiq, ...apn) — f(a)‘
h—0 h h—0 h

0 0
gika) nebo: a—i(a).

Znacime ji:

Definice (Totdlni diferencidl). Funkce f md totalni diferencidl v bodé a, existuje-li funkce i spojitd
v okoli U bodu o € R™ takovd, Ze u(o) =0 a ¢isla Ay, ..., A, pro kterd

fla+h)— f(a) =) Achy+||hf|p(h).

k=1

S pouzitim skaldrniho soucinu jde tézZ zapsat jako

fla+h) — f(a) = Ah +[|h]|u(h)
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Pravidlo Vzorec pro parcialni derivaci Priklad

v 0 af | 9y J ., B

Soucet _ B_(f( z)+ g(x )) 721 2, - 88—$(:E +y)=2x+0
Nasobent | = (f(z) () = ()+f() Lag) =142

o 0 f(:z:)af; 0 (x l-y—x-0
Délen{ 8_( ) )2 o 9 \y :T

. 82_ n f (‘9uk z:u27 or ou
Chain rule 9r = du. 0r u:$+y~»%_2u.%_2(m+y).1

Tabulka 3.3 Pravidla pro parcidlni derivace

Lemma (Spojitost, parcidlni derivace a totaln{ diferencidl). Necht md funkce f totdini diferencidl v

0f(a
bodé a. Potom je [ spojitd v a, a md vSechny parcidlni derivace v a s hodnotami (’];( ) =
Tk

Véta (Spojité parcidlnf derivace a totdln{ diferenciél). Necht md f spojité parcidlng derivace v okoli
bodu a. Potom md v a totdlni diferencidl.

Véta (O zameénnosti). Méjme funkci f(x,y) takovou, Ze existuji parcidlni derivace aigy a aiaj;, které

jsou spojité v néjakém okoli bodu (x,y). Potom:

Pflx,y)  Pf(z,y)

0xdy 0yox
Véta (Lagrangeova véta ve vice proménnych). Necht md [ spojité parcidlni derivace v konvexni

otevrené mnozine U C E,,. Potom pro libovolné dva body x,y € U 30 < 0 < 1 takové, Ze:

) = o) = S0 LEEIY ) e f5) = ) = V(@) — ),

j=1

kde ¢ = x4 0(y — x) (konvezni kombinace x,y) a Vf(p) = (2L, ..., %)T je gradient funkce f.

Ox1’

Vypocet extrému pomoci parcialnich derivaci.
Méjme funkei f: R" - R, f(zq,...,2,).

1. Najdeme stacionarni body tak, ze polozime prvni parcidlni derivace rovny nule:

of of of
— coyTp) =0, ——(x1,...,2,) =0, ..., ooy y) =0
ol an) =0, o m) o)
2. V téchto bodech vysettime druhé derivace pomoci Hessidnu:
0 f o f 0 f
3:10 8x13x2 8$18$n
0? f 0 f o0 f
Hy(x) = | Owp0xy O} Ox20zy, | | pro f(x,y) jen jednoduse: H; = {fm fxy} ,
: : ; Jya Fuy
0 f 0 f 0 f
| 0,021 01,01 oz |
3. Typ extrému uréime pomoci kritéria pozitivni/negativni definitnosti Hessidnu:
e Hy pozitivné definitni = lokdln{ minimum, (v R? pokud det(H) >0 a fur >0)
e Hy negativné definitni = lokdln{ maximum, (v R? pokud det(H) >0 a fu <0)
e H; indefinitni = sedlovy bod. (v R? pokud det(H) < 0)

4Geometricky odpovida teéné funkce v daném bodé a pifslusné ose.

65



Existence extrému pro funkce vice proménnych.

Veéta. Pokud je f spojitd na kompaktni mnoziné K C R"™ , pak dle Weierstrassovy véty nabyvd f
na K svého maxima i minima.

Véta (Nutnd podminka pro lokalni extrém). Méjme funkei f: D C R™ — R. Pokud md f v bodé
a € D lokalni extrém, potom plati jedna z podminek:

(1) Vi=1,...,m: af( ) =0, nebo derivace neexistuge.

Zq

(2) Bod a je na hranici D.

Véta (Postaéujici podminka pro extrém). Méjme funkci f: D C R™ — R, bod a uvniti D a ddle
8 f 8f (a =0 (podezrely z extrému). Pak:

plati, Ze ]SOU spojité v a, a
(1) Pokud D2f a) je pozitivné definitni, pak f nabyvd v a lokdlniho minima.
(2) Pokud D*f
(3) Pokud D*f

Tato matice D*f

)
a) je negativné definitni, pak [ nabjvd v a lokdlniho mazima.
a) je indefinitni, pak f v a nenabyvd lokdlniho extrému.

)

(
(
(
f(a) se nazyvd Hessova matice a znaci se H(a).
Vazané extrémy.

Cilem je hledat extrémy néjakého zobrazeni f(z) na néjaké omezené mnoziné {x : g(z) = 0}.

Véta (O hleddn{ extrému funkef s vazbami). Bud'te f, g1, ..., gr rediné funkce definované na oteviené
mnoziné D C E,. Necht maji spojité parcidlni derivace. Necht je hodnost matice

Og1 g1
o0z C Oxzp
M = : :
99k 99k
o0x1 CTY Oxp

mazimdlni, tedy k < n, v kaZdém bodée oboru D.
Jestlize funkce f nabyvd v bodé a = (ay, ..., a,) lokdlniho extrému podminéného vazbami

Vi € {1, ,k‘} gi(mla ,xn) =0

Pak existugi ¢isla Ay, ..., \g, Lagrangeovy multiplikatory, takovd, Ze Vi € 1,...,n plati

LoD
ax Z/\ g] :O

nebo ekvivalentné pres gradienty jako V f(a) + X - Vg(a) =0

Ilustraéni piiklad: Necht f(z,y) = 2y a g(z,y) = 2* + y? — 1. Podle véty hleddme

Vf(z,y) +AVyg(z,y) =0, g9(x,y) = 0.
48]

Yy 2x| y = —2\zx,

[x} +A {2y] =0 - r = —2\y.
Méme tFi rovnice o tiech nezndmych. Uréime z = 4\?z, a médme = = 0, nebo 4\*> = 1 (pro A = :i:%)
Dosadime do g(z,y) = 2> +y* — 1 a dopoéitéme y. Nésledné dosadime body do f(x,y) a zjistime,
ze v bodech (i— \1[ i}) nabyva f = 5 maxima, v bodech ( \/i’ $\/L§) nabyva f = —% minima
a body (0,£1) ddvaji f = 0 a nejsou tudlz extrémy.
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3.2.3 Metricky prostor

Definice (Metricky prostor). Necht X je mnozina, d : X x X — R funkce takovd, Ze plati:
o V., ye X :d(z,y) >0, dz,y)=0 <= x=y
o Vr,y € X :d(z,y) =d(y,z)
o Vr,y,z € X 1 d(x,z) < d(z,y) +d(y, z) (trojihelnikovd nerovnost)
pak (X,d) je metricky prostor.
Piiklad. Metrické prostory jsou napriklad: (R, |z —y|), (C,|z — y|).
Definice (Euklidovsky prostor E,). Definujeme jako metricky prostor (R™,d), kde d:
d((z1, s Tn), (Y1, -, Yn)) = Z(l“z‘ —vi)?
Pro nds zvldst dilezitsy, zndmy v podobé vektorového prostoru R™ se skaldrnim soucinem (u|v) a
normou ||u|| = vuu a vzddlenosti d(u, v) = ||u — v||
Definice (Diskrétni prostor). Definujeme jako (X,d), kde d(x,y) =1 prox # vy

Definice (Podprostor). Bud (X, d) metricky prostor. Pak (Y,d') je podprostor, kde Y C X aVx,y €
Y:d(z,y) =d(z,vy).

