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1.2 Algebra a Lineárńı algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1.5 Pravděpodobnost a statistika . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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2.2.4 Binarńı vyhledávaćı stromy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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3.1.1 Vytvořuj́ıćı funkce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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3.3.6 Aproximačńı algoritmy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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Společná matematika

Z následuj́ıćıch 6 témat budou vybrána 2.

1.1 Základy diferenciálńıho a integrálńıho počtu

1.1.1 Posloupnosti reálných č́ısel a jejich limity

Definice (Reálná posloupnost). Reálná posloupnost (an)
∞
n=1 = (a1, a2, . . . ) ∈ R je funkce a : N→ R.

Definice (Limita posloupnosti). Necht’ (an) je reálná posloupnost a L ∈ R∗, kde R∗ je R spolu s
±∞. Potom L je limita posloupnosti (an), pokud:

∀ε,∃n0 : n ≥ n0 =⇒ an ∈ U(L, ε), U(b, ε) = (b− ε, b+ ε).

Ṕı̌seme lim
n→∞

an = L.

Definice (Nevlastńı limita posloupnosti). Pokud L ∈ R, pak konverguje a mluv́ıme o limitě vlastńı,
pokud L = ±∞, pak diveguje a mluv́ıme o limitě nevlastńı.

Definice (Podposloupnost). (bn) je podposloupnost́ı posloupnosti (an), pokud existuje taková po-
sloupnost

∀m ∈ N : m1 < m2 < · · · ∈ N,

kde ∀n : bn = amn. Znač́ıme jako (bn) ≺ (an).

Definice (Hromadný bod). Hromadný bod A posloupnosti (an), pokud je limitou nějaké podposloup-
nosti posloupnosti (an).

Věta (Aritmetika limit). Necht’ (an), (bn) jsou posloupnosti reálných č́ısel s lim
n→∞

(an) = K ∈ R∗,

lim
n→∞

(bn) = L ∈ R∗. Potom, pokud jsou výrazy na pravých stranách definovány, plat́ı

(i) lim
n→∞

(an + bn) = K + L ,

(ii) lim
n→∞

(an · bn) = K · L,

(iii) lim
n→∞

(
an
bn

)
=
K

L
, pokud bn ̸= 0 pro každé n > n0.

Věta (O dvou policajtech). Necht’ posloupnosti (an), (bn), (cn) ∈ R splňuj́ı, že lim
n→∞

an = lim
n→∞

bn =

a ∈ R a ∀n > n0 : an < cn < bn. Pak (cn) konverguje a lim
n→∞

cn = a.

Věta (O limitě a uspořádáńı). Necht’ posloupnosti (an), (bn) ∈ R maj́ı limity lim an = A ∈ R∗ a
lim bn = B ∈ R∗. Potom:

(i) A < B =⇒ ∃n0 : ∀n ≥ n0 plat́ı an < bn,

(ii) ∀n : an ≤ bn =⇒ A ≤ B.
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1.1.2 Řady

Definice (Řada). Řada je posloupnost (an) ⊆ R.

Definice (Částečný součet řady). Částečný součet řady (an) je (sn) := (a1 + a2 + · · ·+ an)

Definice (Součet řady). Součet řady je limita
∑

an =
∞∑
n=1

an = a1 + a2 + · · · := lim
n→∞

(a1 + a2 +

· · ·+ an) = lim sn ∈ R∗.

Definice (Geometrická řada). Geometrická řada je řada
∞∑
n=0

qn = 1 + q + q2 + · · · + qn + . . . , kde

q ∈ R je kvocient.

Definice (Součet geometrické řady).
∞∑
n=0

qn =


1

1−q
pro |q| < 1

+∞ pro q ≥ 1

neexistuje pro q ≤ −1

Definice (Absolutně konvergentńı řada). Řada
∑
an je absolutně konvergentńı, pokud konverguje

řada
∑
|an|.

Definice (Harmonická řada). Harmonickou řadu definujeme jako hn =
∞∑
n=1

1

ns
, kde s ∈ R. Plat́ı, že

hn konverguje, pokud s > 1, jinak diverguje.

1.1.3 Reálné funkce jedné reálné proměnné

Definice (Okoĺı bodu). ε-okoĺı bodu b ∈ R, kde ε ∈ R+ je interval

U(b, ε) := (b− ε, b+ ε) = {x ∈ R : d(x, a) < ε}, pro metriku d.

Definice (Prstencové okoĺı bodu). Prstencové okoĺı bodu b ≡ P (b, ε) := (b− ε, b) ∪ (b, b+ ε).

Definice (Limita funkce v bodě). Funkce f má v bodě a ∈ R∗ limitu A ∈ R∗, když

∀ε > 0,∃δ > 0, ∀x ∈ P (a, δ) =⇒ f(x) ∈ U(A, ε), tedy lim
x→a

f(x) = A.

Definice (Jednostranná limita funkce). Podobně, jen ∀x ∈ P±(a, δ) ...

Věta (Vztah limit funkce s uspořádáńım). Necht’ c ∈ R∗ a funkce f, g, h jsou definované na nějakém
prstencovém okoĺı bodu c.

(1) Maj́ı-li funkce f, g v bodě c limitu a lim
x→c

f(x) > lim
x→c

g(x), pak ∃δ > 0 takové, že f(x) > g(x) pro

každé x ∈ P (c, δ). (Limita zachovává ostré nerovnosti.)

(2) Existuje-li δ > 0 : f(x) ≥ g(x) pro každé x ∈ P (c, δ), a maj́ı-li funkce f, g limitu v bodě c,
potom lim

x→c
f(x) ≥ lim

x→c
g(x). (Limita zachovává neostré nerovnosti.)

(3) Existuje-li δ > 0 : f(x) ≤ h(x) ≤ g(x) pro každé x ∈ P (c, δ) a lim
x→c

f(x) = lim
x→c

g(x) = A ∈ R∗,

potom i lim
x→c

h(x) = A. (O dvou policajtech.)

Definice (Spojitost funkce v bodě). Funkce f je spojitá v bodě a ∈ R, pokud

∀ε > 0,∃δ > 0,∀x ∈ P (a, δ) =⇒ f(x) ∈ U(f(a), ε).

Neboli funkce f je v bodě a spojitá, pokud lim
x→a

f(x) = f(a).
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Definice (Limita složené funkce). Necht’ a, b, c ∈ R∗ a necht’ funkce maj́ı limity lim
x→a

g(x) = b a

lim
x→b

f(x) = c. Složená funkce má potom limitu lim
x→a

f(g(x)) = c ⇐⇒ plat́ı jedna z podmı́nek:

(i) f(x) je spojitá v c,

(ii) ∃δ, ∀x ∈ P (a, δ) : b /∈ g(x), tedy na nějakém prstencovém okoĺı funkce nenabývá hodnotu b.

Definice (Spojitost na intervalu). Funkce je spojitá na intervalu, je-li spojitá v každém vnitřńım
bodu a jednostraně spojitá v meźıch.

Věta (Nabýváńı mezihodnot). Funkce spojitá na intervalu nabývá všech hodnot mezi mezemi inter-
valu. Tedy pro a, b, c ∈ R; a < b; f : [a, b]→ R je spojitá a f(a) ≷ c ≷ f(b), pak ∃d ∈ (a, b) : f(d) = c.

Definice (Maximum). Necht’ M ⊆ R a f : M → R. Řekneme, že funkce f v bodě a ∈ M nabývá
svého maxima, když ∀x ∈M : f(x) ≤ f(a). (minimum analogicky, jen opačná nerovnost).

Věta (Princip minima a maxima). Necht’ a, b ∈ R, a ≤ b a f : [a, b]→ R je spojitá funkce. Potom f
nabývá na intervalu [a, b] svého maxima i minima.

1.1.4 Derivace a jej́ı aplikace

Definice (Derivace funkce). Necht’ bod a ∈ M je limitńı bod množiny M ⊆ R a f = f(x) : M → R
je funkce. Potom derivace f v bodě a je limita

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
h→0

f(a+ h)− f(a)
h

.

Definice (Diferencovatelnost). Jestlǐze má f v bodě b vlastńı derivaci, ř́ıkáme, že f je v b diferen-
covatelná. (Diferencovatelnost =⇒ spojitost).

Věta (Derivace složené funkce (řet́ızkové pravidlo)). Necht’ f, g funkce a g má spojitou derivaci v x:

(f(g(x)))′ = f ′(g(x)) · g′(x).

Pravidlo Vzorec

Derivace součtu (f + g)′ = f ′ + g′

Derivace násobku (αf)′ = αf ′ ∀α ∈ R
Leibnizovo pravidlo (součin) (f · g)′ = f ′ · g + f · g′

Derivace pod́ılu

(
f

g

)′

=
f ′ · g − f · g′

g2
, g ̸= 0

Elementárńı funkce Derivace
Mocninná funkce (xn)′ = nxn−1, n ∈ R
Exponenciálńı funkce (ex)′ = ex, (ax)′ = ax ln a

Logaritmická funkce (lnx)′ =
1

x
, (loga x)

′ =
1

x ln a
Goniometrické funkce (sinx)′ = cosx

(cosx)′ = − sinx

(tanx)′ =
1

cos2 x
= 1 + tan2 x

(cotx)′ = − 1

sin2 x
= −(1 + cot2 x)
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Věta (l’Hospitalovo pravidlo). Necht’ a ∈ R; f, g : P (a, δ)→ R maj́ı vlastńı derivace, g′ ̸= 0 a
lim
x→a

f(x) = lim
x→a

g(x) = 0 nebo lim
x→a

g(x) = ±∞, potom:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
, pokud posledńı limita existuje.

0

0
,
±∞
±∞

Věta plat́ı i pro P±(a, δ) a pro a = ±∞.

Definice (Taylor̊uv polynom funkce). Necht’ ∀n ∈ N : f, f ′, . . . , f (n−1) : U(b, δ)→ R a ∃f (n)(b) ∈ R.
Potom Taylor̊uv polynom funkce f řádu n se středem v bodě b je

T f,b
n (x) :=

n∑
k=0

f (k)(b)

k!
(x− b)k.

Věta (Taylorova řada funkce). Má-li funkce f v bodě a ∈ R derivace všech řád̊u, rozumı́me pro
x ∈ R jej́ı Taylorovou řadou se středem v b řadu

T f,b(x) :=
∞∑
n=0

f (n)(b)

n!
(x− b)n.

Funkce Taylor̊uv polynom Konvergence

Exponenciálńı ex =
∞∑
k=0

xk

k!
∀x ∈ R

Sinus sinx =
∞∑
k=0

(−1)k x2k+1

(2k + 1)!
∀x ∈ R

Kosinus cosx =
∞∑
k=0

(−1)k x2k

(2k)!
∀x ∈ R

Přirozený logaritmus ln(1 + x) =
∞∑
k=1

(−1)k+1x
k

k
x ∈ (−1, 1]

Vyšetřeńı pr̊uběhu funkce

Urč́ıme definičńı obor, speciálńı tvar (sudost/lichost/periodicita), limity krajńıch bod̊u, 1. derivace,
extrémy a monotonie, 2. derivace, inflexńı body a kon[vex/kav]ita, asymptoty, náčrt.

Věta (Lagrangeova). Pokud f je spojitá funkce, pak ∃c ∈ (a, b) : f ′(c) =
f(b)− f(a)

b− a
=: z.

Definice (Extrémy a monotonie). Necht’ f má prvńı derivaci, potom pokud

• f ′(x) = 0, pak má extrém,

• f ′(x) > 0, pak roste (resp. f ′(x) < 0 klesá).

Definice (Konvexita/ Konkavita). Necht’ f má druhou derivaci, potom pokud f ′′(x) > 0, pak je
konvexńı a pokud f ′′(x) < 0, pak je konkávńı.

Definice (Inflexńı bod). Inflexńı bod je bod, ve kterém f ′′ = 0 a f ′ = 0 nebo f ′ neexistuje. (Docháźı
ke změně směru funkce).
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1.1.5 Integrály a jejich aplikace

Definice (Primitivńı funkce). Necht’ I ⊆ R je netriviálńı interval a F, f : I → R. Potom F je

primitivńı funkce k f , neboli F =

∫
f , pokud F ′ = f na celém I.

Definice (Metody výpočtu: Substituce).∫
f(g(x)) g′(x) dx =

∣∣∣∣ y = g(x)
dy = g′(x) dx

∣∣∣∣ = ∫ f(y) dy = F (y) + C
y=g(x)
= F (g(x)) + C

∫ b

a

f(g(x)) g′(x) dx =

∣∣∣∣∣∣∣∣
y = g(x)

dy = g′(x) dx
x = a⇝ y = g(a)
x = b⇝ y = g(b)

∣∣∣∣∣∣∣∣ =
∫ g(b)

g(a)

f(y) dy

Definice (Metody výpočtu: Per partes).

∫
f ′g = fg −

∫
fg′

Elementárńı funkce Neurčitý integrál
∫
f(x) dx (bez konst. C)

Mocninná funkce
∫
xn =

xn+1

n+ 1
(n ̸= −1)

Exponenciálńı funkce
∫
ex = ex,∫
ax =

ax

ln a
(a > 0, a ̸= 1)

Logaritmická funkce
∫

1
x
= ln |x|

Goniometrické funkce
∫
sinx = − cosx∫
cosx = sinx∫
tanx = − ln | cosx|∫
cotx = ln | sinx|

Goniometrické funkce složitěǰśı
∫

1
cos2 x

= tanx∫
1

sin2 x
= − cotx∫

1√
1−x2 = arcsinx∫
1

1+x2 = arctanx

Newton̊uv a Riemann̊uv integrál: definice a souvislost.

Definice (Newton̊uv integrál funkce). Newton̊uv integrál funkce f na intervalu (a, b), a < b:

(N)

∫ b

a

f(x) dx := [F ]ba = F (b−)− F (a+) = lim
x→b−

F (x)− lim
x→a+

F (x)

Definice (Děleńı). Rozděleńı intervalu [a, b] je posloupnost P = (t0, . . . , tn), kde:

a = t0 < t1 < · · · < tn−1 < tn = b.

Definice (Horńı/dolńı Riemann̊uv součet). Pro omezenou funkci f : J = [a, b] → R a rozklad P
definujeme dolńı a horńı součty:

s(f, P ) =
n∑

j=1

mj(tj − tj−1), resp. S(f, P ) =
n∑

j=1

Mj(tj − tj−1),

kde
mj = inf{f(x) : tj−1 ≤ x ≤ tj}, a Mj = sup{f(x) : tj−1 ≤ x ≤ tj}.
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Definice (Horńı/dolńı Riemann̊uv integrál). Horńı a dolńı Riemann̊uv integrál f přes [a, b] je:∫ b

a

f(x) dx = sup{s(f, P ) : P děleńı} a

∫ b

a

f(x) dx = inf{S(f, P ) : P děleńı}

Definice (Riemann̊uv integrál funkce). Riemann̊uv integrál funkce f přes [a, b] je

(R)

∫ b

a

f(x) dx , pokud

∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

Věta (Základńı věta analýzy 1). 1 Pro Riemannovsky integrovatelnou f a primitivńı F je

F (x) =

∫ x

a

f(t) dt

a plat́ı, že

(1) F je spojitá na [a, b] a

(2) v každém bodě spojitosti x ∈ [a, b] funkce f existuje F ′(x) = f(x).

Věta (Základńı věta analýzy 2). Pokud f je Newtonovsky i Riemannovsky integrovatelná, pak

(R)

∫ b

a

f = (N)

∫ b

a

f

Aplikace integrál̊u.

Věta (Odhady součtu řad). Pro neklesajićı (resp. nerostoućı) f na intervalu [1, n] plat́ı

n−1∑
k=1

f(k) ≤
∫ n

1

f ≤
n∑

k=2

f(k)

Pro neklesajićı (resp. nerostoućı) funkci f na intervalu [1,∞) plat́ı

∞∑
k=1

f(k) konverguje ⇐⇒
∫ ∞

1

f(x) dx konverguje.

Věta (Obsahy rovinných útvar̊u). Plocha mezi dvěma funkcemi f(x) a g(x):

S =

∫ b

a

|f(x)− g(x)| dx

Věta (Délka křivky). Pro graf funkce y = f(x): L =

∫ b

a

√
1 + [f ′(x)]2 dx

Věta (Objem rotačńıho tělesa). Zvlášt’ pro objem a povrch rotačńıho tělesa:

• Objem vzniklý rotaćı kolem osy x: V = π

∫ b

a

[f(x)]2 dx.

• Povrch rotačńı plochy: S = 2π

∫ b

a

f(x)
√

1 + [f ′(x)]2 dx.

1Primitivńı funkce lze spoč́ıtat Riemannovským integrálem.
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1.2 Algebra a Lineárńı algebra

1.2.1 Algebraické struktury

Definice (Grupa). Grupa je dvojice G = (G, ◦), kde G je nosná množina, na které je definována
binárńı operace ◦ : G×G→ G, splňuj́ıćı:

(i) ∀a, b, c ∈ G : a ◦ (b ◦ c) = (a ◦ b) ◦ c (asociativita),

(ii) ∃e ∈ G ∀a ∈ G : a ◦ e = e ◦ a = a (existence neutrálńıho prvku),

(iii) ∀a ∈ G ∃b ∈ G : a ◦ b = b ◦ a = e (existence inverzńıho prvku).

Pokud plat́ı nav́ıc ještě komutativita, jedná se o Abelovskou grupu.

Definice (Podgrupa). Necht’ G = (G, ◦) a H = (H, ◦̃) jsou grupy, potom H je podgrupa grupy G,
značeno H ⊆ G, pokud: ∀a, b ∈ H : a ◦̃ b = a ◦ b a pokud jsou zachovány inverzńı a neutrálńı prvky.

Definice (Permutace). Permutace na množině [n] je bijekce p : [n]→ [n].

Definice (Inverze v permutaci). Pro inverze v permutaci plat́ı p(i) = j ⇐⇒ p−1(j) = i.

Definice (Znaménko permutace). Znaménko permutace p je č́ıslo sgn(p) = (−1)#inverźı v p.

Definice (Těleso). Necht’ K je množina a (⊕, ∗) jsou binárńı operace na K. Trojici K = (K,⊕, ∗)
potom nazýváme tělesem, splňuje-li:

(i) (K,⊕) tvoř́ı Abelovskou grupu s neutrálńım prvkem 0,

(ii) (K \ {0}, ∗) tvoř́ı Abelovskou grupu s neutrálńım prvkem 1,

(iii) plat́ı distributivita, tedy (∀a, b, c ∈ K) : a ∗ (b⊕ c) = a ∗ b⊕ a ∗ c.