Uzaviené a oteviené mnoziny
Definice (Okoli). Necht (X,d) je metricky prostor, pak Vo € X, 3¢ > 0:
Qz,e) ={y € X | d(z,y) < e}.
Formulaci Q(z, €) se 7ikd oteviena koule s polomérem e okolo x.
Definice (Oteviena mnozina). U C (X, d) je oteviend, pokud je okolim kazdého svého bodu, neboli
VeeU3J§>0:Qux,0)CU = (x—6z+5)NU.

Definice (Uzaviend mnozina). Necht V C (X, d). Pokud kazdd posloupnost (a,) CV md lima,, =
a € X, paka €V aV nazveme uzavienou mnozinou. (Alternative, pokud je X \ 'V oteviend.)

Piiklad. Uvdzime-li interval (0,00) s Euklidovskou metrikou, pak

e [1,2] je pouze uzavreny (V2 e[1,2) 3§ >0:Q(x,6) C [1,2])
e (0,1] je také pouze uzavieny .. (¥ lim na (0,1] konvergugjici v (0, 00) maji lim v (0,1])
e (1,00) je pouze otevieny. ... (Naprlima, =lim1+ L =1€ (0,00), ale 1 ¢ (1,0).)
e (0,00) je jak otevreny, tak uzavieny

Spojitost funkce na metrickém prostoru
Definice (Spojité zobrazeni). f: (X,d) — (Y,d') je spojité zobrazeni, pokud
(Vz € X)(Ve > 0)(36 > 0)(Vy € X) : d(z,y) <d = d'(f(z),f(y)) <e.
Definice (Konvergence). Posloupnost (x,,), v metrickém prostoru (X, d) konverguje k z € X, pokud
Ve >0 3dng: Vn > ng : d(z,, ) < e.

Véta (Slozeni spojitych zobrazeni je spojité). Pokud jsou f : (Xi,d1) — (Xa,d2) a g : (Xa,d2) —
(X3,ds3) spojité, pak je spojité i go f:(Xi1,d1) — (X3,d3).

Véta (Véta o konvergenci). Zobrazeni f : (X1,d1) — (Xa,da) je spojité <= pro kazdou (x,)n
konvergentni v (X1, d,), posloupnost (f(x,))n konverguje v (Xa,ds) a plati lim f(x,) = f(limx,).
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Kompaktnost

Definice (Kompaktni mnozina). MnozZina je kompaktni, pokud je uzaviend a omezend.

Definice (Kompaktni metricky prostor). Metricky prostor (X,d) je kompaktni, pokud kazdd po-
sloupnost v ném obsahuje konvergentni podposloupnost.

Véta (Extrémy spojité funkce na kompaktnim prostoru). Bud (X,d) kompaktni. Potom kaZdd spo-
jitd funkce f: (X,d) — R nabyjvd minima i mazima (t.j. nejsou nekonecné).

Stejnomérna spojitost

Definice (Stejnomérnd spojitost). Rekneme, Ze f : (X,d) — (Y, d') je stejnomérné spojitd, pokud
(Ve >0)(30 > 0)(Ve € X)(Vy € X): d(z,y) <0 = d'(f(z), f(y)) <e.

V porovnani s definici normalni spojitosti je rozdil v pozici kvantifikdtora Va,y (v definici spo-
jitosti jsou na diplném zacdtku). To odpovida tomu, Ze pro spojitost pozadujeme okénko pouze pro
jeden bod a ne pro celou funkci, jak je tomu u stejnomérné spojitosti.

Intuice. Geometricky vyznam je ten, ze pro libovolnou vzdéalenost € v y existuje o t. z. okénko
o velikosti (d,¢e) umisténé do libovolného mista v grafu neni grafem protnuto nahofe ani dole. Na
obrazku je videét, ze funkce /7 stejnosmérnou spojitost spliuje, kdezto funkce % nikoliv.

Example :
=05
d=02

glz) = v

Obrazek 3.3 Geometricky vyznam stejnosmérné spojitosti pro f(x) = 1/x a g(z) = \/r na intervalu R™.

Véta (Spojitost zobrazeni na kompaktnim prostoru). Pokud je (X, d) kompaktni, pak je kazdé spojité
zobrazent f : (X,d) — (Y,d') stejnomérné spojité.
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3.3 Pokrocilé algoritmy a datové struktury

3.3.1 Dynamické programovani

Princip. Zacneme s rekurzivnim algoritmem, ktery je exponencialné pomaly. Odhalime opakované
vypocty stejnych podproblému. Udélame si tabulku (cache), do které zapisujeme, které podproblémy
jsme uz vytesili. Cache lze vyplnovat bez rekurze, zvolime vhodné poradi podproblému. Ziskame tak
stejné rychly, ale jednodussi algoritmus. (Topologicky usporddime DAG).

Nejdelsi rostouci podposloupnost.
Chceme najit podposloupnost ktera je ostie rostouci. Problém si nejprve rozdélime na hledani poctu

prvku (nejvétsi mozny).
Necht NRP(i) je délka Nejdelsi Rostouci Podposloupnosti zaéinajici prvkem ;.

Algorithm 17: NRP(i): Nejdelsi Rostouci Podposloupnost ©(n?)

1d<+1
2 forj=i+1,...,ndo

3 if x; > x; then

4 | d < max(d,1+ NRP(j))
5 end

6 end

7 return d

Rekurze se muzeme zbavit a tabulku vyplhovat postupné od nejvétsiho ¢ k nejmensimu. Budeme
tedy pocitat T'[i], coz bude délka nejdelsi ze vSech rostoucich podposloupnosti zac¢inajicich z;.

Algorithm 18: NRP2(i): Nejdelsi Rostouci Podposloupnost iterativné ©(n?)

1 T ¢ —00

2 fori=mn,...,0do

3 | Tl]«+1 > tabulka (cache)
4 for j=7+1,...,ndo

5 if ; >z, & T[i] <1+ T[j] then

6 | T[i] < 1+ T[] > lepsi fesent
7 end

8 end

9 end

10 return délka 7[0]

Edita¢ni vzdalenost — Levenstein O(n - m).

Mame nasledujici edataéni operace: zména/ vlozeni/ smazani jednoho znaku.

Definujme L(zq...%,,y1 ... Ym) jako délku nejkratsi posloupnosti editacnich operaci, kterd prevede
Ty...Tp NA Y1 ... Ym-

Plati nésledujici podminky:

1) Pokud 1 = y1: L(xa...Tp, Y2 ... Um
1= Lz Y- -4m) Celkem tak mame L(e,e) =0, a :

(1)
(2) Zména zy na y;: 1+ L(xo.. . Ty, Yo - - - Ym) L1 2o tr - o) = min((1)(2)(3)(4)).
(3) Vlozeni yy: 1+ L(z1...2n, Y2 -+ - Ym)

(4)

4) Smazani z1: 1+ L(zy. .. Zp, Y1 -« - Ym)
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Otocime smér vypoctu a tabulku 7' s vysledky podproblému budeme vypliovat bez pouziti re-
kurze. Predstavime-li si ji jako matici, kazdy prvek zavisi pouze na téch, které lezi napravo a dolu
od néj. Tabulku proto muzeme vypliovat po fadcich zdola nahoru, zprava doleva. Tim ziskame
jednodussi algoritmus, ktery bézi v case ©(nm).