Definice (Charakteristika tělesa). Pokud ∃n ∈ N t.̌z v tělese K plat́ı 1 + 1 + ...+ 1︸ ︷︷ ︸
n-krát

= 0, potom

nejmenš́ı takové n je char(K) tělesa K. Jinak má těleso charakteristiku 0.

Věta (Konečná tělesa). Existuj́ı konečná tělesa právě o velikostech pn, kde p je prvoč́ıslo a n ≥ 1.

1.2.2 Soustavy lineárńıch rovnic

Definice (Maticový zápis). Pro soustavu Ax = b, kde A ∈ Rm×n je matice soustavy, x = (x1, ..., xn)
T

je vektor neznámých a b je vektor pravých stran, je rozš́ıřená matice soustavy:

Am×n =

 a1,1 · · · a1,n b1
...

. . .
...

...
am,1 · · · am,n bm


Definice (Elementárńı řádkové úpravy). Elementárńı řádkovou úpravou vznikne z matice A matice
A′ (A ∼∼ A′):

(i) vynásobeńım i-tého řádku t ∈ R \ {0},

(ii) přičteńım j-tého řádku k i-tému, když i ̸= j,

(iii) přičteńı t-násobku j-tého řádku k i-tému, když j ̸= i,

(iv) prohozeńı dvou řádk̊u.
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Definice (Odstupňovaný tvar matice (REF)). Matice A je v REF, pokud (a) nenulové řádky jsou
seřazeny podle počáteřńıch nul a (b) nulové řádky jsou pod nenulovými.
Matice je v RREF, pokud je v REF, pivoty jsou jednotkové a nad i pod pivoty jsou pouze nuly.

Definice (Pivot). Pivot je prvńı nenulový prvek ai,j(i) na i-tém řádku.

Algorithm 1: Gaussova eliminace – převod elementárńımi úpravami na REF

1 Seřad’ řádky podle počtu počátečńıch nul.
2 Pokud maj́ı dva nenulové řádky stejný počet počátečńıch nul (i-tý a i+ 1-ńı), tak od

i+ 1-ńıho odečteme
ai+1,j(i)

ai,j(i)
-násobek i-tého.

3 Opakuj, dokud nemaj́ı každé dva nenulové řádky r̊uzné počty počátečńıch nul.

Algoritmus je konečný, protože po kroku 2. vždy vzroste celkový počet počátečńıch 0 alespoň o 1.

Algorithm 2: Gauss-Jordanova eliminace – převod na RREF

1 Seřad’ řádky podle počtu počátečńıch nul.
2 forall pivotńı prvek ai,j(i) (prvńı nenulový prvek v řádku i) do
3 Normalizuj řádek i: vyděl řádek i hodnotou ai,j(i)
4 forall ostatńı řádky k ̸= i do
5 Odečti ak,j(i)-násobek řádku i od řádku k
6 end

7 end
8 Opakuj, dokud neńı matice REF.

Algoritmus je konečný, protože v každé iteraci se bud’ zvýš́ı počet počátečńıch nul, nebo se pivotńı
prvek přesune bĺı̌ze k diagonále.

Věta (Frobeniova). Soustava Ax = b má řešeńı ⇐⇒ rank(A) se rovná hodnosti rozš́ıřené matice.

Počet řešeńı Podmı́nka

Žádné Existuje řádek (0 · · · 0 | b), b ̸= 0
Právě jedno # pivot̊u = # neznámých, žádné konflikty
Nekonečně mnoho # pivot̊u < # neznámých, žádné konflikty

1.2.3 Matice

Definice (Jednotková matice). Pro (∀n ∈ N) je jednotková matice In ∈ Rn×n definována vztahy:

(In)i,j =

{
1 pokud i = j

0 pokud i ̸= j

1 0 0

0
. . . 0

0 0 1


Definice (Transponovaná matice). Transponovaná matice k matici A ∈ Rm×n je taková matice
AT ∈ Rn×m, pro kterou plat́ı:

AT
i,j = Aj,i

(
1 2
3 4

)
⇝

(
1 3
2 4

)
Definice (Symetrická matice). Symetrická matice je taková čtvercová matice A ∈ Rn×n, že:

Aj,i = Ai,j, neboli A = AT

Definice (Inverzńı matice). Inverzńı matice k čtvercové matici A ∈ Rn×n je taková matice A−1 ∈
Rn×n, pro kterou plat́ı:

A · A−1 = In
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Definice (Regulárńı matice). Regulárńı matice je čtvercová matice, ke které existuje inverzńı matice.
Ekvivalentně, pokud je rank(A) = n.
Ekvivalentně, pokud Ax = 0 má pouze triviálńı řešeńı x = 0.
Ekvivalentně, pokud det(A) ̸= 0.
Ekvivalentně, pokud jej́ı sloupce nebo řádky jsou lineárně nezávislé.
Ekvivalentně, pokud žádné vlastńı č́ıslo neńı nulové.

Definice (Singulárńı matice). Singulárńı matice je taková matice, která neńı regulárńı.

Definice (Rovnost matic). Dvě matice se rovnaj́ı, A = B, pokud maj́ı stejné rozměry m× n a

Aij = Bij , pro i = 1, . . . ,m, j = 1, . . . , n.

Definice (Součet Matic). Bud’ A,B ∈ Rm×n. Pak A+B je matice typu m× n s prvky

(A+B)ij = Aij +Bij , pro i = 1, . . . ,m, j = 1, . . . , n.

Definice (Maticový součin). Pro součin dvou matic A ∈ Rm×n a B ∈ Rn×p plat́ı (AB) ∈ Rm×p:

(AB)i,j =
n∑

k=1

ai,k · bk,j

Definice (Hodnost matice). Hodnost matice A, značená jako rank(A), je počet pivot̊u v libovolné
matici A′ v REF takové, že A ∼∼ A′.

1.2.4 Vektorové prostory

Definice (Vektorový prostor). Vektorový prostor (V,⊕, ∗) nad tělesem (K,⊕, ∗) je množina V spolu
s binárńı operaćı ⊕ na V a binárńı operaćı skalárńıho násobku ∗ : K× V → V , kde:

(i) (V,⊕) tvoř́ı Abelovskou grupu

(ii) (∀v ∈ V ) : 1 ∗ v = v , (kde 1 je neutrálńı prvek pro násobeńı v K)

(iii) (∀a, b ∈ K)(∀v ∈ V ) : (a ∗ b) ∗ v = a ∗ (b ∗ v) – asociatavita

(iv) (∀a, b ∈ K)(∀v ∈ V ) : (a⊕ b) ∗ v = (a ∗ v)⊕ (b ∗ v) – distributivita

(v) (∀a ∈ K)(∀u, v ∈ V ) : a ∗ (u⊕ v) = (a ∗ u)⊕ (a ∗ v) – distributivita

Prvky K se nazývaj́ı skaláry a prvky V vektory.

Definice (Podprostor vektorového prostoru). Podprostor U vektorového prostoru V je neprázdná
podmnožina U ⊆ V , splňuj́ıćı uzavřenost na operaci ⊕, ∗ a obsahuj́ıćı nulový vektor.

Definice (Lineárńı kombinace). Lineárńı kombinace vektor̊u v1, . . . , vn ∈ V nad K je libovolný vektor

u = a1 · v1 + · · ·+ an · vn =
n∑

i=1

aivi, kde a1, ..., an ∈ K.

Definice (Lineárńı obal). Lineárńı obal span(X) množiny X ⊆ V , kde V je vektorový prostor nad
K, je pr̊unik všech podprostor̊u U z V obsahuj́ıćı X. Tedy množina všech jej́ıch lineárńıch kombinaćı.

span(X) =
⋂
{U : X ⊆ U,U je podprostor V } =

{
n∑

i=1

aivi | ai ∈ K, vi ∈ X

}
.

Definice (Lineárńı nezávislost). Množina vektor̊u X ve vektorovém prostoru V je lineárně nezávislá,
pokud nelze nulový vektor źıskat netriviálńı lineárńı kombinaćı vektor̊u z X.
Tedy, vektory v1, . . . , vn jsou LN ⇐⇒

∑n
i=1 aivi = 0 má pouze triviálńı řešeńı a1 = . . . = an = 0.
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Definice (Báze). Báze vektorového prostoru V je lineárně nezávislá množina X, která generuje2 V .

(1) span(X) = V , každý vektor V je lineárńı kombinaćı vektor̊u báze X

(2) X je lineárně nezávislá, proto je lin. kombinace unikátńı pro každý vektor V .

Definice (Dimenze). Dimenze vektorového prostoru V , dim(V ), je mohutnost jeho (konečné) báze.

Definice (Jádro). Jádro matice A ∈ Km×n je podprostor Kn tvořen řešeńımi soustavy Ax = 0.

ker(A) = {(x ∈ Kn) : Ax = 0}

Plat́ı vztah: dim(ker(A)) + rank(A) = n.

Definice (Řádkový prostor). Řádkový prostor matice je prostor generovaný jej́ımi řádky.
Pro matici A ∈ Km×n:

R(A) = S(AT ) =
m∑
j=1

xjAj,∗

R(A) = {(v ∈ Kn) : v = ATy, y ∈ Km}, všechny lineárńı kombinace řádk̊u

Řádkový prostor je kolmý na jádro, tedy R(A)⊥ = ker(A).

Definice (Sloupcový prostor). Sloupcový prostor matice je prostor generovaný jej́ımi sloupci.
Pro matici A ∈ Km×n:

S(A) = L{A∗,1, ..., A∗,n} =
n∑

j=1

xjA∗,j

S(A) = {(u ∈ Km) : u = Ax, x ∈ Kn}, všechny lineárńı kombinace sloupc̊u

Plat́ı vztah: dim(R(A)) = dim(S(A)) = rank(A).

Definice (Vektor souřadnic). Necht’ B = (v1, . . . , vn) je konečná uspořádaná báze vektorového pro-
storu V nad tělesem K. Vektor souřadnic u ∈ V vzhledem k bázi B je [u]B = (a1, . . . , an)

T ∈ Kn,
kde u =

∑n
i=1 aivi. Neboli, obsahuje v B koeficienty LK bázických vektor̊u B, která tvoř́ı u.

Věta (Steinitzova o výměně). Necht’ X je konečná LN množina vektorového prostoru V nad K a Y
je systém generátor̊u V . Potom plat́ı |X| ≤ |Y | a existuje Z, taková že:

span(Z) = V, X ⊆ Z, |Z| = |Y |, Z \X ⊆ Y.

1.2.5 Lineárńı zobrazeńı

Definice (Lineárńı zobrazeńı). Necht’ U a V jsou vektorové prostory nad stejným tělesem K. Potom
zobrazeńı f : U → V se nazývá lineárńı zobrazeńı, pokud splňuje:

(1) (∀u, v ∈ U) : f(u+ v) = f(u) + f(v)

(2) (∀u ∈ U), (∀a ∈ K) : f(a · u) = a · f(u)

Maticová reprezentace LZ pro matici A a vektor u je f(u) = Au.

2Pro “X generuje V ” ṕı̌seme V = span(X). Prvky X jsou generátory V .
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Definice (Matice lineárńıho zobrazeńı). Necht’ V a W jsou vektorové prostory nad stejným tělesem
K s bázemi X = (v1, ..., vn), Y = (w1, ..., wm). Matice lineárńıho zobrazeńı f : V → W vzhledem k
báźım X a Y je [f ]X,Y ∈ Km×n, jej́ı̌z sloupce jsou vektory souřadnic obraz̊u vektor̊u báze X vzhledem
k bázi Y . Neboli,

[f ]X,Y =

 | |
[f(v1)]Y ... [f(vn)]Y
| |

 .⇝ [f(u)]Y = [f ]XY [u]X

Definice (Jádro lineárńıho zobrazeńı). Jádro lineárńıho zobrazeńı f : U → V je

ker(f) = {(w ∈ U) : f(w) = 0}.

Definice (Izomorfismus prostor̊u). Bijektivńı lineárńı zobrazeńı f : V → W , nazýváme izomorfis-
mem prostor̊u V a W . Ekvivalentně, pokud je [f ]XY regulárńı, kde X, Y jsou báze V,W .

1.2.6 Skalárńı součin

Definice (Skalárńı součin). Skalárńı součin na vektorovém prostoru V nad C je zobrazeńı, které
přiřad́ı každé dvojici vektor̊u u, v ∈ V skalár ⟨u | v⟩ ∈ C tak, že jsou splněny následuj́ıćı axiomy:

• ∀u ∈ V : ⟨u | u⟩ ≥ 0, rovnost pokud u = 0,

• ∀u, v ∈ V : ⟨v | u⟩ = ⟨u | v⟩, (komplexně sdružené)

• ∀u, v, w ∈ V : ⟨u+ v | w⟩ = ⟨u | w⟩+ ⟨v | w⟩,

• ∀u, v ∈ V, ∀α ∈ C : ⟨αu | v⟩ = α⟨u | v⟩.

Definice (Norma indukovaná skalárńım součinem). Necht’ V je prosor se skalárńım součinem nad
C nebo R, pak norma odvozená ze skalárńıho součinu je zobrazeńı V → R+

0 přiřazuj́ıćı vektoru u
jeho normu ||u|| =

√
⟨u | u⟩.

Věta (Pythagorova). Pokud V je VP nad C a x, y ∈ V jsou kolmé, tak ||x+ y||2 = ||x||2 + ||y||2.

Věta (Cauchy-Schwartzova nerovnost). Pro skalárńı součin libovolných dvou vektor̊u u a v ve vek-
torovém prostoru nad C plat́ı:

|⟨u | v⟩| ≤
√
⟨u | u⟩ · ⟨v | v⟩ = ||u|| · ||v||

Věta (Trojúhelńıková nerovnost). Každá norma odvozená ze skalárńıho součinu splňuje:

||u+ v|| ≤ ||u||+ ||v||.

Definice (Kolmé (ortogonálńı) vektory). Vektory u, v z prostoru se skalárńım součinem jsou kolmé,
u⊥v, pokud ⟨u | v⟩ = 0.

Definice (Ortonormálńı báze). Báze Z = {v1, ..., vn} prostoru V se skalárńım součinem je orto-
normálńı, pokud vi⊥vj pro každé i ̸= j a ||vi|| = 1 pro každý vektor vi ∈ Z.

Definice (Fourierovy koeficienty). Necht’ Z = {v1, ..., vn} je ortonormálńı báze prostoru V . Pro každé

u ∈ V plat́ı: u = ⟨u|v1⟩v1 + ...+ ⟨u|vn⟩vn =
n∑

i=1

⟨u|vi⟩vi. Koeficienty ⟨u|vi⟩ se nazývaj́ı Fourierovy.

Definice (Ortogonálńı doplněk). Ortogonálńı doplněk podmnožiny V prostoru se skalárńım souči-
nem W je V ⊥ = {u ∈ W : (∀v ∈ V )(u⊥v)}.
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Algorithm 3: Gram-Schmidtova ortogonalizace

Data: lineárně nezávislé vektory x1, . . . , xn ∈ V .
Result: ortonormálńı báze z1, . . . , zn prostoru span{x1, . . . , xn}.

1 for k := 1, . . . , n do

2 yk = xk −
k−1∑
j=1

⟨xk|zj⟩zj ▷ vypoč́ıtáme kolmici

3 zk =
1

||yk||
yk ▷ normalizujeme délku na 1

4 end

Věta. Pro konečně generovaný prostor W se skalárńım součinem a podprostor V plat́ı:

(V ⊥)⊥ = V a dimV + dimV ⊥ = dimW.

Definice (Ortogonálńı projekce). Necht’ W je prostor se skalárńım součinem a V je jeho podprostor
s ortonormálńı báźı Z = (v1, . . . , vn). Potom ortogonálńı projekce W na V je zobrazeńı pZ : W → V

definované jako pZ(u) =
n∑

i=1

⟨u|vi⟩vi.

Poznámka. Ortogonálńı projekce je lineárńı zobrazeńı.

Definice (Ortogonálńı matice). Matice Q ∈ Rn×n je ortogonálńı, pokud QTQ = In. Pro ortogonálńı
matici Q tedy plat́ı QT = Q−1.

Věta (Vlastnosti ortogonálńıch matic). Matice Q je ortogonálńı, právě když sloupce tvoř́ı orto-
normálńı bázi Rn. Součin ortogonálńıch matic je ortogonálńı matice. Dále plat́ı vztahy:

⟨Qx | Qy⟩ = ⟨x | y⟩, ||Qx|| = ||x||.

1.2.7 Determinanty

Definice (Determinant). Determinant matice A ∈ K je dán výrazem:

det(A) =
∑
p∈Sn

sgn(p)
n∏

i=1

ai,p(i), (Sn je grupa permutaćı na množině {1, . . . , n}).

Pro horńı trojúhelńıkové matice je determinant roven součtu na diagonále.

Věta (Linearita determinantu). Determinant matice je lineárně závislý na každém jej́ım řádku i
sloupci. Tedy vzhledem ke sč́ıtáńı řádk̊u a násobeńı řádku skalárem. Také plat́ı det(A) = det(AT ).

Věta (Multiplikativnost determinantu). Pro libovolné A,B ∈ K : det(AB) = det(A) · det(B).

Definice (Adjungovaná matice). Pro matici A ∈ K je adjungovaná matice definována vztahem

adj(A)j,i = (−1)i+j det(Ai,j).

Dále pro regulárńı matici A ∈ K plat́ı vztah A−1 =
1

det(A)
adj(A).

Věta (Laplace̊uv rozvoj). Necht’ Ai,j je podmatice źıskaná z A odstaněńım i-tého řádku a j-tého
sloupce, potom pro libovolné A ∈ K a jakékoli i ∈ {1, . . . n} plat́ı, že:

det(A) =
n∑

j=1

ai,j(−1)i+j det(Ai,j) =
n∑

j=1

ai,j adj(A)j,i.

∣∣∣∣∣∣
1 2 5
2 3 0
3 5 3

∣∣∣∣∣∣ = 2 · (−1)2+1

∣∣∣∣2 5
5 3

∣∣∣∣+ 3 · (−1)2+2

∣∣∣∣1 5
3 3

∣∣∣∣+ 0 · (−1)2+3

∣∣∣∣1 2
3 5

∣∣∣∣ = −2 · −19 + 3 · −12 = 2.
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Poznámka (Geometrická reprezentace determinantu). Absolutńı hodnota determinantu rozhoduje,
zda se daná plocha geometrického útvaru proměňuje.

• | det | > 1 =⇒ zvěťsuje se,

• | det | ∈ (0, 1) =⇒ zmenšuje se,

• | det | = 1 =⇒ zachová se,

• | det | = 0 =⇒ zkolabuje na menš́ı dimenzi.

1.2.8 Vlastńı č́ısla a vlastńı vektory

Definice (Vlastńı č́ıslo). Necht’ V je vektorový prostor nad K a f je lineárńı zobrazeńı f : V → V ,
potom vlastńı č́ıslo zobrazeńı f je jakékoli λ ∈ K, pro které existuje vektor x ∈ V \{0}, t.̌z.: f(x) = λx.

Definice (Vlastńı vektor). Necht’ λ je vlastńı č́ıslo, potom jemu odpov́ıdaj́ıćı vlastńı vektor je libovolný
vektor x ∈ V , t.̌z.: f(x) = λx. Také, pokud o ̸= x ∈ ker(A− λIn).

Definice (Vlastńı č́ıslo a Vlastńı vektor matice). Jestlǐze V má konečnou dimenzi n, pak f m̊uže
být reprezentováno matićı A = [f ]XX ∈ K vzhledem k nějaké bázi X prostoru V . Vlastńı č́ıslo matice
je potom λ ∈ K a vlastńı vektor matice x ∈ Kn, oba splňuj́ıćı Ax = λx .

Věta. Vlastńı vektory odpov́ıdaj́ıćı stejnému vlastńımu č́ıslu tvoř́ı podprostor.

Věta. Necht’ f : V → V je lineárńı zobrazeńı a λ1, . . . , λk jsou r̊uzná vlastńı č́ısla f a u1, . . . , uk
odpov́ıdaj́ıćı netriviálńı vlastńı vektory. Potom u1, . . . , uk jsou lineárně nezávislé.

Poznámka. Plat́ı, že rank matice je ≤ než počet nenulových vlastńıch č́ısel.

Poznámka. V každé matici řádu n je nejvýše n vlastńıch č́ısel.

Věta (Vlastnosti vlastńıch č́ısel). Necht’ A ∈ Cn×n má vlastńı č́ısla λ1, . . . , λn a jim odpov́ıdaj́ıćı
vlastńı vektory x1, . . . , xn. Pak:

(1) A je regulárńı ⇐⇒ 0 neńı jej́ı vlastńı č́ıslo,

(2) je-li A regulárńı, pak A−1 má vlastńı č́ısla λ−1
1 , . . . , λ−1

n a vlastńı vektory x1, . . . , xn,

(3) A2 má vlastńı č́ısla λ21, . . . , λ
2
n a vlastńı vektory x1, . . . , xn,

(4) αA má vlastńı č́ısla αλ1, . . . , αλn a vlastńı vektory x1, . . . , xn,

(5) A+ αIn má vlastńı č́ısla λ1 + α, . . . , λn + α a vlastńı vektory x1, . . . , xn,

(6) AT má vlastńı č́ısla λ1, . . . , λn, ale vlastńı vektory obecně jiné.

Definice (Charakteristický polynom). Charakteristický polynom A ∈ K je pA(t) = det(A− tIn).

Věta. Čı́slo λ ∈ K je vlastńım č́ıslem matice A ∈ K ⇐⇒ λ je kořenem charakteristického polynomu
pA(λ). Tedy když det(A− λIn) = 0.

Definice (Algebraická násobnost). Algebraická násobnost vlastńıho č́ısla λ je násobnost λ∗ jako
kořene charakteristického polynomu pA(λ).

Definice (Geometrická násobnost). Geometrická násobnost vlastńıho č́ısla λ je dimenze (pod)pro-
storu jeho vlastńıch vektor̊u. Tedy je rovna n− rank(A− λ∗In).

Definice (Podobné matice). Matice A,B ∈ K jsou si podobné, pokud existuje regulárńı matice R
taková, že A = RBR−1 ⇝ AR = RB.
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Definice (Diagonalizovatelná matice). Matice podobná diagonálńı matici je diagonalizovatelná.

Věta. Matice A je podobná diagonálńı ⇐⇒ prostor Kn má bázi z vlastńıch vektor̊u A.

Věta. Pro jakoukoli symetrickou matici A ∈ K s char(K) ̸= 2 existuje regulárńı matice R taková,
že RTAR je diagonálńı.

Definice (Spektrálńı rozklad). Diagonalizovatelná matice A lze vyjádřit ve tvaru A = SΛS−1, kde
S je regulárńı a Λ je diagonálńı.

Věta (Spektrálńı rozklad symetrických matic). Pro každou symetrickou matici A ∈ Rn×n existuje
ortogonálńı Q ∈ Rn×n a diagonálńı Λ ∈ Rn×n takové, že A = QΛQ⊤.

1.2.9 Positivně semidefinitńı a positivně definitńı matice

Definice (Positivně definitńı matice). Pokud symetrická A ∈ Rn×n splňuje

∀x ∈ Rn \ {0} : xTAx > 0,

pak je matice pozitivně definitńı. Je semidefinitńı, pokud plat́ı ≥.

Věta (Vlastnosti positivně definitńıch matic). Necht’ A,B ∈ Rn×n jsou positivně definitńı matice.
Pak plat́ı:

1. A+B je positivně definitńı matice,

2. Pro libovolné α > 0 je αA positivně definitńı matice,

3. Je-li A positivně definitńı, pak je regulárńı a A−1 je též positivně definitńı.

Věta (Charakterizace PD). Pro symetrickou matici A jsou následuj́ıćı podmı́nky ekvivalentńı:

1. A je pozitivně definitivńı

2. A má všechna vlastńı čásla kladná (resp. nezáporná pro semi)

3. Existuje regulárńı matice U , t.̌z.: A = UTU .

Věta (Choleskeho rozklad3). Pro každou pozitivně definitńı matici A existuje unikátńı horńı troj-
úhelńıková matice U s kladnou diagonálou, t.̌z.: A = UTU . Matice U se nazývá Choleského rozklad.

Věta (Sylvestrovo kritérium). Symetrická A ∈ Rn×n je positivně definitńı ⇐⇒ determinanty
hlavńıch vedoućıch podmatic A1, . . . , An jsou kladné.

3Věta je existenčńıho charakteru. Prakticky se jedná se o metodu na testováńı PD matic, slouž́ı k tomu algoritmus.
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1.3 Diskrétńı matematika

1.3.1 Relace

Definice (Relace mezi množinami). Relace R ⊆ X × Y je podmnožina kartézského součinu dvou
množin X a Y .

Definice (Relace na množině). Relace R na X je podmnožina kartézského součinu dvou identických
množin, tj. X = Y =⇒ R ⊆ X ×X.

Definice (Vlastnosti binárńıch relaćı). Pro relaci R na X definujeme:

• Reflexivita: ∀x ∈ X : xRx.

• Symetrie: ∀x, y ∈ X : xRy ⇐⇒ yRx. (Také: R = R−1)

• Antisymetrie: ∀x, y ∈ X : xRy ∧ yRx =⇒ x = y.

• Transitivita: ∀x, y, z ∈ X : xRy ∧ yRz =⇒ xRz. (Také: R ◦R ⊆ R)

1.3.2 Ekvivalence a rozkladové tř́ıdy

Definice (Ekvivalence). Relace R na X je ekvivalentńı ⇐⇒ je reflexivńı, symetrická a tranzitivńı.

Definice (Ekvivalenčńı tř́ıda). Ekvivalenčńı tř́ıdu definujeme jako R[x] = {y ∈ X | xRy}.

1.3.3 Částečná uspořádáńı

Definice (Uspořádáńı). Relace R na X je uspořádáńı ⇐⇒ je reflexivńı, antisymetrická a tranzi-
tivńı.

Definice (Lineárńı uspořádáńı). Uspořádáńı je lineárńı ⇐⇒ ∀x, y ∈ X : xRy∨ yRx. Neboli, prvky
jsou porovnatelné (=trichomické).

Definice (Částečné uspořádáńı). Uspořádáńı je částečné, když neńı lineárńı.

Definice (Ostré uspořádáńı). Uspořádáńı je ostré ⇐⇒ je ireflexivńı – žádný prvek neńı v relaci
sám se sebou.

Definice (Minimálńı a maximálńı prvek). Necht’ (X,⪯) je ČUM. Potom a ∈ X je maximálńı prvek,
pokud ∄x ∈ X, pro které x ≻ a. (resp. minimálńı x ≺ a).

Definice (Nejmenš́ı a největš́ı prvek). Necht’ (X,⪯) je ČUM. Potom a ∈ X je největš́ı prvek, pokud
∀x ∈ X plat́ı a ⪰ x. (resp. nejmenš́ı a ⪯ x).

Definice (Řetězec a antǐretězec). Necht’ (X,⪯) je ČUM a A ⊆ X, potom pro:

• Řetězec plat́ı, že ∀a, b ∈ A jsou porovnatelné.

• Antǐretězec plat́ı, že ∄a, b ∈ A, které jsou r̊uzné a porovnatelné.

Definice (Výška uspořádáńı). Výška uspořádáńı v P : ω(P ) = max{P}. (maximum z délek řetězc̊u)

Definice (Š́ı̌rka uspořádáńı). Š́ı̌rka uspořádáńı v P : α(P ) = max{|A|;A nezávislá v P}. (maximum
z délek antiřetězc̊u)

Věta (O dlouhém a širokém). Necht’ (X,⪯) je konečná ČUM, potom α(X,⪯) · ω(X,⪯) ≥ |X|
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1.3.4 Funkce

Definice (Funkce). Funkce f : X → Y je relace f ⊆ X × Y taková, že (∀x ∈ X)(∃!y ∈ Y ) : xfy.

Definice (Prosté/injektivńı zobrazeńı). Funkce f : X → Y je prostá ⇐⇒ pro všechna Y existuje
nejvýše jedno x, ∀x ∈ X. (nebo ∀x, y : f(x) = f(y) =⇒ x = y).

Definice (Na/surjektivńı zobrazeńı). Funkce f : X → Y je na ⇐⇒ pro všechna Y existuje alespoň
jedno x, ∀x ∈ X. (nebo ∀y∃x : f(x) = y).

Definice (Bijekce). Funkce f : X → Y je bijektivńı ⇐⇒ je prostá i na.

Věta. Necht’ A je n-prvková a B je m-prvková množina, potom počet funkćı mezi A a B je mn.

Věta. Necht’ A, |A| = n a B je m-prvková množina, potom počet prostých funkćı mezi A a B je mn.

Věta. Počet všech n-prvkových podmnožin je roven 2n, tedy
∣∣2X∣∣ = 2|X|.

1.3.5 Permutace

Definice (Permutace). Permutace je bijekce π : [n]→ [n].

Definice (Pevný bod). Pro permutaci π a prvek x je pevný bod π(x) = x. Zobraźı se sám na sebe.

Věta. Pokud A, |A| = n je konečná množina, tak permutace A je bijekce z A do A, tedy n!.

1.3.6 Kombinačńı č́ısla

Definice (Množina všech k-prvkových podmnožin). Necht’ N je množina. Potom
(
N
k

)
je množina

všech k-prvkových podmnožin množiny N .(
N

k

)
= {A ⊆ N : |A| = k}

Definice (Kombinačńı č́ıslo). Pro č́ısla n, k > 0 plat́ı:(
n

k

)
=
nk

k!
=
n · (n− 1) · ... · (n− k + 1)

1 · 2 · ... · k
=

n!

k! · (n− k)!

Věta. Počet uspořádaných k-tic bez opakováńı a k-prvkových podmnožin je roven
(
n
k

)
.

Věta (Vlastnosti kombinačńıch č́ısel).(
n

0

)
= 1 =

(
n

n

)
(
n

1

)
= n =

(
n

n− 1

)
(
n

k

)
=

(
n

n− k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
n∑

k=0

(
n

k

)
= 2n

Věta (Binomická). (∀x, y ∈ R)(∀n ∈ N) : (x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk
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1.3.7 Princip inkluze a exkluze

Princip inkluze a exkluze

Věta (Princip inkluze a exkluze #1). Pro konečné A1 až An plat́ı:∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k+1
∑

I∈([n]
k )

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
D̊ukaz. Necht’ A :=

⋃
i

Ai

Levá i pravá strana jsou součty velikost́ı nějakých množin, takže se můžeme ptát, kolikrát levé a
pravé straně přispěje každý prvek a ∈ A. Vı́me, že k levé přispěje jednou, chceme dokázat, že k pravé
také jednou. Zadefinujme si kolikrát se započ́ıtá #i. Necht’ t = #i : a ∈ Ai:

∑
I∈([n]

k )

∣∣⋂
i∈I Ai ∩ {a}

∣∣.
Pro k > t: 0-krát. Pro k ≤ t : (−1)k+1

(
t
k

)
-krát. To nám dá celkem

t∑
k=1

(−1)k+1

(
t

k

)
= −(0− 1) = 1.

Aplikace (Problém šatnářky). Do divadla přǐslo n pán̊u s n klobouky, každý pán si odložil klobouk
v šatně a po představeńı si jej zase vyzvedl. Šatnářka však pán̊um vybrala klobouky náhodně. Jaká je
pravděpodobnost, že žádný pán nedostal sv̊uj klobouk?
Pravděpodobnost, že žádný pán nedostane sv̊uj klobouk je #permutaćı bez pevného bodu

#permutaćı
. Vı́me, že # počet

permutaćı = n!. Nejprve spoč́ıtáme #počet permutaćı s pevným bodem. Pro každý prvek i ∈ [n]
definujeme Ai = {π|π(i) = i} (permutace s pevným bodem i). Pak plat́ı, že |Ai| = (n− 1)!, a když
se pod́ıváme na velikost pr̊uniku množin A1, A2, . . . , Ak, tak je to (n− k)!. Z PIE:∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k+1
∑

I∈(Nk)

(n− k)! =
n∑

k=1

(−1)k+1

(
n

k

)
(n− k)! =

n∑
k=1

(−1)k+1n!

k!
.

Dosad́ıme do počtu permutaćı bez pevného bodu: |πs| = n!−
n∑

k=1

(−1)k+1n!

k!
≈ n!

e
. Pravděpodobnost,

že žádný pán nedostal sv̊uj klobouk je tedy
n! · e−1

n!
=

1

e
.

Věta (Počet surjekćı). Počet surjekćı je
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

D̊ukaz. Máme množiny A, |A| = n a B, |B| = k. Počet surjekćı f : A → B urč́ıme za pomoci PIE.
Vı́me, že počet všech funkćı mezi množinami je |BA| = kn. Když z množiny BA odebereme jeden
prvek, dostaneme (k − 1)n, když odebereme dva, dostaneme (k − 2)n atd. Obecně nám to pro i
odebraných prvk̊u dává (k − i)n.

Dále chceme poč́ıtat jen čistě surjektivńı zobrazeńı, nikoliv bijektivńı, které nastane v př́ıpadě
n = k. Konkrétně: Necht’ g : A → B a necht’ Φ je počet tohoto zobrazeńı. Množinu A rozděĺıme do
k část́ı A1, ..., Ak, kde pro každou tuto část a existuje přǐrazeńı do množiny B. Nastává tedy bijekce
z A do B, kde počet bijektivńıch zobrazeńı odpov́ıdá k! . Celkem bychom dostali ”Φ = k!×počet
f : A→ B”, kde f je zbylá (námi hledaná) funkce na.

1

k!
·

kn − (k1
)
(k − 1)n +

(
k

2

)
(k − 2)n − ...±

(
k

k

)
(k − k)n︸ ︷︷ ︸
0

 =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n

20



Definice (Eulerova funkce). Zobrazeńı φ : N → N znač́ı pro n ∈ N počet č́ısel k ∈ {1, . . . , n − 1}
nesoudělných s č́ıslem n. Tedy jinak φ(n) = |{k ∈ {1, . . . , n− 1} | gcd(k, n) = 1}|.

Výpočet eulerovy funkce za pomoci principu inkluze a exkluze Necht’ n = pk11 p
k2
2 · · · pkmm

je rozklad n na prvočinitele. Aplikujeme PIE: Počet č́ısel ≤ n nesoudělných s n źıskáme odečteńım
počt̊u násobk̊u všech prvoč́ısel pi a přičteńım zpět násobk̊u jejich dvojic atd.:

φ(n) = n−
m∑
i=1

n

pi
+

∑
1≤i<j≤m

n

pipj
− · · ·+ (−1)m n

p1p2 · · · pm
.

Nakonec vytkneme n a t́ım źıskáme:

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pm

)
.

1.3.8 Hallova věta

Definice (Párováńı). Párováńı v grafu G = (V,E) je množina hran M ⊆ E, t.̌z. každý vrchol patř́ı
do nejvýše jedné hrany z M .

Definice (Vrcholové prokryt́ı). Vrcholové prokryt́ı v grafu G = (V,E) je množina vrchol̊u C ⊆ V ,
t.̌z. každá hrana obsahuje alespoň jeden vrchol z C.

Definice (Systém r̊uzných reprezentant̊u). SRR v hypergrafu H = (V,E) je funkce r : E → V , t.̌z.:

(1) ∀e ∈ E : r(e) ∈ e, kde r(e) je reprezentant hyperhrany e,

(2) ∀e, f ∈ E : e ̸= f =⇒ r(e) ̸= r(f), tedy funkce r je prostá.

Věta (König-Egerváty). V každém bipartitńım grafu má nejvěťśı párováńı stejnou velikost, jako
nejmenš́ı vrcholové pokryt́ı.

Věta (Hallova). Necht’ G je bipartitńı graf s partitami A,B. Potom G má párováńı velikosti

|A| ⇐⇒ ∀X ⊆ A : |N(X)| ≥ |X|.

D̊ukaz. Muśım dokázat obě implikace.

=⇒ Pokud existuje párováńı velikosti |A|, tak pro každou X ⊆ A existuje |X| vrchol̊u spárovaných
s X a ty patř́ı do N(X). Tedy |N(X)| ≥ |X|.