Algorithm 19: Edit(z1 ... Zn, %1 - - Ym): Levenstein iterativné ©(n?)
1fori=1,....n+1doT[i,m+1]«n—i+1.
2forj=1,....m+1doTn+1,j]«<m—j+1.

3 fori=mn,...,1do

4 for j=m,...,1do

5 if x; = y; then ¢ < 0 else § < 1.

6 Tli,j) < min(6+T[i+ 1,7+ 1,1+ T+ 1,4, 1+ T[i,j + 1]) > vSechny zpusoby
7 end

8 end

9 return L(zy... 20, 91...ym) = T[1,1].

3.3.2 Grafové algoritmy
Komponenty silné souvislosti orientovanych grafi.

Necht G(V) je orientovany graf a —, <+ jsou relace na V' vyznacujici:
e u — v je hrana z u do v,
e usvijeu—v & v—u.
Definice (Silna souvislost). Rikdme, Ze graf je silné souvisly <= relace <+ md 1 komponentu.
Definice (Komponenty silné souvislosti). Podgrafy indukované tridami <.
Definice (Graf komponent). Pro graf G definujeme graf komponent C(G) jako:
o V(C(G)) := komponenty G,
e (1,05 € E(C(GQ)) < Ju; € C1,vy € Cy : 0109 € E(G).

Algorithm 20: Rozklad grafu na komponenty silné souvislosti: ©(n + m)

1 Sestrojime G7 > otocéent orientact viech hran, lze diky C(GT) = C(G)T
Z < prazdny zasobnik
Opakované DFS na G7, pii opousténi vrcholu piiddme do Z
Pole Vv : komp(v) <+ 0 > komp je pole komponent
for v € Z do
odebirdme v ze zasobniku Z
if komp(v) = () then
DFS(v) v G, nechodime do vrcholu s komp # (), navstivenym vrcholum nastavime
komp(—) + v.

w N O O A W N

9 end
10 end
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Toky v sitich.
Definice (Prutok). Prutok f*: E — R definujeme pro tok f jako: f*(uv) = f(uv) — f(vu).

Definice (Sit rezerv). Sit rezerv k toku f v siti S = (V, E, z,s,¢) je sit R(S, f) := (V,E,z,s,r), kde
r(e) je rezerva hrany e pri toku f.

Definice (Blokujici tok). Pokud na kazdé orientované zs-cesté P, e € P : f(e) = c(e).

Definice (Vrstevnata sit). Sit je vrstevnatd (procisténd), pokud viechny jeji vrcholy a hrany leZi
na nejkratsich cestdch ze z do s.

Dinitztv algoritmus.

Zac¢ne s nulovym tokem a bude ho vylepsovat pomoci néjakych pomocnych toku v siti rezerv, az se
dostane k maximalnimu toku. Pocet potiebnych iteraci pritom bude zaviset na tom, jak vydatné
pomocné toky sezeneme — na jednu stranu bychom chtéli, aby byly podobné maximalnimu toku,
na druhou stranu jejich vypoctem nechceme travit prilis mnoho ¢asu. Vhodnym kompromisem jsou
blokujici toky:.

Algorithm 21: Dinitzuv algoritmus: O(n?m)
Data: Sit (V, E, z, s, ¢)
Result: Maximalni tok f
f <« nulovy tok
while ezxistuje cesta ¢ do
R < sit rezerv, smazeme z f hrany s nulovou rezervou.
¢ < délka nejkratsi cesty ze z do s v R > BFS
if Zddna takovd cesta neexistuje then
‘ zastavime se
end
Procistime sit R.
g < blokujici tok v R
Zlepsime tok f pomoci g.
end
return tok f.

© 000 N o ok W N =

e e
N = O

Algorithm 22: Blokujici Tok: O(nm)
Data: Vrstevnatd sif R s rezervami r
Result: Blokujici tok g
1 g < nulovy tok
2 while existuje v R orientovand cesta P ze z do s do

3 € < mineep (r(e) — g(e))

4 forall e € P do

5 gle) < gle) +¢

6 if g(e) = r(e) then

7 smazeme e z R.

8 end

9 Docistime sif pomoci fronty.
10 end
11 end

12 return tok g.
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Lemma (O korektnosti). Pokud se algoritmus zastavi, vydd mazimdlni tok.

Lemma. V kazdém prichodu Dinicova algoritmu vzroste | alespori o 1.

Goldbergtiv algoritmus

Hleda maximalni toku v siti. Je jednodussi nez Dinicuv algoritmus a ma po par snadnych tpravach
stejnou, nebo dokonce lepsi ¢asovou slozitost.

Goldberguv algoritmus za¢ne s ohodnocenim hran, které ani nemusi byt tokem, a postupné ho
upravuje a zmensuje, az se z néj stane tok, a to dokonce tok maximalni.

Definice (VIna). Funkce f : E — Ry je vina v siti (V, E, z, s, ¢), spliiwje-li 0bé ndsledujici podminky:
e Vec E: f(e) <c(e) (vina neprekroci kapacity hran),
o Vo e V\{zs}: f2w) >0 (prebytek ve vrcholech je nezdporny).

Kazdy tok je tedy vlnou, ale opac¢né tomu tak byt nemusi. V prubéhu vypoctu se tedy potfebujeme
postupné zbavit nenulovych prebytku ve vSech vrcholech kromé zdroje a spottebice. K tomu bude
slouzit nésledujici operace:

Definice (Pieveden{ prebytku). Pievedeni piebytku po hrané uv mizeme provést, pokud f=(u) > 0
a r(uv) > 0. Probéhne tak, Ze po hrané uv posleme § = min(f>(u),r(uv)) jednotek toku, podobné
jako v predchozich algoritmech bud prictenim po sméru nebo odectenim proti sméru.

Radi bychom postupnym prevadénim vSechny piebytky piepravili do spotiebice, nebo je naopak
prelili zpét do zdroje. Chceme se ovSem vyhnout prelévani prebytku tam a zase zpét, takze vrcholum
priradime vysky — to budou néjaka prirozena ¢isla h(v).

Ptebytek pak budeme ochotni pfevadét pouze z vyssiho vrcholu do nizsiho. Pokud se stane, Ze
nalezneme vrchol s prebytkem, ze kterého nevede zadna nenasycena hrana smérem dolu, budeme
tento vrchol zvedat — tedy zvySovat mu vysku po jedné, nez se dostane dostatecné vysoko, aby z
néj prebytek mohl odtéci.

Algorithm 23: Goldberguv algoritmus: O(n?m)
Data: Sit (V, E, z,s,¢)
Result: Maximalni tok f
Nastavime pocatecni vysky: > zdroj ve vySce n, ostatni ve vysce 0
h(z) < n
h(v) <= 0 pro vSechny v # z
Vytvorime pocatecni vinu: > vSechny hrany ze z na maximum
f <+ vsude nulova funkce
f(zv) « ¢(zv), kdykoliv zv € F
while ezistuje vrchol u & z,s takovy, Ze f~(u) > 0 do
if existuje hrana uwv s r(uv) >0 a h(u) > h(v) then
‘ prevedeme piebytek po hrané uwv.
else
| h(u) < h(u) + 1. > zvedneme u
end

© 00 N O ks W N -

P
N R O

end
return Maximélni tok f.