⇐= Pro spor. Necht’ M je největš́ı párováńı G, t.ž.: |M | < |A|. Existuje pokryt́ı C, kde |C| =
|M | < |A|. Definujeme si CA := C ∩ A, CB := C ∩B a X := A \ CA.

Zjist́ıme, že N(X) ⊆ CB a nav́ıc, že |X| = |A| − |CA| > |CB| ≥ |N(X)|, což nám dává spor.

Věta (Hallova - hypergrafová verze). Hypergraf H = (V,E) má SRR ⇐⇒ ∀F ⊆ E :

∣∣∣∣∣⋃
e∈F

e

∣∣∣∣∣ ≥ |F |.
D̊ukaz. Necht’ H = (V,E) je hypergraf a IH jeho graf inci-
dence. H má SRR ⇐⇒ IH má párováńı velikosti |E|.

Hallova podmı́nka pro H ⇐⇒ ∀F ⊆ E :

∣∣∣∣∣⋃
e∈F

e

∣∣∣∣∣ ⇐⇒ bi-

partitńı Hallova podmı́nka pro IH a partitu E. Ekvivalence
plat́ı d́ıky bipartitńı Hallově podmı́nce.

Algoritmus (Nalezeńı SRR v polynomiálńım čase). Modelujeme bipartitńı graf. Levá partita jsou
množiny S1, . . . , Sm. Pravá partita prvky

⋃
i Si. Hrana vede z Si → x, pokud x ∈ Si. Najdeme max

párováńı v bipartitńım grafu (třeba Ford-Fulkerson – polytime) a z Hallovy věty: SRR existuje ⇐⇒
párováńı pokrývá všechny množiny Si.
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1.4 Teorie graf̊u

1.4.1 Základńı pojmy teroie graf̊u

Definice (Graf). Graf G je uspořádaná dvojice (V,E), kde V je konečná neprázdná množina vrchol̊u
a E ⊆

(
V
2

)
konečná neprázdná množina hran, neboli všech dvouprvkovych podmnožin V .

Definice (Isomorfismus graf̊u). Grafy G a H jsou isomorfńı, pokud existuje bijekce mezi vrcholy:

∃f : VG → VH , t.̌z. {u, v} ∈ EG ⇐⇒ {f(u), f(v)} ∈ EH

Definice (Podgraf). Graf H je podgrafem grafu G, pokud VH ⊆ VG a EH ⊆ EG ∩
(
VH

2

)
.

Definice (Indukovaný podgraf). Podgraf H je indukovaný, pokud E(H) = E(G) ∩
(
V (H)

2

)
.

Definice (Stupeň vrcholu). Stupeň vrcholu ‘ v’ v grafu G = (V,E) je

degG(v) := |{u ∈ V : {u, v} ∈ E}|.

Neboli počet hran grafu G, které obsahuj́ı hranu s v.

Definice (k-regulárńı graf). Graf je k-regulárńı, pokud pro k ∈ N plat́ı ∀u ∈ V (G) : degG(u) = k.

Definice (Skóre grafu). Skóre grafu G je posloupnost stupň̊u všech vrchol̊u (krom uspořádáńı).

Definice (Doplněk grafu). Doplněk grafu G = (V,E) je graf Ḡ =
(
V,
(
V
2

)
\ E
)
.

1.4.2 Základńı př́ıklady graf̊u

Definice (Úplný graf). Úplný graf na n vrcholech znač́ıme Kn, kde V = [n] a E =
(
V
2

)
.

Definice (Bipartitńı graf). Graf G je bipartitńı, pokud lze V rozdělit na dvě disjunktńı množiny V1
a V2 takové, že každá hrana z E obsahuje jeden bod z V1 a druhý z V2.
Tedy pokud V = V1 ∪ V2, t.̌z. V1 ∩ V2 = ∅. Hrany jsou mezi V1 a V2, neboli ∀e ∈ E : |e ∩ V1| = 1.

Definice (Úplný bipartitńı graf). Úplný bipartitńı graf na n + m vrcholech znač́ıme Kn,m, kde
V = {u1, ..., un} ∪ {v1, ..., vm} (=dvě partity) a E = {{ui, vj} | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Definice (Eulerovský graf). Graf je Eulerovský ⇔ je souvislý a všechny vrcholy maj́ı sudý stupeň.

Definice (Cesta). Cestu na n vrcholech znač́ıme Pn, kde V = [n0] a E = {{i− 1, i} | 1 ≤ i ≤ n}.

Definice (Kružnice). Kružnici na n vrcholech znač́ıme Cn, kde V = [n3] a

E = {{i, i+ 1} | 1 ≤ i ≤ n− 1} ∪ {{1, n}}.

Definice (Sled). Sled z v0 do vn v grafu G je posloupnost (v0, e1, v1, e2, . . . , en, vn), pokud ∀i plat́ı
ei = {vi−1, vi}, kde v jsou vrcholy a e hrany.
(Mohou se opakovat vrcholy i hrany).

Definice (Tah). Tah z v0 do vn v grafu G je posloupnost (v0, e1, v1, e2, ..., en, vn), pokud ∀i plat́ı
ei = {vi−1, vi}, kde v jsou vrcholy a e navzájem r̊uzné hrany.
(Mohou se opakovat pouze vrcholy, ne hrany).
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1.4.3 Souvislost graf̊u

Definice (Souvislý graf). Graf je Souvislý, pokud (∀u, v ∈ V ) existuje cesta z u do v.

Definice (Relace dosažitelnosti (ekvivalence)). Ekvivalence v grafu G je binárńı relace ∼ na V (G),
t.̌z. u ∼ v, pokud existuje cesta z u do v.

Definice (Komponenty souvislosti). Komponenty souvislosti jsou podgrafy indukované tř́ıdami ekvi-
valence.

Definice (Vzdálenost v grafu). Vzdálenost v souvislém grafu G je definována jako dG : V 2 → R :
∀u, v : dG(u, v) je minimum z délek mezi u a v.
Pro metriku muśı platit ∀u, v, w ∈ V :

• dG(u, v) ≥ 0 ... je minimum z délek cest, cesty jsou také nezáporné

• dG(u, v) = 0 ⇐⇒ u = v ... nikde jinde (krom dG(u, u)) vzdálenost nulová neńı

• dG(u, v) ≤ dG(u,w) ≤ dG(w, v) ... vzdálenost mezi u a v je shora omezená mezi vzdálenost́ı
u,w a w, v

• dG(v, u) = dG(u, v)

1.4.4 Stromy

Definice (Strom). Strom je souvislý graf bez kružnic. (acyklicky graf)

Definice (Les). Les je acyklicky graf. Jeho komponenty souvislosti jsou stromy.

Definice (List). List je vrchol stupně 1.

Věta. Každý strom s alespoň dvěma vrcholy má alespoň jeden list.

Věta. Pro graf G s listem v plat́ı, že G je strom ⇐⇒ G− v je strom.

Věta (Eulerova formule). Pro G souvislý máme počet hran stromu |E(G)| = |V (G)| − 1.

Věta (Ekvivalentńı charakteristiky). Pro graf G jsou následuj́ıćı tvrzeńı ekvivalentńı:

(i) G je souvislý a acyklický (=strom)

(ii) ∀u, v ∈ V (G) ∃! cesta v G mezi u a v (=jednoznačná souvislost)

(iii) G je souvislý a ∀e ∈ E(G) : G− e neńı souvislý (=minimálńı souvislost)

(iv) G je acyklický a ∀e ∈
(
V (G)
2

)
\ E : G+ e má cyklus (=maximálně acyklický)

(v) G je souvislý a |E(G)| = |V (G)| − 1 (=Eulerova formule)

Věta. V grafu G = (V,E) plat́ı: ∑
v∈V

degG(v) = 2|E|
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1.4.5 Rovinné grafy

Definice (Rovinný graf). Rovinný graf je takový graf, pro něǰz existuje nějaké nakresleńı v rovině.

Definice (Rovinné nakresleńı). Rovinné nakresleńı G je přiřazeńı r̊uzných bod̊u v rovině r̊uzným
vrchol̊um G, spojené s přiřazeńım oblouk̊u každé hraně z E(G) – aby bylo nakresleńı rovinné, tak
žádné dva oblouky nesmı́ sd́ılet jeden bod v rovině, jedině ten koncový.

Definice (Stěna). Stěna je oblast ohraničená hranami.

Věta (Kuratowski). Graf G je nerovinný ⇐⇒ G obsahuje podgraf izomorfńı s děleńım K5 nebo
K3,3.

Věta (Eulerova formule). Necht’ G je souvislý graf nakreslený do roviny, v := |V (G)|, e := |E(G)|,
f := #stěn nakresleńı. Potom plat́ı v − e+ f = 2. (pro c počet komponent: v − e+ f = 1 + c.)

D̊ukaz. Zvoĺıme v pevně a pak indukćı podle e.

(i) e = v − 1 (G je strom), f = 1:
v + 1 = v − 1 + 2

(ii) e− 1→ e: mějme graf G s e hranami. Necht’ λ je hrana na kružnici v G.
Potom G′ = G− λ, v′ = v, e′ = e− 1, f ′ = f − 1. Nyńı použijeme indukčńı předpoklad:

v′ + f ′ = e′ + 2

v + f − �1 = e− �1 + 2

v + f = e+ 2

Věta (Maximálńı počet hran rovinného grafu). V každém rovinném grafu s alespoň 3 vrcholy plat́ı:

|E| ≤ 3|V | − 6.

D̊ukaz. Doplńım do G hrany, až źıskám maximálńı rovinný graf G′. Takže v′ = v, e′ ≥ e. Každá stěna
přispěje třemi hranami, kadždá hrana dvěma stěnám, tedy 3f = 2e⇝ f = 2

3
e. Nyńı jen dosad́ıme:

v′ − e′ + 2

3
e = 2 ⇐⇒ 3v − e′ + 2e = 6 =⇒ e ≤ 3v − 6

Věta. V rovinném grafu existuje vrchol stupně nejvýše 5.

Věta (O 4 barvách). Každý rovinný graf lze obarvit nejvýše 4 barvami.

1.4.6 Barevnost graf̊u

Definice (k-obarveńı grafu). Obarveńı grafu k barvami je c : V (G) → [k] tak, že kdykoli {x, y} ∈
E(G), pak c(x) ̸= c(y).

Definice (Barevnost grafu). Barevnost χ(G) je nejmenš́ı k takové, že existuje k-obarveńı G.

Věta. χ(G) ≤ 2 ⇐⇒ G je bipartitńı ⇐⇒ G nemá lichou kružnici.

Definice (Klikovost). Klikovost ω(G) je rovna velikosti nejvěťśı kliky (úplného podgrafu Kk) v G.

Věta (Barevnost a klikovost). χ(G) ≥ ω(G).

24



1.4.7 Hranová a vrcholová souvislost graf̊u

Definice (Hranový řez). F ⊆ E je hranový řez v G pokud G \ F je nesouvislý.

Definice (Hranová k−souvislost). G je hranově k−souvislý, pokud neobsahuje žádný hranový řez
velikosti menš́ı než k.

Definice (Vrcholový řez). U ⊆ V je vrcholový řez v G pokud podgraf indukovaný V \U je nesouvislý.

Definice (Vrcholová k-souvislost). Graf G je vrcholově k-souvislý, pokud má alespoň k + 1 vrchol̊u
a neobsahuje žádný vrcholový řez velikosti < k.

Definice (Vrcholová souvislost). Vrcholová souvislost grafu G, značeno Kv(G), je nejvěťśı k, t.̌z.:
G je vrcholově k-souvislý.

Věta (Menger – hranová xy verze). Pro dva r̊uzné vrcholy x, y grafu G plat́ı, že G obsahuje k ∈ N
hranově disjunktńıch cest z x do y ⇐⇒ G neobsahuje hranový xy−řez velikosti menš́ı než k.

Věta (Menger – vrcholová xy verze). Pro dva r̊uzné nesousedńı vrcholy x, y grafu G plat́ı, že G
obsahuje k ∈ N navzájem vrcholově disjunktńıch cest z x do y ⇐⇒ G neobsahuje vrcholový xy-řez
velikosti < k.

Věta (Menger – hranová verze). Graf G je hranově k-souvislý ⇐⇒ mezi každými dvěma r̊uznými
vrcholy existuje k hranově disjunktńıch cest.

Věta (Menger – vrcholová verze). Graf G je vrcholově k-souvislý ⇐⇒ mezi každými dvěma r̊uznými
vrcholy existuje k navzájem vnitřně vrcholově disjunktńıch cest.

1.4.8 Orientované grafy

Definice (Otevřený eulerovský tah). Otevřený eulerovský tah z v0 do vn je takový tah, který obsahuje
všechny vrcholy a hrany grafu právě jednou.

Definice (Uzavřený eulerovský tah). Uzavřený eulerovský tah je takový eulerovský tah, kde v0 = vn.

Definice (Orientovaný graf). Orientovaný graf je uspořádaná dvojice (V,E), kde

E ⊆ V 2 \ {(x, x) | x ∈ V }.

Definice (Podkladový graf). Podkladový graf grafu G = (V,E) je graf H = (V, F ), kde

F =

{
{u, v} ∈

(
V

2

)∣∣∣ (u, v) ∈ E ∨ (v, u) ∈ E
}
.

Neboli množina všech neuspořádaných dvojic vrchol̊u, kde v jednom nebo druhém pořad́ı je hrana.

Definice (Silná souvislost). Pokud pro ∀u, v ∈ V existuje orientovaná cesta z u do v.

Definice (Slabá souvislost). Pokud podkladový graf je souvislý.

Věta. Pro orientovaný graf G je ekvivalentńı:

(i) je vyvážený a slabě souvislý

(ii) má uzavřený eulerovský tah

(iii) je vyvážený a silně souvislý
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1.4.9 Toky v śıt́ıch

Definice (Toková śıt’). Je pětice (V,E, z, s, c):

• V ≡ množina vrchol̊u

• E ≡ množina orientovaných hran E ⊆ V × V

• z ∈ V ≡ zdroj

• s ∈ V \ {z} ≡ stok/ spotřebič

• c : E → [0,+∞) ≡ c(e) je kapacita hrany e

Definice (Tok). V śıti (V,E, z, s, c) je funkce f : E → [0,+∞) splňuj́ıćı:

(i) ∀e ∈ E : 0 ≤ f(e) ≤ c(e),

(ii) ∀u ∈ V \ {z, s} :
∑

v:uv∈E

f(uv) =
∑

v:vu∈E

f(vu), respektive fIn = fOut.

Definice (Velikost toku). Velikost toku f v śıti (V,E, z, s, c) je w(f) := f [Out(z)]− f [In(z)].

Definice (Maximálńı tok). Maximálńı tok je takový tok, který má nejvěťśı velikost.

Definice (Řez). v śıti (V,E, z, s, c) je množiana hran R ⊆ E, t.̌z.: každá orientovaná cesta ze z do
s má neprázdný pr̊unik s R.

• Kapacita řezu R ≡ c(R) =
∑
e∈R

c(e)

• Minimálńı řez je řez, který má ze všech řez̊u nejmenš́ı kapacitu.

Definice (Nenasycená cesta). Necht’ f je tok v śıti (V,E, z, s, c). Nenasycená cesta pro f je neore-
intovaná cesta x1e1x2e2 . . . xk−1ek−1xkekxk+1, kde ∀i = 1, . . . , k :

• ei je bud’ dopředná hrana, tedy ei = (xi, xi+1), nebo

• ei je zpětná hrana, tedy ei(xi+1, xi).

Zároveň plat́ı f(ei) < c(ei) pro každou dopřednou hranu a f(ei) > 0 pro každou zpětnou hranu.

Definice (Zlepšuj́ıćı cesta). Zlepšuj́ıćı cesta pro f je nenasycená cesta ze z do s.

Algorithm 4: Ford-Fulkerson – Princip hledáńı maximálńıho toku v śıti.

1 f ← nulový tok
2 while existuje zlepšuj́ıćı cesta P ze z → s do
3 ε← mine∈E(P ) r(e). ▷ Rezerva r(uv) = c(uv)− f(uv) + f(vu)
4 Zvětš́ıme tok f podél P o ε. ▷ ∀e po směru zvěťśıme a proti směru zmenš́ıme f(e)

5 end
6 return tok f .

Věta. Necht’ f je tok v śıti (V,E, z, s, c), potom následuj́ıćı tvrzeńı jsou ekvivalentńı:

(i) f je maximálńı

(ii) f nemá zlepšuj́ıćı cestu

(iii) Existuje řez R, t.̌z.: w(f) = c(R).

Věta (Minimax). Necht’ fmax je maximálńı tok a Rmin je minimáńı řez v (V,E, z, s, c), potom
w(fmax) = c(Rmin).
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1.5 Pravděpodobnost a statistika

1.5.1 Pravděpodobnost, jevy, prostor

Definice (Pravděpodobnost). Necht’ Ω je množina elementárńıch jev̊u a F ⊆ 2Ω je podmnožina

elementárńıch jev̊u. Potom pravděpodobnost P je funkce P : F → [0, 1] =

{
P (A) = 1 jev jistý

P (A) = 0 jev nemožný

Definice (Diskrétńı pravděpodobnostńı prostor). Diskrétńı pravděpodobnostńı prostor je trojice

(Ω,F , P ), kde Ω je konečná nebo spočetná, F = 2Ω; P (Ω) = 1; a P (A) =
∑
w∈A

P ({w}).

Definice (Konečný pravděpodobnostńı prostor). Konečný pravděpodobnostńı prostor je diskrétńı,
kde Ω je konečná.

Definice (Klasický pravděpodobnostńı prostor). Klasický pravděpodobnostńı prostor je konečný, kde

P (A) = |A|
|Ω| .

Definice (Elementárńı jev). Všechny výsledky nějakého pravděpodobnostńıho experimentu. Znač́ıme
jako Ω.

Definice (Složený jev). Složený jev je takový jev, který neńı elementárńı. Složený jev nastane ⇐⇒
nastane některý z elementárńıch jev̊u v něm obsažený.

Definice (Pravděpodobnost jevu). Pravděpodobnost jevu udává, jakou máme šanci, že daný jev
nastane.

Věta (Základńı pravidla pro poč́ıtáńı). V pravděpodobnostńım prostoru (Ω,F , P ) plat́ı pro A,B ∈ F :

• A ⊆ B =⇒ P (A) ≤ P (B),

• P (A ∪B) = P (A) + P (B)− P (A ∩B),

• P (A1 ∪ A2 ∪ . . .) ≤
∑

i P (Ai).

Definice (Nezávislost náhodných jev̊u). Jevy A a B jsou nezávislé ⇐⇒ P (A∩B) = P (A) ·P (B).

Definice (Podmı́něná pravděpodobnost). Podmı́něná pravděpodobnost je pravděpodobnost, že nastal
jev A za podmı́nek, že nastal jev B.

P (A|B) =
P (A ∩B)

P (B)

Věta (Bayesova věta). Necht’ A je jev, kde P (A) ̸= 0 a B1, ..., Bk je rozklad Ω na jevy t.̌z. ∀i :
P (Bi) ̸= 0. Potom:

P (Bi|A) =
P (A|Bi) · P (Bi)∑
j

P (A|Bj) · P (Bj)

1.5.2 Náhodné veličiny a jejich rozděleńı

Definice (Náhodná veličina). Náhodná veličina je zobrazeńı X : Ω→ R, které ∀x ∈ R splňuje:

{ω ∈ Ω : X(ω) ≤ x} ∈ F .

Definice (Diskrétńı náhodná veličina). Funkci X : Ω → R nazveme diskrétńı náhodná veličina,
pokud je obor hodnot X spočetná množina a pokud ∀x ∈ R plat́ı: {ω ∈ Ω : X(ω) = x} ∈ F .

27



Definice (Spojitá náhodná veličina). Náhodná veličina X se nazývá spojitá, pokud existuje nezá-
porná reálná funkce fX tak, že

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt.

Definice (Indikátorová náhodná veličina). Pro libovolný jev A ∈ F definujeme indikátorovou n.v.
IA: IA(ω) = 1 pokud ω ∈ A, IA(ω) = 0 jinak.

Definice (Bernoulliho rozděleńı). Pro X ∼ IA ∼ Bern(p) je

• E(X) = p,

• var(X) = p(1− p)

(X m̊uže být např́ıklad počet orl̊u při jednom hodu nespravedlivou minćı.)

Definice (Geometrické rozděleńı). Pro X ∼ Geom(p) je

• E(X) = 1
p
,

• var(X) = 1−p
p2

Pro dané p ∈ [0, 1] máme pX(k) = (1− p)k−1p, pro k ∈ N.
(X m̊uže být např́ıklad kolikátým hodem minćı padl prvńı orel.)

Definice (Binomické rozděleńı). Pro X ∼ Bin(n, p) je

• E(X) = np,

• var(X) = np(1− p)

Pro dané p ∈ [0, 1] máme pX(k) =

(
n

k

)
pk(1− p)n−k, pro k ∈ {0, . . . n}.

(X m̊uže být např́ıklad počet orl̊u při n hodech nespravedlivou minćı.)

Definice (Hypergeometrické rozděleńı). Pro X ∼ Hyper(N,K, n) je

• E(X) = nK
N
,

• var(X) = nK
N
(1− K

N
)N−n
N−1

.

Pro dané p ∈ [0, 1], n,N,K máme pX(k) = P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) .

(X m̊uže být např́ıklad počet vytažených červených mı́čku při n taźıch, v osud́ı je K červených z
N celkových mı́čk̊u.)

Definice (Poissonovo rozděleńı). Pro X ∼ Pois(λ) je

• E(X) = λ,

• var(X) = λ.

Pro dané p ∈ [0, 1] a reálné λ > 0 máme pX(k) =
λk

k!
e−λ. Plat́ı, že Pois(λ) je limitou Bin(n, λ/n).

(X m̊uže být např́ıklad počet email̊u, které dostaneme za jednu hodinu.)

Definice (Normálńı rozděleńı). Pro X ∼ N(0, 1) je

• E(X) = 0,
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• var(X) = 1.

Plat́ı, že fX = φ, kde φ(x) = 1√
2π
e

−x2

2 .

Definice (Exponenciálńı rozděleńı). Pro X ∼ Exp(λ) je

• E(X) = 1
λ
,

• var(X) = 1
λ2 .

FX(x) =

{
0 pro x ≤ 0

1− e−λx pro x ≥ 0
fX(x) =

{
0 pro x ≤ 0

λ− e−λx pro x ≥ 0

(X m̊uže být např́ıklad čas před př́ıchodem daľśıho telefonńıho hovoru do call-centra/ dotazu na
web-server/čas do daľśıho blesku v bouřce apod.)

Definice (Distribučńı funkce). Distribučńı funkce n.v. X je funkce

FX(x) := P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}).

(1) FX je neklesaj́ıci a zprava spojitá funkce

(2) lim
x→−∞

FX(x) = 0

(3) lim
x→+∞

FX(x) = 1

Středńı hodnota

Definice (Středńı hodnota). Středńı hodnota náhodné veličiny X je E(X) =
∑
w∈Ω

P ({w}) ·X(w).

Věta (Linearita středńı hodnoty). Necht’ X, Y jsou nezávislé náhodné veličiny a α ∈ R, potom

E[X + Y ] = E[X] + E[Y ] a E[αX] = αE[X].

Věta. Necht’ X, Y jsou nezávislé diskrétńı náhodné veličiny, potom E[X · Y ] = E[X] · E[Y ].

Definice (Markovova nerovnost). Necht’ X je nezáporná náhodná veličina a ∀t ≥ 1, potom plat́ı:

P [X ≥ t · E(X)] ≤ 1

t
.

Rozptyl

Definice (Rozptyl). Rozptyl n.v. X, značeno var(X), nazveme č́ıslo E((X − EX)2).

Věta. var(X) = E(X2)− E(X)2

Věta (Rozptyl součtu). Pro X1, . . . , Xn nezávislé diskrétńı nebo spojité n.v. plat́ı

var(X1 + · · ·+Xn) = var(X1) + · · ·+ var(Xn).

Definice (Spojitý rozptyl). Rozptyl spojité n.v. X je var(X) := E((X−µ)2) =
∫ ∞

−∞
(x−µ)2fX(x)dx.
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1.5.3 Limitńı věty

Věta (Zákon velkých č́ısel). Necht’ X1, . . . , Xn jsou stejné rozdělené n.n.v. se středńı hodnotou µ a
rozptylem σ2. Označme Sn = (X1 + · · ·+Xn)/n. Pak pro každé ε > 0 plat́ı

lim
n→∞

P (|Sn − µ| ≥ ε) = 0.

Řı́káme, že posloupnost Sn konverguje k µ v pravděpodobnosti, ṕı̌seme Sn →P µ.

Věta (Centrálńı limitńı věta). Necht’ X1, . . . , Xn jsou stejně rozdělené n.n.v se středńı hodnotou µ
a rozptylem σ2. Označme

Yn = ((X1 + · · ·+Xn)− nµ)/(
√
n · σ).

Pak Yn →d N(0, 1). Neboli, pokud Fn je distribučńı funkce Yn, tak

lim
n→∞

Fn(x) = Φ(x) ∀x ∈ R.

Řı́káme, že posloupnost Yn konverguje k N(0, 1) v distribuci.

1.5.4 Bodové odhady

Chceme určit hodnotu nějakého parametru – často středńı hodnoty neznámého rozděleńı.

Definice (Bodový odhad). Pro náhodný výběr X1, . . . , Xn ∼ Fθ a libovolnou funkci g nazveme

bodový odhad θ̂n = g(X1, . . . , Xn):

• nestranný, pokud E(θ̂n) = g(θ),

• asymptoticky nestranný, pokud lim
n→∞

E(θ̂n) = g(θ),

• konzistentńı, pokud θ̂n
P→ g(θ),

• vychýleńı bias(θ̂n) = E(θ̂n)− θ

• středńı kvadratickou chybu MSE = E((θ̂n − θ)2)

Věta (Parametry výběrového momentu a rozptylu). Máme:

• Xn =
1

n

n∑
i=1

Xi je konzistentńı nestranný odhad µ = EX1 = EX2 = . . .

• S
2

n =
1

n

n∑
i=1

(Xi − X̄i)
2 je konzistentńı asymptoticky nestranný odhad σ2

• Ŝ2
n =

1

n− 1

n∑
i=1

(Xi − X̄i)
2 je konzistentńı nestranný odhad σ2

Metoda moment̊u. Voĺıme takové θ, které řeš́ı soustavu rovnic

mr(θ) = m̂r(θ) r = 1, . . . , k

Necht’ r-tý moment náhodné veličiny X je E(Xr) a označme:

• mr(θ) := E(Xr) pro X ∼ Fθ jako r-tý moment (pr̊uměr z celé populace)

• m̂r(θ) :=
1
n

∑n
i=1X

r
i jako r-tý výběrový moment (pr̊uměr z náhod. výběru X1, . . . , Xn z Fθ)

Věta. m̂r(θ) je nestranný konzistentńı odhad pro mr(θ).
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Př́ıklad. Necht’ X1, . . . , Xn ∼ Bern(p), kde Xi = “i-tý člověk je levák”. Potom θ = p ∈ [0, 1] a
m1(θ) = E(X1) = θ. Celkem

m̂r(θ) =
1

n
(X1 + · · ·+Xn) = Xn.

1.5.5 Intervalové odhady

Mı́sto jednoho č́ısla s nejistým významem vypoč́ıtáme z dat interval
[
θ̂−, θ̂+

]
.

Definice (Intervalový odhad). Intervalový odhad (konfidenčńı interval) je interval [D,H], který s
předem zvolenou pravděpodobnost́ı (1− α) pokrývá neznámý parametr θ populace. Čı́slo α se nazývá
hladina významnosti (typicky α = 0.05).

Metoda založená na normálńı aproximaci. Tato metoda využ́ıvá centrálńı limitńı větu (CLV)
a je vhodná pro velké výběry (n ≥ 30).

(1) Bodový odhad: Pro středńı hodnotu θ = µ použijeme θ̂ = X̄n = 1
n

∑n
i=1Xi.

(2) Standardńı chyba (SE):

• Pokud je známý rozptyl σ2, tak SE = σ√
n
.

• Pokud rozptyl neznáme, odhadneme ho pomoćı výběrového rozptylu:

ŜE =
Ŝn√
n
, kde Ŝ2

n =
1

n− 1

n∑
i=1

(Xi − X̄n)
2.

(3) Kvantily rozděleńı:

• Pro známý rozptyl použijeme normálńı rozděleńı N(0, 1): zα/2 = Φ−1(1− α
2
)

• Pro neznámý rozptyl a malé výběry použijeme Studentovo t-rozděleńı s n − 1 stupni
volnosti:

tα/2 = Ψ−1
n−1(1−

α

2
).

(4) Interval spolehlivosti:

θ̂ ± zα/2 · SE (pro známý rozptyl),

θ̂ ± tα/2 · ŜE (pro neznámý rozptyl).

Aplikace. Použ́ıvá se např́ıklad pro odhady pr̊uměrné výšky, hmotnosti, doby života.

1.5.6 Testováńı hypotéz

Jedná se o metodu pro rozhodováńı o platnosti určitých hypotéz na základě pozorovaných dat.

Základńı př́ıstup. Postupujeme následovně:

(1) Formulujeme nulovou hypotézu (H0) - konzervativńı tvrzeńı, které testujeme (např. ”mince
je spravedlivá”, ”lék nemá účinek”).

(2) Stanov́ıme alternativńı hypotézu (H1) - tvrzeńı, které plat́ı, pokud H0 neplat́ı (např. ”mince
je falešná”, ”lék má účinek”).

(3) Zvoĺıme testovou statistiku T = h(X1, . . . , Xn), která měř́ı odchylku dat od H0.

(4) Urč́ıme kritický obor W - množinu hodnot statistiky, pro které zamı́tneme H0.

(5) Vypočteme pozorovanou hodnotu statistiky t = h(x1, . . . , xn).

(6) Rozhodneme: pokud t ∈ W , zamı́tneme H0 ve prospěch H1; jinak H0 nezamı́táme.
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Chyby v testováńı. Při rozhodováńı můžeme udělat dva typy chyb:

• Chyba 1. druhu: Zamı́tneme H0, i když plat́ı.

P (chyba 1. druhu) = P (T ∈ W |H0) = α

• Chyba 2. druhu: Nezamı́tneme H0, i když neplat́ı.

P (chyba 2. druhu) = P (T /∈ W |H1) = β

• Śıla testu: Pravděpodobnost správného zamı́tnut́ı H0, když neplat́ı.

1− β = P (T ∈ W |H1)

Hladina významnosti. Hladina významnosti α je pravděpodobnost chyby 1. druhu, kterou jsme
ochotni akceptovat. Typické volby jsou α = 0.05 nebo α = 0.01. Kritický obor W pak voĺıme, aby:

P (T ∈ W |H0) = α

Základńı princip: Zamı́tneme H0, pokud p-hodnota = P (T ≥ t|H0) < α.

32



1.6 Logika

1.6.1 Syntaxe

Definice (Jazyk VL). Jazyk výrokové logiky je určený neprázdnou množinou výrokových proměn-
ných P. Patř́ı do něj také symboly pro logické spojky ¬,∧,∨,→,↔ a závorky (, ).

Definice (Výroková formule). Výrok v jazyce P je prvek množiny VFP definované následovně: VFP
je nejmenš́ı množina splňuj́ıćı

• pro každý prvovýrok p ∈ P plat́ı p ∈ VFP ,

• pro každý výrok φ ∈ VFP je (¬φ) také prvek VFP

• pro každé φ, ψ ∈ VFP jsou (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), a (φ↔ ψ) také prvky VFP.

Definice (Signatura). Signatura je dvojice ⟨R,F⟩, kde R,F jsou disjunktńı množiny symbol̊u ( re-
lačńı a funkčńı, ty zahrnuj́ı konstantńı) spolu s danými aritami (tj. danými funkćı ar : R∪F → N)
a neobsahuj́ıćı symbol ‘=’ (ten je rezervovaný pro rovnost).

Definice (Jazyk PL). Jazyk predikátové logiky je dán signaturou ⟨R,F⟩ a uvedeńım, zda jde o jazyk
s rovnost́ı, či bez. Patř́ı do něj spočetně mnoho proměnných, relačńı, funkčńı a konstantńı symboly
ze signatury (př́ıpadně “=”), univerzálńı a existenčńı kvantifikátory ∀, ∃, symboly pro logické spojky
¬,∧,∨,→,↔ a závorky (, ).

Definice (Termy). Termy jazyka L jsou konečné nápisy definované induktivně:

• každá proměnná a každý konstantńı symbol z L je term,

• je-li f funkčńı symbol z L arity n a jsou-li t1, . . . , tn termy, potom nápis f(t1, t2, . . . , tn) je také
term.

Množinu všech termů jazyka L označ́ıme TermL.

Definice (Formule). Formule jazyka L jsou konečné nápisy definované induktivně. Plat́ı stejné tři
body jako u výroku, plus: Je-li φ formule a x proměnná, potom ((∀x)φ) a ((∃x)φ) jsou také formule.

Definice (Otevřená formule). Formule je otevřená, pokud neobsahuje žádný kvantifikátor.

Definice (Sentence). Formule je uzavřená (sentence), pokud nemá žádnou volnou proměnnou.

Definice (Literál). Literál ℓ je bud’ prvovýrok p nebo negace prvovýroku ¬p.

Definice (Klauzule). Klauzule je disjunkce literál̊u C = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓn. Jednotková klauzule je
samotný literál (n = 1) a prázdnou klauzuĺı (n = 0) mysĺıme ⊥.

Definice (CNF). Výrok je v konjunktivńı normálńı formě (v CNF) pokud je konjunkćı klauzuĺı.
Prázdný výrok v CNF je ⊤.

Definice (Elementárńı konjunkce). Elementárńı konjunkce je konjunkce literál̊u E = ℓ1∧ℓ2∧· · ·∧ℓn.
Jednotková elementárńı konjunkce je samotný literál (n = 1). Prázdná (n = 0) je ⊤.

Definice (DNF). Výrok je v disjunktivńı normálńı formě (v DNF) pokud je disjunkćı elementárńıch
konjunkćı. Prázdný výrok v DNF je ⊥.

Věta (Převod CNF DNF). Mějme konečný jazyk P a libovolnou množinu model̊u M ⊆ MP. Potom
existuje výrok φDNF v DNF a výrok φCNF v CNF takový, že M = MP(φDNF) = MP(φCNF). Konkrétně:

φDNF =
∨
v∈M

∧
p∈P

pv(p)

φCNF =
∧
v∈M

∨
p∈P

pv(p) =
∧
v/∈M

∨
p∈P

p1−v(p)
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• Implikace a ekvivalence:

φ→ ψ ∼ ¬φ ∨ ψ
φ↔ ψ ∼ (¬φ ∨ ψ) ∧ (¬ψ ∨ φ)

• Negace:

¬(φ ∧ ψ) ∼ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ∼ ¬φ ∧ ¬ψ
¬¬φ ∼ φ

• Konjunkce (převod do DNF):

φ ∧ (ψ ∨ χ) ∼ (φ ∧ ψ) ∨ (φ ∧ χ)

(φ ∨ ψ) ∧ χ ∼ (φ ∧ χ) ∨ (ψ ∧ χ)

• Disjunkce (převod do CNF):

φ ∨ (ψ ∧ χ) ∼ (φ ∨ ψ) ∧ (φ ∨ χ)

(φ ∧ ψ) ∨ χ ∼ (φ ∨ χ) ∧ (ψ ∨ χ)

Definice (SAT). Výrok φ je v k-CNF, pokud je v CNF a každá klauzule má nejvýše k literál̊u.
Problém k-SAT se ptá, zda je daný k-CNF výrok splnitelný. Pro k ≥ 3 je k-SAT nadále NP-úplný,
každou CNF formuli lze zakódovat do 3-CNF výroku.

Definice (PNF). Formule φ je v prenexńı normálńı formě (PNF), je-li tvaru

(Q1x1) . . . (Qnxn)φ
′

kde Qi je kvantifikátor (∀ nebo ∃) a formule φ′ je otevřená. Formuli φ′ potom ř́ıkáme otevřené jádro
φ a (Q1x1) . . . (Qnxn) je kvantifikátorový prefix.

Věta (Existence PNF). Ke každé formuli φ existuje ekvivalentńı formule v prenexńı normálńı formě.