-
B~ W
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Toky v celociselné ohodnocenych grafech
Méjme néjaky bipartitni graf (V, F). Pretvoiime ho na sit (V’, E’, z, s, ¢) nasledovné:
e Nalezneme partity grafu, levou a pravou.
e Vsechny hrany zorientujeme zleva doprava.
e Pridame zdroj z a vedeme z néj hrany do vSech vrcholu levé partity.
e Piidame stok s a vedeme do néj hrany ze vSech vrcholu pravé partity.
e VSem hranam nastavime jednotkovou kapacitu.
Najdeme maximaln{ celociselny tok a jelikoz Ve : ¢(e) = 1, musi po kazdé hrané téci bud 0 nebo 1.

Do vysledného parovani vlozime pravé ty hrany puvodniho grafu, po kterych tece 1.

3.3.3 Algoritmy vyhledavani v textu
Definice. Necht J je délka jehly, S délka sena. Dale budeme pracovat s nasledujicimi pojmy:
e Podslovo afi : j] = afilali +1]...a[j —1].
e Prefix af: j| = a[0: j], Suffix afi ;] = afi : |«].
e Stav algoritmu: Nejdelsi prefix jehly, ktery je suffixem sena.
e Dopiednd funkce: rozsiteni prefixu s — s + 1 piidénim jednoho symbolu ¢[s].

e Zpétna funkce Z(s) pritadi « jeho nejdelsi suffix ruzny od «, ktery je prefixem jehly.

Knuth-Morris-Prat. O(J + S)

Aalgoritmus pro hledani jednoho vzoru v textu. Stavy ocislujeme O, ... J.

e Nejprve spocitame prefix funkci (pole nejdelsich vlastnich prefixi, které jsou zaroven sufixy).

e Piiprohledavani textu vyuzivame prefixovou funkci k tomu, abychom se pii neldspéchu nemuseli
vracet, ale abychom preskodcili ¢asti textu, kterou uz jsme porovnali.

— NN

£ b ba bar barb barba barbar barbarossa

Fa
b

O =0 a® a® =0 a® a® 1 ®) 2@, =0
T Y

Algorithm 24: KmpKrok(s, ) — jsme ve stavu s, precetli jsme znak z.

1 while ([s] #x A s # 0 do s < Z]s]. > zpétné hrany
2 if «[s] =z then s + s+ 1. > dopfednd hrana
Result: Novy stav s.

Algorithm 25: KmpHledej(o)

15+0

2 for znaky x € o do

3 s <— KmpKrok(s, )

4 if s = J then Ohlasime vyskyt.

5 end
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Algorithm 26: KmpKonstrukee(t) — jehla ¢ délky J. (konstrukce automatu)

Z[0] « 0 Z[1] <0

540

fori=2,...,J do
s <— KmpKrok(s, ¢[i — 1])
Zi] s

end

Result: Pole zpétnych hran Z.

[ I BN VI

Aho-Corasick. O(J + S+ V)

Hledéani vice fetézcu najednou v textu. V' je pocet vyskytu v sené S.
Mame tq,...,ty s délkami J; a seno o délky S.

Definice (Zkratkova hrana). Rekne, jaky je nejdelsi viastni suffiz slova o, ktery je jehlou.

e Zpet(s) — ¢islo stavu, kam vede zpétnd hrana (nebo (), pokud zaddnd nevede),
o Zkratka(s) — kam vede zkratkova hrana (obdobné),
e Slovo(s) — zda tu konci néjaké slovo (a pokud ano, tak které),

e Dopredu(s,x) — kam vede dopfednd hrana oznacend pismenem z.

Algoritmus probiha nasledovneé:

(1) Nejprve vytvoiime trie (prefixovy strom)
vSech vzort.

(2) Pak ptidame tzv. fail odkazy mezi uzly pro
prechod pfi nedspéchu.

(3) Nakonec prochdzime text znak po znaku
a sledujeme prechody v automatu, pricemz
pii kazdém kroku vime, zda pravé skoncil
néktery z hledanych vzoru.

Algorithm 27: AcKrok(s, z) — jsme ve stavu s, precetli jsme znak z

1 while Dopredu(s,z) =0 A s # koren do

2 | s« Zpet(s)

3 end

4 if Dopredu(s,z) # 0 then s < Dopredu(s, )
Result: Novy stav s.
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Algorithm 28: AcHledej(o) — seno o a zkonstruovany automat

1 s < koren

2 for znaky x € o do
3 s < AcKrok(s, x)

4 g s

5 while ¢ # 0 do

6 if Slovo(q) # 0 then
7 ‘ Ohlasime Slovo(q)
8 end

9 q < Zkratka(q)

10 end

11 end

Algorithm 29: AcKonstrukce(e; ... tp)

1 zalozime strom s korenem r

2 vkladame do stromu slovo ¢; .. . ¢, ~» Dopredu(—, —), ~» Slovo(—)

3 Zpet(r) <0

4 F < fronta, vlozime do ni syny korene

5 synum korene nastavime zpetnou hranu na koren, neboli Zpet(—) < r
6 while ' # 0 do

7 vybereme z fronry vrchol — i
8 for syny s vrcholu i do
9 z < AcKrok(Zpet(i)), znak na hrane {is})
10 Zpet(s) < z
11 if Slovo(z) # 0 then
12 | Zkratka(s) < z
13 else
14 ‘ Zkratka(s) < Zkratka(z)
15 end
16 Vlozime s do F’
17 end
18 end

3.3.4 Algebraické algoritmy

Poznamka. Pro pripomenuti. Pracujeme s ruznymi tvary komplexnich cisel:
o Algebraicky tvar: z =a+bi, a,beR, ddle Z=a — bi.
e Goniometricky tvar: z = |z| (cos ¢ + isin p).
e Ezxponencidlni tvar: Eulerova formule e = cos ¢ + isin .

Definice (Primitivni n-t4 odmocnina z 1). Cislo w € C je primitivni n-t4 odmocnina z 1, pokud
W' =1 a Zddné z cisel w, w?, ..., w" ! neni rovno 1.

Poznamka. Pro sudé n je w™? = —1.
Plati totiz (w"/?)? = w™ = 1, takze w™? je druhd odmocnina z 1. Takové odmocniny jsou jenom dvé:
1 a —1, ovsem 1 to byt nemuze, protoze w je primitivnd.
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Definice (Diskrétni Fourierova transformace (DFT)). Diskrétni Fourierova transformace je zobra-
zeni F : C" — C", které vektoru x = (xg, ..., x,_1) priradi vektory = (Yo, ..., Yn—1) dany predpisem

n—1

jk

yi = wp-w',
k=0

kde w je pevné zvolend primitivni n-td odmocnina z jedné. Vektor y se nmazyvd Fourieruv obraz
vektoru X.

Algorithm 30: Algoritmus FFT — Rychld Fourierova Transformace ©(nlogn)

Data: Cislo n = 2%, primitivn{ n-td4 odmocnina z jednicky w a vektor (po, ..., Pn_1)
koeficientu polynomu P.
Result: Graf polynomu P, tedy vektor (yo,. .., Yn—1), kde y; = P(w?).
if n =1 then
Yo < Po
return (yo)
else
(504 -+ Snja—1) < FFT(n/2,w?, (po, p2, P4, - - - s Pn—2))
(Eo, C 7€n/2—1) — FFT(’R/2,(A}2, (pl,pg,p5, .. 7pn—1))
for j=0,...,n/2—1do
yj s+ wl -l
Yjins2 55 — W - ;

© 00 N O vtk W N =

end

return (yo, ..., Yn_1)
end

=
o

- e
N =

Definice (Fourierova Transformace). Fourierova transformace vektoru v € C" je ddna maticovym
nasobenim:

n—1
F(y= (20 =) 7w
§=0
1 1 1 1
1 wl w2 wnfl
kde Q= |1 w? w? w1l je Fourierova matice.
1 WL w2(n—1) w(n—l)Z

Definice (Inverzni Fourierova Transformace IFFT). Inverzni Fourierova transformace je:

1 1 1 1

1 w_l w_Q e w_(n_l)
Q _ 1 w—2 w—4 .. W—Q(n—l)

1 w_(n_l) w_Q(n_l) e w_(n_l)Q



Véta (Vlastnosti Fourierovy matice). Fourierova matice spliiuje Q-Q = n - I, kde I,, je jednotkovd
matice Tddu n.

Poznamka (Vypocet IFFT). Pro prakticky vgpocet IFFT pouzijeme stejny algoritmus FFT, ale:
e Misto w pouzijeme w™' (nebo ekvivalentné @).

o Vysledek nakonec vydélime n.

3.3.5 RSA
Notace: Zadefinujeme si:
p,geEN o velka prvocisla, t.z.: p # q
(Nye) coveveieenenen. dvojice, vetejny kli¢, kde N =p-q

¢(N)=(p—1)(¢g—1)  Eulerova funkce
eeN, 0<e<p(N) sifrovaci exponent

deN oot desifrovaci exponent

Zaroven musi plati platit ged(e, p(N)) = 1 a ddle se hodi k vypoctum nésledujici vztahy:
y=2x° (mod N) ------ zasifrovani plaintextu, vysledkem je ciphertext
r=y? (mod N) ------ degifrovani ciphertextu, vysledkem je plaintext

d-e=1 (mod ¢p(N)) .. ziskdni d (Euklidovym algoritmem)
Desifrovani se dd lehce odvodit: y¢ = 2¢? = 2! = 2 (mod N).

Popis algoritmu: Bob si vygeneruje nahodna p,q a vypoc¢ita z nich N = p - ¢q. Déle vypocita
Eulerovu funkei ¢(N) a ndsledné vygeneruje ¢éislo e € N, pro které plati ged(e, ¢(N)) = 1. Timto
¢islem zasifruje plaintext x vztahem y = z¢ (mod N). Pak uz jen nalezne ¢islo d € N euklidovym
algoritmem d - e =1 (mod ¢(N)). Vetejny kli¢, dvojici (IV, e), posle Alici spolu s ciphertextem .

Alice ptijme vefejny kli¢ (N, e) a ciphertext y. Pouze Alici je zndm soukromy kli¢ (N, d), vyuzije
ho k desifrovan{ 5. To udéld vztahem z = y? (mod N).

Eva nemd moznost si zpravu precist, protoze nezna desifrovaci exponent d. Musela by ho uhad-
nout, coz neni pravdépodobné, nebo by musela znat prvocisla p,q. Kdyby znala p,q mohla by si
jednoduse dopocitat p(N) a nésledné d tak, jak jsme to udélali my. Bezpecénost RSA tedy stoji na
tom, ze utocnik neni schopen rozlozit N = p - ¢ na p, q, proto je potieba je volit dostatecné velka.

3.3.6 Aproximacni algoritmy

Méme néjakou mnozinu piipustnych feseni a kazdé z nich ohodnoceno cenou ¢(x). Mezi nimi hledame
optimalni feSeni s minimalni cenou c*. Vysta¢ime si s a-aproximaci — pripustné feseni ma cenu
d < ac* proa > 1.

Definice (Pomérové chyba). Pomérova chyba je pomér mezi vystupem a optimem je nejvijse .

Definice (Relativni chyba). Relativni chyba neprekroci (¢ — ¢*)/c*.

Aproximacni schémata.

Definice (PTAS - Polynomial-Time Approximation Scheme). Algoritmus je PTAS, pokud Ve > 0
najde v case polynomidlnim v n reseni s relativni chybou nejvyse €. Formalné:

IALG — OPT]
<,
OPT -

kde OPT je optimdlni reseni a ALG je reseni algoritmu.
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Definice (FPTAS - Fully Polynomial-Time Approximation Scheme). Algoritmus je FPTAS, pokud
je PTAS a navic jeho casovd sloZitost je polynomidlni jak v n, tak v % Formalné:

. 1
Casovd slozitost = O <p (n, —)>
€
kde p je nejaky polynom.

Priklad. Problém batohu md FPTAS. Problém TSP v obecnych grafech md PTAS, ale ne FPTAS.
Poznamka. FPTAS je silnéjsi pozadavek nez PTAS, protoze vyzadugje polynomidlni zdvislost na 1/e,
ne jen na n.

Problém obchodniho cestujiciho (TSP).

Definice (Problém TSP). Méjme neorientovany graf G s nezdporné ohodnocenymi hranami d(e) > 0.
Cilem je najit nejkratsi hamiltonovskou kruznici v G. Predpokladdme, Ze graf je tplny a spliuje
trojuhelnikovou nerovnost:

Vr,y,z € Vi d(z,y) +d(y,z) = d(, 2)

Algorithm 31: TSP — 2-aproximace

1 Najdi minimalni kostru 7" grafu G.
2 Projdi kostru Eulerovskym sledem (délka 27).
3 Odstran duplicity ve vrcholech pomoci “zkratek” (vyuzitim trojuhelnikové nerovnosti).

Poznamka. Vislednd délka kruznice je < 2T < 20PT, kde OPT je délka optimdlniho resend.

Véta. Bez trojihelnikové nerovnosti nelze TSP aprozimovat (pokud P # NP).

Problém batohu.

Definice (Problém batohu). Méjme batoh s kapacitou H a mnoZinu predméti 1,... n s:
e Hmotnostmi hq, ..., hy,
o Cenamicy,...,cy.
Cilem je najit podmnozinu P C {1,... ,n} takovou, Ze:
h(P) = Zhi <H a ¢P)= maXZci.
icP ieP

Algorithm 32: Aproximace problému batohu

1 Odstran vsechny predméty s h; > H.
2 Spocitej cmax = max; ¢; a zvol M = [Z] pro libovolné ¢ > 0.
ol

Cmax

3 Kvantujeme ceny: proi=1,...,n necht ¢; = |¢; -
4 Vyftesime upraveny problém batohu s ¢y, ..., ¢, dynamickym programovanim.
5 Vratime predméty z optiméalniho feSeni kvantovaného problému.

Poznamka. Zaokrouhlovdni hmotnosti by mohlo vést k nepripustnym tesenim, ale zaokrouhlovdni
cen je bezpecné.

Véta. Algoritmus poskytuje (1 — €)-aprozimaci v éase O(n?/e).

5Zvolime piirozené M < cpax a zobrazime [0, cmax] — {0, ..., M}. Tedy kazdou cenu ¢; znasobime pomérem -
“max
Kazdé c¢; jsme zménili nejvyse o “22x, proto celkovou cenu nejvyse o n - “22x. Po odstranéni vSech h; > H plati

¢* > Cmax, proto chyba aproximace < n - CM Chybu omezime shora € > 0 jako € - ¢* a musime tak zvolit M > Z.
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3.3.7 Paralelni tridéni komparatorovych siti

Definice (Kompardtorovd sit). Komparatorova sit je hradlovd sit sloZend z kompardtori. Na vstupu
ma 2 c¢isla a vystopem je vlevo mensi ¢islo, vpravo vétsi cislo.