Věta (Převod do PNF). Označme jako Q kvantifikátor opačný ke Q. Necht’ φ a ψ jsou formule, a
proměnná x necht’ neńı volná ve formuli ψ. Potom plat́ı:

¬(Qx)φ ∼ (Qx)¬φ
(Qx)φ ∧ ψ ∼ (Qx)(φ ∧ ψ)
(Qx)φ ∨ ψ ∼ (Qx)(φ ∨ ψ)
(Qx)φ→ ψ ∼ (Qx)(φ→ ψ)

ψ → (Qx)φ ∼ (Qx)(ψ → φ)

Definice (Rezolučńı pravidlo). Mějme klauzule C1 a C2 a literál ℓ takový, že ℓ ∈ C1 a ℓ̄ ∈ C2. Potom
rezolventa klauzuĺı C1 a C2 přes literál ℓ je klauzule

C = (C1 \ {ℓ}) ∪ (C2 \ {ℓ̄}).

Definice (Rezolučńı d̊ukaz). Rezolučńı d̊ukaz (odvozeńı) klauzule C z CNF formule S je konečná
posloupnost klauzuĺı C0, C1, . . . , Cn = C taková, že pro každé i bud’ Ci ∈ S nebo Ci je rezolventou
nějakých Cj, Ck kde j < i a k < i.

Pokud rezolučńı d̊ukaz existuje, ř́ıkáme, že C je rezolućı dokazatelná z S, a ṕı̌seme S ⊢R C.
(Rezolučńı) zamı́tnut́ı CNF formule S je rezolučńı d̊ukaz □ z S, v tom př́ıpadě je S (rezolućı)
zamı́tnutelná.

Definice (Rezolučńı strom). Rezolučńı strom klauzule C z CNF formule S je konečný binárńı strom
s vrcholy označenými klauzulemi, kde

• v kořeni je C,

• v listech jsou klauzule z S,

• v každém vnitřńım vrcholu je rezolventa klauzuĺı ze syn̊u tohoto vrcholu.

Definice (Rezolučńı uzávěr). Rezolučńı uzávěr R(S) formule S je definován induktivně jako nej-
menš́ı množina klauzuĺı splňuj́ıćı:

• C ∈ R(S) pro všechna C ∈ S,

• jsou-li C1, C2 ∈ R(S) a je-li C rezolventa C1, C2, potom také C ∈ R(S).
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1.6.2 Sémantika

Definice (Teorie). Teorie v jazyce P je libovolná množina výrok̊u v P. Jednotlivým výrok̊um φ ∈ T
ř́ıkáme také axiomy.

Definice (Pravdivostńı funkce). Pravdivostńı funkce výroku φ v konečném jazyce P je funkce
fφ,P : {0, 1}|P| → {0, 1} definovaná induktivně:

• je-li φ i-tý prvovýrok z P, potom fφ,P(x0, . . . , xn−1) = xi,

• je-li φ = (¬φ′), potom fφ,P(x0, . . . , xn−1) = f¬(fφ′,P(x0, . . . , xn−1)),

• je-li φ = (φ′□φ′′) kde □ ∈ {∧,∨,→,↔}, potom

fφ,P(x0, . . . , xn−1) = f□(fφ′,P(x0, . . . , xn−1), fφ′′,P(x0, . . . , xn−1)).

Definice (Model jazyka VL). Model jazyka P je libovolné pravdivostńı ohodnoceńı v : P → {0, 1}.
Množinu (všech) model̊u jazyka P označ́ıme MP:

MP = {v | v : P→ {0, 1}} = {0, 1}P

Definice (Model jazyka PL). Model jazyka L, nebo také L-struktura, je libovolná struktura v sig-
natuře jazyka L. Tř́ıdu všech model̊u jazyka označ́ıme ML.

Definice (Struktura). Struktura v signatuře ⟨R,F⟩ je trojice A = ⟨A,RA,FA⟩, kde

• A je neprázdná množina, ř́ıkáme j́ı doména (také univerzum),

• RA = {RA | R ∈ R} kde RA ⊆ Aar(R) je interpretace relačńıho symbolu R,

• FA = {fA | f ∈ F} kde fA : Aar(f) → A je interpretace funkčńıho symbolu f (speciálně pro
konstantńı symbol c ∈ F máme cA ∈ A).

Definice (Platnost výroku v modelu, model výroku). Mějme výrok φ v jazyce P a model v ∈ MP.
Pokud plat́ı fφ,P(v) = 1, potom ř́ıkáme, že výrok φ plat́ı v modelu v, v je modelem φ, a ṕı̌seme
v |= φ. Množinu všech model̊u výroku φ označujeme MP(φ).

Definice (Platnost teorie, model teorie). Je-li T teorie v jazyce P, potom T plat́ı v modelu v, pokud
každý axiom φ ∈ T plat́ı ve v. V tom př́ıpadě ř́ıkáme také, že v je modelem T , a ṕı̌seme v |= T .
Množinu všech model̊u teorie T v jazyce P označ́ıme MP(T ).

Definice (Sémantické pojmy). Řı́káme, že výrok φ (v jazyce P) je

• pravdivý, tautologie, plat́ı (v logice/logicky), a ṕı̌seme |= φ, pokud plat́ı v každém modelu
(jazyka P), MP(φ) = MP,

• lživý, sporný, pokud nemá žádný model, MP(φ) = ∅.

• nezávislý, pokud plat́ı v nějakém modelu, a neplat́ı v nějakém jiném modelu, tj. neńı pravdivý
ani ľzivý, ∅ ⊊ MP(φ) ⊊ MP,

• splnitelný, pokud má nějaký model, tj. neńı ľzivý, MP(φ) ̸= ∅.

Dále ř́ıkáme, že výroky φ, ψ (ve stejném jazyce P) jsou (logicky) ekvivalentńı, ṕı̌seme φ ∼ ψ pokud
maj́ı stejné modely, tj.

φ ∼ ψ právě když MP(φ) = MP(ψ).

Definice (Sémantické pojmy vzhledem k teorii). Mějme teorii T v jazyce P. Řı́káme, že výrok φ v
jazyce P je
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• pravdivý v T , d̊usledek T , plat́ı v T , a ṕı̌seme T |= φ, pokud φ plat́ı v každém modelu teorie
T , neboli MP(T ) ⊆ MP(φ),

• lživý v T , sporný v T , pokud neplat́ı v žádném modelu T , neboli MP(φ)∩MP(T ) = MP(T, φ) = ∅.

• nezávislý v T , pokud plat́ı v nějakém modelu T , a neplat́ı v nějakém jiném modelu T , tj. neńı
pravdivý v T ani ľzivý v T , ∅ ⊊ MP(T, φ) ⊊ MP(T ),

• splnitelný v T , konzistentńı s T , pokud plat́ı v nějakém modelu T , tj. neńı ľzivý v T , MP(T, φ) ̸=
∅.

A ř́ıkáme, že výroky φ, ψ (ve stejném jazyce P) jsou ekvivalentńı v T , T -ekvivalentńı, ṕı̌seme φ ∼T ψ
pokud plat́ı v týchž modelech T , tj.

φ ∼T ψ právě když MP(T, φ) = MP(T, ψ).

Definice. Řekneme, že teorie T v jazyce P je

• sporná, jestlǐze v ńı plat́ı ⊥ (spor), ekvivalentně, jestlǐze nemá žádný model,

• bezesporná ( splnitelná), pokud neńı sporná, tj. má nějaký model,

• kompletńı, jestlǐze neńı sporná a každý výrok je v ńı pravdivý nebo ľzivý, ekvivalentně, pokud
má právě jeden model.

1.6.3 Extenze teoríı

Definice (Extenze teorie). Mějme teorii T v jazyce P.

• Extenze teorie T je libovolná teorie T ′ v jazyce P′ ⊇ P splňuj́ıćı CsqP(T ) ⊆ CsqP′(T ′),

• je to jednoduchá extenze, pokud P′ = P,

• je to konzervativńı extenze, pokud CsqP(T ) = CsqP(T
′) = CsqP′(T ′) ∩ VFP.

Skolemizace. Redukujeme otázku splnitelnosti dané teorie T na otázku splnitelnosti otevřené
teorie T ′. Celá konstrukce sestává z následuj́ıćıch krok̊u:

1. Převod do prenexńı normálńı formy (vytýkáńı kvantifikátor̊u).

2. Nahrazeńı formuĺı jejich generálńımi uzávěry (abychom źıskali sentence – přidáme “∀”).

3. Odstraněńı existenčńıch kvantifikátor̊u (nahrazeńı sentenćı Skolemovými variantami – od-
strańıme “∃yi” a substituujeme “fi(x1, . . . , xni

)”).

4. Odstraněńı zbývaj́ıćıch univerzálńıch kvantifikátor̊u (výsledkem jsou otevřené formule).

1.6.4 Dokazatelnost

Pokud d̊ukaz existuje, lze ho nalézt ‘algoritmicky’. Nav́ıc muśıme být schopni algoritmicky ověřit, že
je daný objekt opravdu korektńı d̊ukaz. Existuje-li d̊ukaz, ř́ıkáme, že φ je dokazatelný z T , a ṕı̌seme
T ⊢ φ. Po dokazovaćım systému požadujeme dvě vlastnosti:

• korektnost : je-li výrok dokazatelný z teorie, je v ńı pravdivý (T ⊢ φ⇒ T |= φ)

• úplnost : je-li výrok pravdivý v teorii, je z ńı dokazatelný (T |= φ⇒ T ⊢ φ)

Definice (Tablo). Konečné tablo z teorie T je uspořádaný, položkami označkovaný strom zkonstru-
ovaný aplikaćı konečně mnoha následuj́ıćıch pravidel:
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• jednoprvkový strom označkovaný libovolnou položkou je tablo z teorie T ,

• pro libovolnou položkou P na libovolné větvi V , m̊užeme na konec větve V připojit atomické
tablo pro položku P ,

• na konec libovolné větve m̊užeme připojit položku Tα pro libovolný axiom teorie α ∈ T .

Tablo z teorie T je bud’ konečné, nebo i nekonečné: v tom př́ıpadě vzniklo ve spočetně mnoha kroćıch.
M̊užeme ho formálně vyjádřit jako sjednoceńı τ =

⋃
i≥0 τi, kde τi jsou konečná tabla z T , τ0 je

jednoprvkové tablo, a τi+1 vzniklo z τi v jednom kroku.
Tablo pro položku P je tablo, které má položku P v kořeni.

Definice (Tablo d̊ukaz). Tablo d̊ukaz výroku φ z teorie T je sporné tablo z teorie T s položkou Fφ v
kořeni. Pokud existuje, je φ (tablo) dokazatelný z T , ṕı̌seme T ⊢ φ. (Definujme také tablo zamı́tnut́ı
jako sporné tablo s Tφ v kořeni. Pokud existuje, je φ (tablo) zamı́tnutelný z T , tj. plat́ı T ⊢ ¬φ.)

• Tablo je sporné, pokud je každá jeho větev sporná.

• Větev je sporná, pokud obsahuje položky Tψ a Fψ pro nějaký výrok ψ, jinak je bezesporná.

• Tablo je dokončené, pokud je každá jeho větev dokončená.

• Větev je dokončená, pokud

– je sporná, nebo

– je každá jej́ı položka na této větvi redukovaná a zároveň obsahuje položku Tα pro každý
axiom α ∈ T .

• Položka P je redukovaná na větvi V procházej́ıćı touto položkou, pokud

– je tvaru Tp resp. Fp pro nějakou výrokovou proměnnou p ∈ P, nebo
– vyskytuje se na V jako kořen atomického tabla (tj., typicky, při konstrukci tabla jǐz došlo

k jej́ımu rozvoji na V ).

Věta (Konečnost sporu). Je-li τ =
⋃

i≥0 τi sporné tablo, potom existuje n ∈ N takové, že τn je sporné
konečné tablo.

Důsledek (Konečnost d̊ukazu). Pokud T ⊢ φ, potom existuje i konečný tablo d̊ukaz φ z T .

¬ ∧ ∨ → ↔

True

T¬φ

Fφ

Tφ ∧ ψ

Tφ

Tψ

Tφ ∨ ψ

Tφ Tψ

Tφ→ ψ

Fφ Tψ

Tφ↔ ψ

Tφ

Tψ

Fφ

Fψ

False

F¬φ

Tφ

Fφ ∧ ψ

Fφ Fψ

Fφ ∨ ψ

Fφ

Fψ

Fφ→ ψ

Tφ

Fψ

Fφ↔ ψ

Tφ

Fψ

Fφ

Tψ

Tabulka 1.1 Atomická tabla
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1.6.5 Věty o kompaktnosti a úplnosti výrokové a predikátové logiky

Věta (O kompaktnosti). Teorie má model, právě když každá jej́ı konečná část má model.

Důsledek. Spočetně nekonečný graf je bipartitńı, právě když je každý jeho konečný podgraf bipartitńı.

Věta (O úplnosti VL). Je-li výrok φ pravdivý v teorii T , potom je tablo dokazatelný z T , tj.

T |= φ =⇒ T ⊢ φ.

Věta (O úplnosti PL). Je-li sentence φ pravdivá v teorii T , potom je tablo dokazatelná z T , tj.

T |= φ =⇒ T ⊢ φ.

1.6.6 Rozhodnutelnost

Definice (Kompletńı teorie ve VL). Teorie je kompletńı, je-li bezesporná a každý výrok je bud’

pravdivý, nebo ľzivý. Ekvivalentně, právě když má jeden model.

Definice (Kompletńı teorie v PL). Teorie je kompletńı, je-li bezesporná a každá sentence je v ńı bud’

pravdivá, nebo ľzivá. Ekvivalentně, právě když má právě jeden model až na elementárńı ekvivalenci.

Definice (Elementárńı ekvivalence). Struktury A,B (v témž jazyce) jsou elementárně ekvivalentńı,
pokud v nich plat́ı tytéž sentence. Znač́ıme A ≡ B.
Definice (Teorie struktury). Mějme L-strukturu A. Teorie struktury A, znač́ıme Th(A) je množina
všech L-sentenćı platných v A:

Th(A) = {φ | φ je L-sentence a A |= φ}

Definice (Rekurzivńı axiomatizace). Teorie T je rekurzivně axiomatizovaná, pokud existuje algo-
ritmus, který pro každou vstupńı formuli φ doběhne a odpov́ı, zda φ ∈ T .
Definice (Rozhodnutelnost). O teorii T ř́ıkáme, že je

• rozhodnutelná, pokud existuje algoritmus, který pro každou vstupńı formuli φ doběhne a odpov́ı,
zda T |= φ,

• částečně rozhodnutelná, pokud existuje algoritmus, který pro každou vstupńı formuli φ:

– pokud T |= φ, doběhne a odpov́ı “ano”,

– pokud T ̸|= φ, bud’ nedoběhne, nebo doběhne a odpov́ı “ne”.

Věta. Necht’ T je rekurzivně axiomatizovaná. Potom:

(i) T je částečně rozhodnutelná,

(ii) je-li T nav́ıc kompletńı, potom je rozhodnutelná.

Definice (Rekurzivńı axiomatizovatelnost). Tř́ıda L-struktur K ⊆ ML je rekurzivně axiomatizo-
vatelná, pokud existuje rekurzivně axiomatizovaná L-teorie T taková, že K = ML(T ). Teorie T ′

je rekurzivně axiomatizovatelná, pokud je rekurzivně axiomatizovatelná tř́ıda jej́ıch model̊u, neboli
pokud je T ′ ekvivalentńı nějaké rekurzivně axiomatizované teorii.

Př́ıklady rozhodnutelných teoríı. Pro následuj́ıćı struktury je Th(A) rekurzivně axiomatizova-
telná, a tedy i rozhodnutelná:

• ⟨Z,≤⟩, jde o tzv.teorii diskrétńıch lineárńıch uspořádáńı,

• ⟨N, S, 0⟩, teorie následńıka s nulou,

• ⟨R,+,−, ·, 0, 1⟩, teorie reálně uzavřených těles,

• ⟨C,+,−, ·, 0, 1⟩, teorie algebraicky uzavřených těles charakteristiky 0.
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Společná informatika

Z následuj́ıćıch 4 témat budou vybrána 2.

2.1 Automaty a jazyky

2.1.1 Regulárńı Jazyky

Definice (Regulárńı gramatika (Typ 3)). Gramatika G je regulárńı, pokud obsahuje pouze pravidla:

A→ wB nebo A→ w, A,B ∈ V,w ∈ T ∗.

Definice (DFA). Deterministický konečný automat (DFA) A = (Q,Σ, δ, q0, F ) sestává z:

• konečné množiny stav̊u Q,

• konečné neprázdné množiny vstupńıch symbol̊u (abecedy) Σ,

• přechodové funkce δ : Q× Σ→ Q,

• počátečńıho stavu q0 ∈ Q,

• a množiny koncových (přij́ımaj́ıćıch) stav̊u F ⊆ Q.

Definice (ϵ-NFA). Nedeterministický konečný automat s ϵ přechody (ϵ-NFA) A = (Q,Σ, δ, q0, F ):

• konečné množiny stav̊u Q,

• konečné množiny vstupńıch symbol̊u Σ,

• přechodové funkce, zobrazeńı δ : Q× (Σ ∪ {ϵ})→ P (Q) vracej́ıćı podmnožinu Q,

• počátečńıho stavu q0 ∈ Q,

• a množiny koncových (přij́ımaj́ıćıch) stav̊u F ⊆ Q.

Definice (Rozš́ı̌rená přechodová funkce). Mějme přechodovou funkci δ : Q × Σ → Q. Rozš́ı̌renou
přechodovou funkci δ∗ : Q× Σ∗ → Q definujeme induktivně:

• δ∗(q, ε) = q,

• δ∗(q, wx) = δ(δ∗(q, w), x), pro x ∈ Σ, w ∈ Σ∗.

Definice (Regulárńı výrazy (RegE), hodnota RegE L(α))). Regulárńı výrazy α, β ∈ RegE(Σ)
nad konečnou neprázdnou abecedou Σ = {a1, a2, . . . , an} a jejich hodnota L(α) jsou definovány in-
duktivně:

• Základ:

výraz α pro hodnota L(α) ≡ [α]
ϵ prázdný řetězec L(ϵ) = {ϵ}
∅ prázdný výraz L(∅) = {} ≡ ∅
a a ∈ Σ L(a) = {a}
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• Indukce:

výraz hodnota
α + β L(α + β) = L(α) ∪ L(β)
αβ L(αβ) = L(α)L(β)
α∗ L(α∗) = L(α)∗

(α) L((α)) = L(α)

Každý regulárńı výraz dostaneme indukćı výše, tj. tř́ıda RegE(Σ) je nejmenš́ı tř́ıda uzavřená na
uvedené operace.