Piiklad (Bubble sort O(n)). Prikladem je Bubble sort, ktery jsme schopni udélat linedrni:

I I Ia Iy Iy

n Y2 Y3 Y4 Ys

Bitonické tridéni.

Definice (Cistd bitonické posloupnost). Posloupnost xy, ..., x,_1 je Cisté bitonickd, pokud existuje
index k takovy, Ze:

o 1o <1z <--- < xp (rostouct édst)

® Iy > Ty > > Ty (Klesajict cast)

Definice (Bitonickd posloupnost). Posloupnost je bitonicka, pokud je cyklickou rotaci néjaké cisté
bitonické posloupnosti.

Definice (Separator). Separdtor je obvod, ktery:
o Rozdéli bitonickou posloupnost délky n na dve poloviéni posloupnosti.

o Zajisti, Ze vSechny prvky v proni poloviné jsou mensi nez vsechny prvky v druhé polovine.

Irp I xIa I3 T4 Is Ig Iy
| .
|
"o h Y2 Yz Ya Ys Ys Y7
Vlastnosti. Plati ndsledujici vlastnosti: Vo | T b
e Hloubka obvodu: 1 (jedna vrstva kompardtoru) [ 26 J[oa | [a | [ o6 ]
| My | | M; |
e Pocet hradel: § (V komparator 2 vstupy a 2 vystupy) | | _ ] |
e Casova slozitost: O(1) | 518 |
! |
Poznamka. Za pomoci bitonickijch “tridicek” a “slévacek” | S <] 51 |
jsme takto schopni vytvorit jednoduse Merge stort. (viz. | St < éz <] St <[ St ‘
Obr.) Pat ottt oot oo oot
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3.4 Pokrocila diskrétni matematika

3.4.1 Barveni graft

Definice (Vrcholova barevnost). Vrcholovéd barevnost x(G) grafu G je nejmensi pocet barev, kterymi
lze obarvit vrcholy G. (Tedy Zddné dva sousedni vrcholy nemaji stejnou barvu,).

Poznamka. Pro graf G znacime:
e Maximélni stupen jako A(G),
e Minimélni stupen jako 0(G),
e Velikost nejveétsi kliky jako w(G),
e Velikost nejvétsi nezavislé mnoziny jako a(G).
Véta. Pro graf G plati vztah: x(G) > %.
Definice (Degenerovanost). Graf G je d-degenerovany = kazdy podgraf H grafu G md 6(H) < d.
Poznamka. Pokud G je A(G)-degenerovany, pak x(G) < A(G) + 1.

Definice (Hranové barveni). Hranové barveni je funkce b : E(G) — B (barvy) takovd, Ze pokud
e# f€FE ae,f maji spoleény vrchol, pak b(e) # b(f).

Definice (Hranovéd berevnost). Hranovéd barevnost G (“chromaticky index”) x'(G) je minimalni
pocet barev pro hranové barveni G. Plati x'(G) < x(G).

Véta (Brooks). Necht G je sowvisly graf ktery neni iplny a neni lichd kruznice. Pak
X(G) < A(G).

Diikaz. Indukei na poc¢tu vrcholu: pokud mé graf vrchol stupné < A, odebereme ho a zpétné snadno
dobarvime. Pokud je A-regularni, najdeme “tfesnicku”:

Ttesnicka:

Odebereme z, dobarvime GG — z A barvami. Pokud z a y maji rizné barvy, tak lze z dobarvit rovnou.
Pokud maji stejnou barvu, barvy pirehdzime tak, aby se uvolnila barva pro z. Vyjimkou, kdy to selze,
je jen tuplny graf nebo licha kruznice. m

Véta (Vizing). Pro kazdy graf G plati, Ze
A(G) = X(G) < AG) + 1.

Dikaz. Postupujeme hladové — kazdou hranu barvime postupné jednou z 1,..., A + 1 barev. Déle
rozdélime na pripady; hledame wvolné a pouzitelné vrcholy. Pokud u koncovych vrcholu neni volna
barva, tak pomoci ptehazovani barev na alternativnich fetézcich vzdy uvolnime vhodnou barvu. [
Poznamka. Plati, 7e w(G) < x(G). A také w(G) = a(G).

Definice (Perfektni graf). Graf G je perfektni, pokud VH < G : x(H) = w(H).

Véta (Slabd o perfektnich grafech). Graf G je perfektni <= G je perfektn.

Véta (Silnd o perfektnich grafech). Graf G je perfektni <= G ani G neobsahuje jako indukovany
podgraf lichy cyklus délky > 5.

Poznamka. Perfekini grafy jsou napriklad K, nebo bipartitni grafy.

Definice (Chordélni graf). Graf je chordalni, pokud neobsahuje Cy, k > 4 jako indukovany podgraf.
(kazdd kruznice md chordu (tétivu))
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3.4.2 Parovani v grafech

Definice (Parovani). Pérovani je mnozina hran M takovd, Ze kazZdy vrchol je incidentni s nejvyse
jednou hranou v M. TedyVe #¢ € M :ene = 0.

Definice (Nejvétsi parovani). Nejvetsi parovani je pdrovdnd nejvetsi velikosti. Velikost je nejuyse 5 .
Definice (Perfektni parovani). Perfektni parovani je pdrovdni, kde kazdy vrchol je incidentni s pravé
jednou hranou. (Neboli pokud v pdarovdni neexistuje Zddny volny vrchol. |M| = ”2/—‘)

Poznamka. Grafy s lichym pocetem vrcholu nemagi perfektni parovdni.

Tutteho a Petersenova véta.

Definice (Tutteho podminka). Plati ¥S C V : odd(G — S) < |S|, kde odd znaci pocet lichijch
komponent grafu.

Véta (Tutte). Graf G md perfekini parovani <= plati Tutteova podminka.

Proof. Obménou” =" : Rikdme, ze pokud neplati Tutteho podminka, pak nem4 perfektn{ parovani.
Necht 35 C V t. z. odd(G — S) > |S|. V perfektnim péarovéni se alespoi 1 vrchol z kazdé liché
komponenty musi sparovat s néjakym z .S, ale téch neni dostatek. O]

Véta (Petersen). Kazdy 3-reguldrni 2—souvisl‘1ﬂ graf ma perfekini pdrovdnd.

Diikaz. Vezméme si libovolnou S C V. Ukazeme, ze spliuje Tutteho podminku.
Pokud odd(G — S) = 0, jsme hotovi.
Predpokladejme, tedy ze v G — S existuje lichd komponenta K. Potom plati:

Z degqs(v) = 3|V(K)| = 2|E(K)| + pocet hran vychazejici mimo K, coz je liché ¢islo.
veV(K)
Pocet hran mezi K a S musi byt alespon 2, jinak mdme most, je to tedy alespon 3.

Maximélni pocet hran z S je 3|5/, tudiz lichych komponent muze byt nejvyse @, tedy |5 O

Edmondstv kytickovy algoritmus.
Definice (Volny vrchol). Volny vrchol je vrchol, ktery nevidi Zidnou hranu pdrovant.

Definice (Stiidava cesta). Stiidava cesta je cesta, kde jsou vSechny wvnitrni vrcholy incidentni s

pdrovaci hranou a navic tato hrana lezi na cesté. o—0--0—0C-0—70
Definice (Volnd stiidava cesta). Volnd stiidava cesta je takovd stiidavd cesta, jejiz koncové vrcholy
jsou volné. o-O0—CO-0—0O-0
Definice (Kytka). Kytka je tvorena stonkem a kvétem: ﬂ ét%
e stonek je stridavd cesta z vy (i nulové) délky koncici volnym vrcholem. ) /
e kvét je lichd “stridavd” kruznice s vrcholem vy, ke kterému priléhajyi dve stonek
hrany ¢ M. @

Algoritmus. (Edmondsuv). Na vstupu parovani M a zlepsi jej nebo jej prohlési za nejvétsi.
e Hleddme stiidavé cesty, které zvysuji velikost M.
e Pokud narazime na kytku, zkontrahuje ji do jednoho supervrcholu.

o Kytka se rekurzivné zpracuje a po nalezeni parovani ve sbaleném grafu se rozbali zpét do
puvodni struktury.

6Vrcholové i hranové, pro 3-regularni grafy je to to samé; alternativné mizeme Fict graf bez mosti a artikulaci.
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3.4.3 Kresleni grafi na plochach.

Definice (Homeomorfismus). Necht X C R™, Y C R™. Potom homeomorfismus z X na Y je funkce
f: X =Y, kterd je spojitd, bijekce a f~1 je spojitd.
Rikdme, zZe X,Y jsou homeomorfni, X =Y, pokud mezi nimi existuje homeomorfismus.

Definice (Plocha). Plocha je kompaktni (uzaviend, omezend), souvisld, 2-rozmérnd varieta bez hra-
nice (dostatecné malé okoli kazdého bodu je homeomorfni otevienému okoli v R?).

Konstrukce ploch.

Piidani ucha. “Teleport, do kterého kdyz vejdeme, tak na druhé strané vyjdeme opacné (otocené).”
Vyfiizneme dva kruhy, vezmeme plast valce bez dna a vrchu, ohneme a piilepime na diry po kruzich.

Pridani krizitka. “Teleport, do kterého kdyz vejdeme, tak nds to presune naproti.”

Definice (Orientovana plocha). Pro g € {0,1,...} necht 3~ znaci plochu zvniklou ze sféry priddnim
g ust, tak rikame, Ze > g je orientovatelnd plocha rodu g.

Definice (Neorientovand plocha). Pro g € {1,2,...} necht [] g, #naci plochu zvniklou ze sféry
pridanim g krizitek, tak tikame, Ze [ g je neorientovatelnd plocha rodu g.

K3 3 natorus K5 natorus K5 v projektivni roving Peterson na torus
> N >

- =

Eulerova charakteristika.

Definice (Nakresleni grafu). Nakresleni grafu G = (V, E) na plochu I' je zobrazeni ¢ t. Z.:
o kaZdému vrcholu v € V priradi bod p(v) € T’
e kazdé hrané e € E priradi prostou (neprotinajici se) krivku p(e) € I' spojujici konce ¢(x), o(y)

vrcholy se neprekryvaji: x,y €V :x £y = p(x) # ¢(y)

hrany se prekrijvaji nejuyse ve sdilengych vrcholech: e, f € E e # f = ¢(e) No(f) =
{o(x) [z eenf}

vrcholy, které nelezi na hrané se s ni neprotinaji: e € E;x € V iz ge = ¢(x) & p(e)

Definice (Sténa nakresleni). Souvisld komponenta I' \ ((U ga(e)) U (U w(x))) .

eckE zeV

Definice (Buiikové nakresleni). KaZdd sténa je homeomorfni otevienému kruhu v R

Definice (Eulerova charakteristika). Eulerova charakteristika plochy I' je

X(F):{Q—g =TIy
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Véta (Zobecnénd Eulerova formule). Necht mdme nakresleni grafu G = (V, E) na plose T, které md

S stén. Pak |V| — |E| + |S| > x(I"). Pokud je burnikové, tak dokonce |V| — |E| + |S| = x(I').
Dusledek. Kazdy graf G nakreslitelny na plochu T' splni |E| < 3|V| — 3x(T"), pokud |V| > 4.
Véta. Necht T je plocha, I’ # Xg a necht G je graf nakresleny na T.

Potom G obsahugje vrchol stupné 6(G) < FJF— V49_24X(F)J .

2

Poznamka. Plati vztah Z delka(f) = 2|E| = Z deg(v
fes veV

3.4.4 Grafové minory

Definice (Minor). Necht H,G jsou grafy. Pak H je minor G (resp. G obsahuje H jako minor),
znacime H <X G, pokud H lze ziskat z G posloupnosti mazani vrcholi, mazani hran nebo kontrakei
hran.

Vlastnosti. Pro grafové minory plati nasledujici vlastnosti:
e < je transitivni (prosté spojim posloupnosti operaci),
e H podgraf G = H minor G,
e (G rovinny = jeho minory jsou také rovinné.
Véta (Kuratowski). G rovinng <= neobsahuje déleni K5 ani K33 jako podgraf.

Véta (Kuratowski-Warner). G rovinng <= neobsahuje K5 ani K33 jako minor.

3.4.5 Mnoziny a zobrazeni

Definice (Ttida). Pokud je p(z) formule, tak vgraz {z | ¢(x)} nazgvime tiidovy term. Definuje
“soubor” vSech mnozin x, pro které plati p(x). Tomuto souboru rikime t¥ida urcend formuli p(x).

Poznamka. KazZdd mnoZina je zdroven i tiidou, protoze x = {z | z € x}.
Definice (Vlastni tiida). T7idu, kterd neni mnoZinou, nazgvdme vlastni tiida.
Definice (Ttidové operace). Pro tridy A a B definujeme
e ANB={z|ze€ ANz € B},
e AUB={z|ze€ AVzxe B},
e A\B={x|ze ANz ¢ B}, ... pripadné A — B
e JA={z|(Fa)(lae ANz E€a)},

NA={z|(Va)(ac A—z€a)}

ACB=(Vz)(xe A—z € B), ... A je podtridou B

ACB=ACBANA#B, ... A je vlastni podtridou B

P(A) ={z|z C A}.
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Definice (Kartézsky soucin). Kartézsky soucin tid A a B je trida
AxB={(a,b)|ac ANDb € B}.
Kartézsky soucin trid Ay, As, ... A, definujeme induktivné jako
Ay X oo x Ay = (A1 x - X Apr) X Ay = {(an, ... an) I\, @i € A
Lemma. Jsou-li x a y mnoZiny, potom je x X y také mnozZina.

Definice (Binarni relace). Binarni relace je libovolnd trida R C'V x V. Namisto (x,y) € R piseme
x Ry. Podobné lze definovat n-drni relaci jako R C V™.