2.1.2 Bezkontextové jazyky a Zásobńıkový automat

Definice (Formálńı (generativńı) gramatika). Formálńı gramatika je G = (V, T, P, S) složena z:

• konečné množiny neterminál̊u V ,

• neprázdné konečné množiny terminál̊u T ,

• počátečńıho symbolu S ∈ V ,

• konečné množiny pravidel P reprezentuj́ıćı rekurzivńı definici jazyka. Každé pravidlo má tvar:

βAγ → ω, A ∈ V, β, γ, ω ∈ (V ∪ T )∗,

tj. levá strana obsahuje alespoň jeden neterminálńı symbol.

Definice (Bezkontextová gramatika (CFG)). CFG je G = (V, T, P, S) gramatika, obsahuj́ıćı pouze
pravidla tvaru:

A→ ω, A ∈ V, ω ∈ (V ∪ T )∗.

Definice (Derivace ⇒∗). Mějme gramatiku G = (V, T, P, S).

• Řı́káme, že α se př́ımo přeṕı̌se na ω (ṕı̌seme α⇒G ω nebo α⇒ ω), jestlǐze:

∃β, γ, η, ν ∈ (V ∪ T )∗ : α = ηβν, ω = ηγν a (β → γ) ∈ P.

• Řı́káme, že α se přeṕı̌se na ω (ṕı̌seme α⇒∗ ω), jestlǐze:

∃β1, . . . , βn ∈ (V ∪ T )∗ : α = β1 ⇒ β2 ⇒ . . .⇒ βn = ω,

• Posloupnost β1, . . . , βn nazýváme derivaćı (odvozeńım).

Definice (Jazyk generovaný gramatikou G). Jazyk L(G) generovaný gramatikou G = (V, T, P, S)
je množina terminálńıch řetězc̊u, pro které existuje derivace ze startovńıho symbolu:

L(G) = {w ∈ T ∗ | S ⇒∗
G w}.

Jazyk neterminálu A ∈ V definujeme:

L(A) = {w ∈ T ∗ | A⇒∗
G w}.

Definice (Zásobńıkový automat (PDA)). PDA je P = (Q,Σ,Γ, δ, q0, Z0, F ), kde:

• Q je konečná množina stav̊u,

• Σ je neprázdná konečná množina vstupńıch symbol̊u,

• Γ je neprázdná konečná zásobńıková abeceda,

40



• δ je přechodová funkce:

δ : Q× (Σ ∪ {ϵ})× Γ→ PFIN(Q× Γ∗),

plat́ı δ(p, a,X) ∋ (q, γ), kde ‘p’ je aktuálńı stav, ‘a’ je aktuálně čtený symbol, ‘X’ je symbol na
vrcholu zásobńıku, ‘q’ je nový stav, do kterého automat přejde a ‘γ’ je řetězec zásobńıkových
symbol̊u, který nahrad́ı X na vrcholu zásobńıku,

• q0 ∈ Q je počátečńı stav,

• Z0 ∈ Γ je počátečńı zásobńıkový symbol (na začátku je jediný symbol na zásobńıku),

• F je množina přij́ımaj́ıćıch (koncových) stav̊u; m̊uže být nedefinovaná.

2.1.3 Rekurzivně spočetné jazyky

Definice (Turing̊uv stroj (TM)). Turing̊uv stroj (TM) je sedmice M = (Q,Σ,Γ, δ, q0, B, F ), kde:

• Q je konečná množina stav̊u,

• Σ je konečná neprázdná množina vstupńıch symbol̊u,

• Γ je konečná množina všech symbol̊u pro pásku (Γ ⊇ Σ, Q ∩ Γ = ∅),

• δ je (částečná) přechodová funkce:

δ : (Q− F )× Γ→ Q× Γ× {L,R},

kde δ(q,X) = (p, Y,D) znamená:

– q ∈ (Q− F ) je aktuálńı stav,

– X ∈ Γ je aktuálńı symbol na pásku,

– p je nový stav,

– Y ∈ Γ je symbol pro zapsáńı do aktuálńı buňky,

– D ∈ {L,R} je směr pohybu hlavy (doleva, doprava).

• q0 ∈ Q je počátečńı stav,

• B ∈ Γ− Σ je symbol pro prázdné buňky (blank),

• F ⊆ Q je množina koncových (přij́ımaj́ıćıch) stav̊u.

Definice (Problémem). Problémem P mysĺıme množinu otázek kódovatelnou řetězci nad abecedou
Σ s odpověd’mi ∈ {ANO, NE}. Pokud problém definujeme jakožto množinu, jde o otázku, zda vstup
kóduje prvek dané množiny (např. polynom s celoč́ıselným kořenem).

Definice (Rozhodnutelný problém). Problém je (algoritmicky) rozhodnutelný, pokud existuje Tu-
ring̊uv stroj takový, že pro každý vstup w ∈ P zastav́ı a nav́ıc přijme právě když

P (w) = ANO (tj. pro P (w) = NE , zastav́ı v ne-přij́ımaćım stavu).

Problém, který neńı algoritmicky rozhodnutelný je nerozhodnutelný.

Definice (Problém zastaveńı). Instanćı problému zastaveńı je dvojice řetězc̊u M,w ∈ {0, 1}∗.
Problém zastaveńı je naj́ıt algoritmus Halt(M,w), který vydá 1 právě když stroj M zastav́ı na vstupu
w, jinak vydá 0.

Věta (Problém zastaveńı). Problém zastaveńı neńı rozhodnutelný.
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2.1.4 Chomského Hierarchie

Definice (Chomského hierarchie). Gramatiky rozdělujeme do čtyř typ̊u:

• Gramatiky typu 0 (rekurzivně spočetné jazyky L0)
Pravidla v obecné formě:

α→ ω, α, ω ∈ (V ∪ T )∗,

a α obsahuje alespoň jeden neterminálńı symbol.

• Gramatiky typu 1 (kontextové gramatiky, jazyky L1)
Pouze pravidla ve tvaru:

γAβ → γωβ, A ∈ V, γ, β ∈ (V ∪ T )∗, ω ∈ (V ∪ T )+.

Výjimkou je pravidlo S → ϵ, pak se S nesmı́ vyskytovat na pravé straně žádného pravidla.

• Gramatiky typu 2 (bezkontextové gramatiky, jazyky L2)
Pouze pravidla ve tvaru:

A→ ω, A ∈ V, ω ∈ (V ∪ T )∗.

• Gramatiky typu 3 (regulárńı gramatiky, jazyky L3)
Pouze pravidla ve tvaru:

A→ ωB nebo A→ ω,

kde A,B ∈ V a ω ∈ T ∗.

Turingovy stroje
L0←−−−−−−→ Gramatiky Typu 0

Leneárně omezené automaty
L1←−−−−−−→ Kontextové a Monotónńı gramatiky

Zásobńıkové automaty
L2←−−−−−−→ Bezkontextové gramatiky CFG

Konečné automaty
L3←−−−−−−→ Regulárńı gramatiky

Převody

ε-NFA na DFA (konstrukce podmnožin)

1. Počátečńı stav je zachován.

2. Přij́ımaj́ıćı stavy jsou všechny množiny obsahuj́ıćı nějaký přij́ımaj́ıćı stav.

3. Každý nový stav odpov́ıdá množině stav̊u NFA. (Pro každý symbol z Σ spoč́ıtáme množinu
stav̊u, do kterých se NFA může dostat, a ta tvoř́ı nový stav v DFA.)

Regulárńı gramatika na DFA

1. Každý neterminál odpov́ıdá stavu automatu + vytvoř́ıme koncový stav K.

2. Počátečńı stav S gramatiky je počátčńı stav automatu.

3. Tvar A→ aB zaṕı̌seme v automatu jako A
a→ B.

4. Tvar A→ a zaṕı̌seme v automatu jako A
a→ K.

5. Tvar A→ ε zaṕı̌seme v automatu jako koncový stav.
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DFA na Regulárńı gramatika

1. Každému stavu automatu A,B,C, . . . přǐrad́ıme neterminál A,B,C, . . ..

2. Počátečńımu stavu přǐrad́ıme počátečńı neterminál.

3. Přechod A
a→ A zaṕı̌seme v gramatice jako pravidlo A→ aB.

4. Pokud je stav koncový, přidáme pravidlo A→ ε.

DFA na RegEx

1. Převedeme automat na regulárńı gramatiku.

2. Součet koncových stav̊u DFA bude tvořit výslednou rovnici.

3. Následně dosazujeme do stav̊u a převád́ıme je na RegEx.

4. Převod na RegEx: výraz ve tvaru A = Aα + β přeṕı̌seme na A = βα∗.

RegEx na NFA

1. Pro každý RegEx symbol vytvoř́ıme NFA s jedńım přechodem. (symbol 0 bude →⃝ 0→⊚.)

2. Pokud je RegEx ve tvaru 01, pak automaty skládáme.

3. Pokud je RegEx ve tvaru 0 + 1, pak přidáme ε počátečńı stav, který jde do automat̊u 0 a 1 a
následně jsou oba svedeny do jednoho koncového stavu. (Rozdvojeńı a sloučeńı).

4. Pokud je RegEx ve tvaru 1∗, pak vytvář́ıme cyklus.

CFG na Chomskeho normálńı tvar

1. Odstrańıme ε-pravidla, jednotková pravidla (A→ B) a zbytečné symboly (nedosažitelné).

2. Pro každý terminál a vytvoř́ıme nový neterminál A a přidáme pravidlo A→ a.

3. Převedeme pravidla do tvaru A→ BC nebo A→ a.

CFG na PDA

Mějme CFG gramatiku G = (V, T, P, S), a konstruujeme PDA P = ({q}, T, V ∪ T, δ, q, S).

1. Počátečńı symbol gramatiky vlož́ıme na zásobńık.

2. Pro neterminály A ∈ V : δ(q, ε, A) = {(q, β) | A→ β je pravidlo G}.

3. Pro každý terminál a ∈ T : δ(q, a, a) = {(q, ε)}. (pop)

4. Přij́ımáńı prob́ıhá prázdným zásobńıkem.
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2.2 Algoritmy a datové struktury

2.2.1 Časová složitost algoritmu.

Definice (Časová složitost). Necht’ t(x) je doba běhu pro vstup x. Potom časová složitost výpočtu:

T (n) := max{t(x) | x vstup velikosti n}.

Definice (Prostorová složitost). Necht’ s(x) :=“max adresa − min adresa +1” je prostor běhu pro
vstup x. Potom prostorová složitost výpočtu je

S(n) := max{s(x) | x vstup velikosti n}.

Asymptotická notace.

Mějme funkce f, g : N→ R.

Definice (Horńı odhad). f(n) ∈ O(g(n)) ⇐⇒ (∃c > 0)(∃n0∀n > n0) : 0 ≤ f(n) ≤ c · g(n).

Definice (Dolńı odhad). f(n) ∈ Ω(g(n)) ⇐⇒ (∃c > 0)(∃n0∀n > n0) : 0 ≤ c · g(n) ≤ f(n).

Definice (Těsný odhad). f(n) ∈ Θ(g(n)) ⇐⇒ f(n) ∈ O(g(n)) ∧ f(n) ∈ Ω(g(n)).

2.2.2 Tř́ıdy složitosti

Definice (Tř́ıda P ). Problém L ∈ P ⇐⇒ existuje algoritus A a polynom f , že pro každý vstup x,
algoritmus A doběhne v čase nejvýše f(|x|) a vrát́ı výsledek A(x) = L(x).

Definice (Tř́ıda NP ). Problém L ∈ NP ⇐⇒ ∃K ∈ P problém a polynom g, že ∀x : L(x) = 1
právě tehdy, když pro nějaký řetězec y délky nejvýše g(|x|) plat́ı K(x, y) = 1.
(“K řeš́ı L, ale krom vstupu x má nápovědu y. Pokud L(x) = 1, pak muśı existovat nápověda y,
kterou K schváĺı.”)

Definice (NP -těžkost). Problém je NP-těžký, pokud na něj lze převést libovolný problém v NP.

Definice (NP -úplnost). Problém je NP-úplný, pokud je NP-těžký a je v NP.

Definice (Převod). Plat́ı, že A→ B ⇐⇒ ∃f : {0, 1}∗ → {0, 1}∗, že ∀x : A(x) = B(f(x)) a f běž́ı
v polytime.

Př́ıklady převod̊u:

• SAT → 3-SAT: přidáme literály: (α∨ β)→ (α∨ x)∧ (¬x∨ β).

• 3-SAT → Nezávislá množina: klauzule tvoř́ı trojúhelńıky.
Spojujeme x s ¬x. Viz obrázek.

• 3-SAT → 3,3-SAT: proměnné rozděĺıme a zař́ıd́ıme stejné
ohodnoceńı kolečkem implikaćı.

• 3,3-SAT → 3D párováńı
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2.2.3 Metoda rozděl a panuj

Rekurzivně děĺıme na podproblémy – problém velikosti n na dva n
2
apod.

Věta (Master). Rekurentńı rovnice T (n) = a · T (n
b
) +Θ(nc), T (1) = 1 má pro konstatny a ≥ 1, b >

1, c ≥ 0 řešeńı:

(1) pokud a
bc

= 1, pak T (n) = Θ(nc log n),

(2) pokud a
bc
< 1, pak T (n) = Θ(nc),

(3) pokud a
bc
> 1, pak T (n) = Θ(nlogb a).

Neboli, problém rozlož́ıme na a podproblém̊u velikosti n
b
. Výsledky slož́ıme v Θ(nc).

Merge sort.

Na vstupu n prvk̊u, rozděĺıme na dvě části ⌊n
2
⌋, ⌈n

2
⌉, na konci slijeme. Použijeme Master theorem:

Pro T (1) = 1, triviálně. Pro T (n) problém děĺıme na a = 2 podproblémy velikosti n
2=b

. Slijeme
nakonec dohromady v Θ(n), c = 1. Celkem tedy T (n) = 2T (n

2
) + n, což vyhovuje př́ıpadu (1) a

máme:
T (n) = Θ(n log n).

Algorithm 5: MergeSort(a1, . . . , an)

1 if n = 1 then return a1 = b1
2 x1, . . . , x⌊n/2⌋ ← MergeSort(a1, . . . , a⌊n/2⌋)
3 y1, . . . , y⌈n/2⌉ ← MergeSort(a⌊n/2⌋+1, . . . , an)
4 b1, . . . , bn ← Merge(x1, . . . , x⌊n/2⌋, y1, . . . , y⌈n/2⌉)

Algorithm 6: Merge(x1, . . . , xm, y1, . . . , yn)

1 i← 1, j ← 1, k ← 1 ▷ zbývá sĺıt x1, . . . , xm, y1, . . . , yn, výsledek zk, . . . , zm+n

2 while i ≤ m ∧ j ≤ n do
3 if xi ≤ yj then
4 přesuneme prvek z x: zk ← xi, i← i+ 1
5 end
6 else
7 přesuneme prvek z y: zk ← yj, j ← j + 1
8 end
9 k ← k + 1

10 end
11 if i ≤ m, zkoṕırujeme zbylá x: zk, . . . , zm+n ← xi, . . . , xm
12 if j ≤ n, zkoṕırujeme zbylá y: zk, . . . , zm+n ← yj, . . . , yn
13 return z1, . . . , zm+n

Karacubovo násobeńı.

Máme dvě č́ısla X, Y a chceme jejich součin X · Y . Rozděláme horńıch n
2
a dolńıch n

2
cifer.

Plat́ı

{
X = A · 10n/2 +B

Y = C · 10n/2 +D
, pro č́ısla A,B,C,D. Součin pak můžeme spoč́ıtat jako:

XY = AC · 10n + (AD +BC) · 10n/2 +BD.

Což je ovšem stále asymptoticky n2. Můžeme to ale ještě vylepšit – o jeden součin méně – na:

XY = AC · 10n + ((A+B)(C +D)− AC −BD) · 10n/2 +BD.

Máme tak T (n) = 3T (n
2
) + Θ(n), což vyhovuje př́ıpadu (3) a dostáváme tak Θ(nlog2 3) ≈ n1.53.
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2.2.4 Binarńı vyhledávaćı stromy

Definice (Vyhledáváćı strom). Pro vyhledávaćı strom plat́ı, že kĺıč v každém vrcholu je věťśı než
všechny kĺıče v levém podstromu a je menš́ı než všechny kĺıče v pravém podstromu.

Definice (AVL). Rozd́ıl v hloubkách strom̊u je maximálně jedna. (vyvážený strom)
Hloubka je Θ(log n).

Definice (Binárńı strom). Strom maj́ıćı nejvýše dva syny.

Základńı operace.

Notace: v ≡ kořen/vrchol, l(v) ≡ levý syn v, r(v) ≡ pravý syn v, k(v) ≡ kĺıč v.

Show – vyṕı̌se všechny prvky

1. if v = ∅ then return

2. Show(l(v))

3. Vypǐs k(v)

4. Show(r(v))

Find – porovná k(v) s předem hledaným kĺıčem x

1. if v = ∅ then return ∅
2. if x = k(v) then return v

3. if x < k(v) then return Find(l(v), x)

4. if x > k(v) then return Find(r(v), x)

Min – minimum z prvk̊u

1. if l(v) = ∅ then return v

2. return Min(l(v))

Insert – vkládáme prvek do stromu

1. if v = ∅ then vytvoř́ıme nový v s kĺıčem x

2. if x = k(v) then pass ▷ x je jǐz ve stromu

3. if x < k(v) then l(v)← Insert(l(v), x)

4. if x > k(v) then r(v)← Insert(r(v), x)

Delete – odstrańıme prvek ze stromu

1. if l(v) = r(v) = ∅ then return ∅ ▷ list

2. if l(v) = ∅ then return r(v) ▷ existuje pravý syn

3. if r(v) = ∅ then return l(v) ▷ existuje levý syn

4. s← Min(r(v)) ▷ nahrad́ıme následńıka

5. k(v)← s

6. r(v)← Delete(r(v), s)

2.2.5 Tř́ıděńı

BubbleSort.

Primitivńı tř́ıd́ıćı algoritmus. Časová složitost je O(n2) v nejhorš́ım i pr̊uměrném př́ıpadě.