Definice. Pro (bindrni) relaci R a tridu X definujeme tridy

o 7' ={(v,u) | u Rv}, ... inverzni relace k relaci R
e Dom(R) = {u | (Fv)(u Rv)}, ... definicni obor relace R
e Rng(R) ={v| (Ju)(u Rv)}, ... obor hodnot relace R
e RIX=RN(XxV)CR, ... zuzend relace R na tridu X
e R[X]=Rng(RIX) C Rng(R). ...obraz tridy X relaci R

Definice. Relace odpovidajict relacnim symbolim jazyka teorie mnozZin jsou

e E={(z,y) |z €y}, ... ndlezeni
o Id={(z,y) |z =y} ... identita
e Ay =1d[X .. .identita na tridé X

Definice (Skladani relaci). Pro relace R a S definujeme relaci
Ro S ={(u,w) | (Fv)(uRvAvSw)}
Definice (Zobrazeni). Relace F' je zobrazeni (funkce) =
(Vu) (Vo) (Vw) (((u,v) € F A (u,w) € F) = v =w).
Namisto u F v piseme F(u) = v, pri definovani piseme F : u v+ v.
Poznamka. F' je zobrazen! <= (Vx € Dom(F))(3ly € Rug(F))(F(z) =y).
Definice (Prosté zobrazeni, bijekce). Rekneme, Ze zobrazeni I je
e prosté = F! je zobrazend, tedy Yo,y € X : f(x) = f(y) = x =y, ... injekce
e zobrazeni tridy X do tridy Y = Dom(F) = X ARng(F) C VY, piseme F: X =Y,
ena=F:X—>YARng(F)=Y, tedyVy €Y dJz € X : f(x) =y, ... surjekce
e bijekce mezi tridami X a'Y = je to prosté zobrazeni X na 'Y .

Definice (Suma). Pro kaZdou mnoZinu x ezistuje mnoZina s, kterd je sjednocenim vSech mmnozin
uvniti . Této mnoziné rikdme suma mnoziny x a znacime ji |J x.

(Vz)(3s) : (Vz)(z €5 <= (Ty)ly €z Az €y)).

Definice (Poten¢ni mnozina). Pro kaZdou mnozinu x existuje mnozina vsech jejich podmnozin. Této
mnoziné Tikdme poten¢éni mnozina mnoZiny x a znac¢ime ji P(x).

(Vz)(3p) : (Vz)(z € p <= 2z Cx).
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3.4.6 Subvalence a ekvivalence mnozin

Definice (Ekvivalence). Relace R je na tridé X ekvivalence = je reflexivni, symetrickd a tranzitioni.
Definice (Ttidy ekvivalence). Necht R je ekvivalence na tridé X. Pro x € X definujeme tridu
[z]r ={y |y € X Az Ry} = R{z}] N X,
kterou nazyvdme ekvivalenéni tiida proku x.
Definice. Pro mnoziny x a y definujeme relace
1. x = y = existuje bijekce f :x — 1y,
2. x =y = existuje prosté zobrazeni f :x — v,
S r<y=rxyANx#y.

Véta (Cantor, Schroder, Bernstein). z ~y <= (z 2y Ay = x).

Konecné a spocetné mnoziny

Definice (Tarski — kone¢nost). MnoZina = je koneénd = kazdd neprdazdnd a C P(z) md maximdlni
prvek viuci inkluzi. Pokud je x konecnd, tak piseme Fin(x).

Poznamka. MnoZina x je koneénd <= kazdd neprdzdnd a C P(x) md minimdlni prvek vici
inkluzi.

Lemma. Je-li x koneénad a y nekonecnd, potom x < y.

Definice (Dedikendovskd konecnost). MnozZina x je dedekindovsky koneénd = (Vy)(y C © — y <

Lemma. Je-li x konecénd, potom je i dedekindovsky konecnad.
Definice (Spocetnost). Mnozina = je

e spocetnd = r ~ w,

e nejvyse spocetna = je spocetnd nebo konecnd,

e nespocetnad = neni nejuyse spocetnd.
Véta. Plati

1. kazdd shora omezend podmnozina A C w je konecnd,

2. kazdd shora neomezend podmnozina A C w je spocetnd.

Véta. Jsou-li A, B spocetné mnoziny, pak AU B a A X B jsou také spocetné.
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Mohutnosti mnozin riaznych cisel

Veéta. Mnoziny Q,Z jsou spocetné.

Véta (Cantorova). Pro kaZdou mnoZinu x plati x < P(z).
Dusledek. Mnozina P(w) je nespocetnd.

Véta. “2~P(w) ~R =~ (0, 1).

Veéta. Mnoziny Q a R nejsou ekvivalentni.

Diikaz. (Cantorovou diagondlni metodou,).
Vime, ze R =~ (0, 1). Pro spor predpokladejme, ze existuje bijekce N ~ (0, 1). Tedy vSechna redlna
¢isla v tomto intervalu lze zapsat jako oc¢islovany seznam prvku a;; € {0,1,...,9}.

r = O.a11a12a13a14 Ce
To = 0.(121(122&23@24 ce

rs = O.a31a32a33a34 RN

1 je-1i Qi 1
Nyni sestrojime nové realné ¢islo r = 0.0;b5b3by . .. takto: b; = . 7

2, jeliaz=1
Timto jsme zajistili, ze r se lisi od kazdého r; alespon v i-té cifre. Tedy r # r; pro vSechna i. Pritom
ale r € (0,1), takze mélo byt v seznamu, coz je spor. O
3.4.7 Dobré usporadani
Definice (Usporadéani). Relace R CV x V je na tridé X
e trichotomickd = (Vz,y € X)(e RyVy Rz Vz =y), ... porovnatelnost

e ostré usporadani = je ireflexivni a tranzitivni na X,

e usporadani = je reflexivni, slabé antisymetrickd a tranzitivni na X,

e linearni usporadani = je trichotomickd a uspordadani na X .
Pokud je R usporadani, tak misto x Ry piseme x <gr y. Pro ostré usporaddini piSeme v <g y.
Definice. Necht R je uspordddni na tridé A a X C A. Prvek a € A je

e horni mez tridy X = (Vx € X)(z <g a), ... také majoranta

e maximalni prvek t7idy X =a € X A (Fr € X)(a <g z),

e nejvétsi prvek tridy X =a € X a je to horni mez X,

e supremum tiidy X = je nejmensi prvek tridy vsech horni mezi X.

Nejvétsi prvek, resp. supremum znacime maxg(X), resp. supg(X); pokud ezistuji. Obdobné definu-
jeme minorantu, minimdalni prvek, nejmensi prvek a infimum.

Definice. Rekneme, Ze uspordddni R je na mnoziné A
e husté = (Vx, y € A)(a: <y—(FTzeA)(zr<z< y)),
e dobré = kazdd neprdzdnd B C A md nejmensi prvek,

e Uplné = kazdd neprdzdnd, shora omezend B C A md supremum.
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Ordinalni a kardinalni ¢isla

Ordinalni cisla jsou zobecnéni prirozenych ¢isel a udavaji typy dobie usporddanych mnozin. Pomoci
ordinalnich cisel pak lze nadefinovat kardinalni ¢isla, coz jsou specialni ordinalni ¢isla, kterd méii
mohutnosti mnozin. Ordinalni ¢isla definujeme tak, aby byla dobfe usporadéna relaci €, takze na
nich budeme moci provadét takzvanou transfinitni indukei.

Definice. Trida X je tranzitioni =yecx e X -y e X.
Definice (Ordindlni ¢islo). MnoZina x je ordindlni ¢islo =
1. x je tranzitivni,
2. relace € je dobré ostré usporadani na x.
Tridu viech ordindlni ¢isel znacime O,

Definice (Kardinélni ¢isla). Ordindini ¢islo a nazveme kardinalnim &islem, pokud kazdé mensi or-
dindlni ¢islo B < a md i mensi mohutnost (tj. « nelze bijektivné zobrazit na Zddnou podmnozinu ().
Oznacime-li jako C), ttidu vSech kardindlnich ¢isel, muzZeme zapsat tuto definici ve tvaru:

aelC, — (VB<a = —~(f=a)).
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