Algorithm 7: BubbleSort (A = [a1, . . . , an])

1 for i← 1 to n− 1 do
2 for j ← 1 to n− i do
3 if A[j] > A[j + 1] then
4 swap(A[j], A[j + 1])
5 end

6 end

7 end
8 return A
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InsertionSort.

Je efektivńı pro malá pole a téměř seřazená data. Časová složitost je ale stále O(n2).

Algorithm 8: InsertionSort (A = [a1, . . . , an])

1 for i← 2 to n do
2 key ← A[i]
3 j ← i− 1
4 while j > 0 and A[j] > key do
5 A[j + 1]← A[j]
6 j ← j − 1

7 end
8 A[j + 1]← key

9 end
10 return A

Poznámka. Insertionsort je vhodný pro malá pole (typicky n < 20) a dosahuje lineárńı časové
složitosti pro téměř seřazená data.

QuickSort.

Typický př́ıklad algoritmu rozděl a panuj. Pr̊uměrná časová složitost: O(n log n), v př́ıpadě špatného
výběru pivota ale můžeme dosáhnout O(n2). Pamět’ová složitost je O(log n) (rekurzivńı zásobńık).

Algorithm 9: QuickSort (X = [x1, . . . , xn])

1 if n ≤ 1 then return Y = X
2 p← vyber pivota z X
3 L← prvky X, které < p
4 P ← prvky X, které > p
5 S ← prvky X, které = p
6 Rekurzivně tř́ıd́ıme části
7 L← Quicksort(L)
8 P ← Quicksort(P )
9 return Sleṕıme Y = (L, S, P )

Věta. Quicksort je randomizovaný algoritmus, jehož očekávaná časová složitost je O(n log n) při
volbě pivota náhodným výběrem.

Věta (O složitosti tř́ıděńı). Každý deterministický algoritmus v porovnávaćım modelu, který tř́ıd́ı
n-prvkovou posloupnost, použije v nejhorš́ım př́ıpadě Ω(n log n) porovnáńı.

2.2.6 Grafové algoritmy

Prohledáváńı do hloubky (BFS) a do š́ı̌rky (DFS).

Na vstupu máme grafG = (V,E) s počátečńım vrcholem v0 ∈ V . Během pr̊uchodu grafem rozlǐsujeme
tři možné stavy vrchol̊u; nenalezené – ještě jsme je nepotkali, otevřené – potkali, ale neprozkoumali
hrany, které z nich vedou, a uzavřené – už jsme prozkoumali i hrany, nadále se nezabýváme.

0

1 2 3

4 5 6 7

0

1 2 3

4 5 6 7

BFS DFSPořadí:
Pořadí:
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Algorithm 10: BFS(G, v0)

1 for každý v ∈ V do
2 stav(v)← nenalezený
3 end
4 stav(v0)← otevřený
5 Q← v0 ▷ fronta
6 while Q ̸= ∅ do
7 v ← Q.pop()
8 for každý w následńık vrcholu v do
9 if stav(w) = nenalezený then

10 stav(w)← otevřený
11 Q.push(w)

12 end

13 end
14 stav(v)← uzavřený

15 end

Pro DFS ještě definujeme pomocná pole in(v), out(v), do kterých zaznamenáme, v jakém pořad́ı
jsme vrcholy otev́ırali a zav́ırali.

Algorithm 11: DFS(G)

1 for každý v ∈ V do
2 stav(v)← nenalezený
3 in(v), out(v)← nedefinováno

4 end
5 T ← 0 ▷ globálńı poč́ıtadlo krok̊u
6 DFS2(v0)

Algorithm 12: DFS2(v)

1 stav(v)← otevřený
2 T ← T + 1, in(v)← T
3 for každý následńık w vrcholu v do
4 if stav(w) =nenalezený then
5 DFS2(w)
6 end

7 end
8 stav(v)← uzavřený
9 T ← T + 1, out(v)← T

Poznámka (Složitost BFS a DFS). Oba algoritmy pracuj́ı v čase O(n+m) a prostoru Θ(n+m).

Poznámka. Algoritmus DFS detekuje cykly a klasifikuje hrany

Topologické tř́ıděńı.

Acyklické orientované grafy (DAG) lze uspořádat, aby vedly hrany po směru uspořádáńı.

Definice (Topologické uspořádáńı). Lineárńı uspořádáńı ≺ na vrcholech grafu je topologické, pokud
∀{x, y} ∈ E : x ≺ y.

Věta. Orientovaný graf má topologické uspořádáńı ⇐⇒ je DAG.

Věta. DFS opoušt́ı vrcholy v pořad́ı opařné topologickému.
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Nejkratš́ı cesty v ohodnocených grafech.

Pro hledáńı nejkratš́ı cesty v neohodnoceném grafu můžeme použ́ıt BFS/DFS, ale pro ohodnocené
grafy otřebujeme větš́ı kanón – Dijsktr̊uv/Bellman-Ford̊uv algoritmus. Dijkstr̊uv algoritmus funguje
pouze pro nezáporné hrany, Bellman-Ford i pro záporné.

Algorithm 13: Dijkstra (G, v0)

1 for každý v ∈ V do
2 stav(v)← nenalezený
3 h(v)← +∞ ▷ pole vzdálenost́ı/ ohodnoceńı
4 P (v)← nedefinováno ▷ pole předch̊udc̊u

5 end
6 stav(v0)← otevřený
7 h(v0)← 0
8 while ∃v otevřený do
9 v ← vrchol s nejmenš́ı hodnotou h(v)

10 for každý následńık w vrcholu v do
11 if h(w) > h(v) + l(v, w) then
12 h(w)← h(v) + l(v, w) ▷ l(v, w) znač́ı délku cesty mezi v a w
13 stav(w)← otevřený
14 P (w)← v

15 end

16 end
17 stav(v)← uzavřený

18 end

Poznámka (Složitost Dijkstrova algoritmu). Časová složitost je O(n2) nebo O(m+ n log n) s prio-
ritńı frontou.

Obrázek 2.1 Vždy vybereme vrchol s nejmenš́ı cenou, který ještě nebyl vybraný.

Algoritmus (Bellman-Ford). Čas O(mn).

• Hledáńı nejkratš́ı cesty v ohodnoceném orientovaném grafu včetně záporných hran.

• Dı́vám se na hrany a aktualizuji vrcholy.

• Fronta podle pořad́ı otevřených vrchol̊u ⇝ můžu otev́ırat už jednou zavřené vrcholy.

Poznámka. Dijkstra pracuje pouze s nezáporným ohodnoceńım, Bellman-Ford i se záporným.

Minimálńı kostry grafu.

Definice (Váha). Váha je funkce w : E → R. Váha w(H) podgrafu H ⊆ G je součet vah jeho hran.

Definice (Minimálńı kostra). Kostra grafu je minimálńı, pokud má mezi kostrami nejmenš́ı váhu.
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Algorithm 14: Jarńık (G, r) — G je souvislý s unikátńımi vahami. Vrát́ı minimálńı kostru.

1 v0 ← libovolný vrchol grafu
2 T ← strom obsahuj́ıćı v0 a žádné hrany
3 while ∃{u, v} ∈ E : u ∈ VT ∧ v /∈ VT do
4 hranu e = {u, v} s nejmenš́ı takovou vahou přidáme do T
5 end
6 return T = (VT , ET )

(a) Začneme v , máme tři možnosti:   s vahami  .
Vybereme libovolnou nejlehčí, například  do .

(b) Nyní se můžeme vydat do  s vahami .
Vybereme nejlehčí, tedy .

(c) Můžeme se vydat do . Do  už jsme se dostali levněji než za .
Máme váhy , vybereme libovolnou nejlehčí za .

(d) Už nám zbývá pouze vrchol . Máme na výběr mezi váhami  a .
Vybereme nejlehčí  a dostaneme výslednou minimální kostru.

Poznámka (Složitost Jarńıkova algoritmu). V každém kroku Jarńık̊uv algoritmus přidá nejlevněǰśı
hranu spojuj́ıćı strom s novým vrcholem. Časová složitost je O(|V |2) nebo O(|E| + |V | log |V |) s
prioritńı frontou

Algorithm 15: Bor̊uvka (G)

1 T ← (V, ∅) ▷ triviálńı les
2 while T neńı souvislý do
3 Rozklad T na komponenty souvislosti T1, . . . , Tk
4 Pro každý strom Ti najdeme nejlehč́ı hranu ei mezi Ti a zbytkem grafu
5 T ← T ∪ {e1, . . . , ek}
6 end
7 return T

(B) Pro každý vrchol najdeme souseda s nejmenší vahou.

, , , , 

(c) Propojíme nejlevnější hranou vzniklé dvě komponenty.(a) Každý vrchol je komponenta souvislosti.

Poznámka (Složitost Bor̊uvkova algoritmu). Bor̊uvk̊uv algoritmus v každé iteraci přidá nejlevněǰśı
hranu z každé komponenty. Zároveň pracuje i s nesouvislými grafy. Časová složitost je O(|E| log |V |).
Vhodný pro ř́ıdké grafy.

Poznámka (Jarńık VS Bor̊uvka). Jarńık přidává v každém kroku jeden vrchol a pracuje s jedńım
stromem (souvislý graf). Bor̊uvka naproti tomu přidává v́ıce hran najednou a pracuje s v́ıce kompo-
nentami (nesouvislý graf)
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Toky v śıt́ıch.

Definice jednotlivých pojmů viz kapitola Teorie graf̊u (1.4.9).

Algorithm 16: Ford-Fulkerson – Princip hledáńı maximálńıho toku v śıti.

1 f ← nulový tok
2 while existuje zlepšuj́ıćı cesta P ze z → s do
3 ε← mine∈E(P ) r(e). ▷ Rezerva r(uv) = c(uv)− f(uv) + f(vu)
4 Zvětš́ıme tok f podél P o ε. ▷ ∀e po směru zvěťśıme a proti směru zmenš́ıme f(e)

5 end
6 return tok f .
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2.3 Programovaćı jazyky (Java)

2.3.1 Základy

Interface specifikuje kontrakty tř́ıdy – v́ıcenásobná dědičnost.

Abstrakce odděleńı interface od implementace.

Polymorfismus schopnost jedné reference odkazovat na objekty r̊uzných typ̊u.

Dědičnost opětovné použit́ı existuj́ıćı tř́ıdy – “extends”.

implements implementuje interface – tř́ıda bude mı́t definované metody.

static člen tř́ıdy neńı vázán na instanci/ objekt, ale na celou tř́ıdu.

protected př́ıstu v rámci tř́ıdy a všech podtř́ıd, ale mimo tř́ıdu neviditelná.

super() voláńı konstruktora předka (rodiče) – když děd́ı tř́ıda.

1 pub l i c i n t e r f a c e Animal {
2 void makeSound ( ) ; // vere jna ab s t r ak tn i metoda
3 . . .
4 }
5
6 pub l i c c l a s s Pet {
7 protec t ed St r ing name ; // pr i s tupna v ramci t r i d y a v podtr idach
8 pub l i c void g r e e t ( ) {
9 System . out . p r i n t l n ( ” He l lo  ” + name) ;

10 }
11 }
12
13 pub l i c c l a s s Dog extends Pet implements Animal { // dedeni a implementace rozhran i
14 pub l i c Dog( St r ing name) {
15 super (name) ; // vo l an i predka , p r i s tup k chranenemu at r ibutu z nadtr idy
16 }
17
18 @Override
19 pub l i c void makeSound ( ) { // implementace metody z i n t e r f a c e
20 System . out . p r i n t l n ( ”Woof” ) ;
21 }
22
23 @Override
24 pub l i c void g r e e t ( ) { // prepsan i metody z predka / nadtr idy ( polymorf ismus )
25 System . out . p r i n t l n ( ”Dog  ” + name + ”  says :  Woof ! ” ) ;
26 }
27 }
28
29 pub l i c c l a s s Main {
30 pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {
31 Animal myDog = new Dog( ”Bob” ) ; // polymorf ismus : p o u z i t i r o zhran i jako typu
32 myDog . makeSound ( ) ; // vo l an i metody z i n t e r f a c e
33
34 Pet myPet = ( Pet ) myDog ; // pretypovani na nadtr idu
35 myPet . g r e e t ( ) ; // vo l an i prepsane metody z predka
36 }
37 }
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2.3.2 Vlákna

Použ́ıvaj́ı se primárně dva zp̊usoby – Thread a Runnable.

Thread.

1 Thread t = new MyThread ( ) ; // vytvorime i n s t a n c i t r i d y MyThread
2 t . s t a r t ( ) ;
3
4 pub l i c c l a s s MyThread extends Thread { // t r i d a MyThread dedi od t r i d y Thread
5 @Override
6 pub l i c void run ( ) { // prepisu jeme metodu run
7 System . out . p r i n t l n ( ”Thread  i s  running ” ) ;
8 }
9 }

Runnable.

1 Runnable r = ( ) −> System . out . p r i n t l n ( ”Runnable  i s  running ” ) ;
2 Thread t = new Thread ( r ) ; // vytvorime i n s t a n c i Thread a predame j i i n s t a n c i Runnable
3 t . s t a r t ( ) ; // spust ime vlakno

Synchronizace.

Snaha zajistit, aby “něco” prob́ıhalo pouze v jednom vlákně najednou.

1 pub l i c void increment ( ) {
2 synchronized ( t h i s ) { // k t e to c a s t i kodu se dostane jen jeden thread najednou
3 t h i s . count++;
4 }
5 }
6
7 // nebo
8
9 pub l i c synchronized void increment ( ) { // synchron izace c e l e metody

10 t h i s . count++;
11 }

Terminologie vláken:

• volatile ≡ viditelnost hodnoty mezi vlákny.

• wait() ≡ vlákno se usṕı a čeká na probuzeńı.

• notify() ≡ probud́ı čekaj́ıćı vlákno.

• notifyAll() ≡ probud́ı všechna čekaj́ıćı vlákna.

• AtomicInteger ≡ synchronized na steroidech (rychlé, bez blokace).

1 p r i v a t e v o l a t i l e boolean running = true ;
2 pub l i c void stop ( ) {
3 running = f a l s e ; // bez synchronized , a l e s v o l a t i l e
4 }
5
6 p r i v a t e AtomicInteger count = new AtomicInteger (0 ) ;
7 pub l i c void increment ( ) {
8 count . incrementAndGet ( ) ; // atomicka operace
9 }
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2.3.3 Lambda funkce

1 // bez lambda funkce :
2 isEven ( x ) {
3 return x % 2 == 0 ;
4 }
5
6 // lambda funkce :
7 isEven = x % 2 == 0 ;
8
9

10 // bez lambda funkce :
11 f o r ( S t r ing name : names ) {
12 System . out . p r i n t l n (name) ;
13 }
14
15 // lambda funkce :
16 names . forEach (name −> System . out . p r i n t l n (name) ) ;

2.3.4 Race condition a Deadlock

Race condition≡ dvě nebo v́ıce vláken přistupuje k dat̊um současně a výsledek záviśı na načasováńı
(přeṕı̌se se v běhu).

Např́ıklad : increment(){count++;} – v́ıce vláken najednou upravuje count.
Řešeńı: použ́ıt synchronized nebo AtomicInteger.

Deadlock ≡ dvě a v́ıce vláken čekańı na zámky, které se vzájemně drž́ı.
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2.4 Architektura poč́ıtač̊u a operačńıch systémů

BigEndian (MSB) 0x1A2B ⇝ 1A|2B

LittleEndian (LSB) 0x1A2B ⇝ 2B|1A

Operace:

OR . . . “|” . . . alespoň 1

AND . . . “&” . . . oboje

XOR . . . “ˆ” . . . právě 1

SHL/SHR . . . “<<” . . . posun k MSB doleva (resp. >> doprava)

NOT . . . “∼” . . . opak

Reprezentace záporných č́ısel.

• Stejně jako celá, ale 1. bit znaménka. (v praxi se nepouž́ıvá)

• Jedničkový doplněk: u záporných se prohod́ı 1 a 0. Funguje porovnáváńı i sč́ıtáńı, akorát
máme dvě nuly (0+, 0−).

• Dvojkový doplněk: MSB je znaménkový bit. Řeš́ı dvě nuly. Negace je doplněk bit̊u +1.

Reprezentace desetinných č́ısel.

Za pomoci znaménka, exponentu a mantisy.

1
MSB

sign

. . . . . . . . . . . . 

8b exponent

LSB

23b mantisa

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Př́ıklad: Reprezentace č́ısla −234.75

• Č́ıslo je záporné, proto sign bude 1.

• Převedeme 23410 = 111010102.

• Převedeme 0.7510 = .112 na dvojkovou soustavu:

0.75 · 2 = 1.5 ⇝ 1+ 0.5

0.5 · 2 = 1 ⇝ 1+ 0

0 · 2 = 0 stop

• Výsledek je tedy: 11101010.112

Sd́ıleńı procesoru.

• Proces: nezávislá běhová entita v OS. Má vlastńı memory space.

• Thread: v rámci procesu, sd́ıĺı procesovou pamět’ a “daľśı věci”.
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Virtuálńı pamět’.

• Stránkováńı: Virtual Address Space je rozdělena do stejných část́ı (stránek) velikosti 2n.
Fyzická Address Space je také rozdělena na stejné velikosti (frame). Plat́ı “1 page = 1 frame”.
Také “1 level page = 32 bit”.

Race condition v́ıce vláken najednou přistupuje ke stejným dat̊um.
Pomůže protected nebo scheduling.

Synchronizace.

• Active: instrukce spuštěné během čekáńı na př́ıstup.

• Passive: část procesu je zablokovaná, dokud neńı povolen př́ıstup.

• SpinLock: active za použit́ı TSL/CAS. Ideálńı pro krátké čekáńı – malá latence.

• Semaphore: protected counter a fronta na čekáńı (threads). Kontroluje př́ıstup ke zdroji mezi
v́ıce vlákny. Př́ıkazy UP (++counter), DOWN (–counter).

• Mutex: mutual exclusion. V podstatě semafor s counterem 1 – konrola, že jen jeden thread
přistupuje v čase. Př́ıkazy LOCK, UNLOCK.

Deadlock Vzájemné čekáńı, které vede k zacykleńı.
Nutné podmı́nky k zacykleńı:

1. Mutex – alespoň jeden je exclusive.

2. Hold & wait – jeden drž́ı žádost pro ten druhý.

3. No preemption – resources nemůžou být znovu přijaty bez újmy.

4. Circular wait.

1 mutex m1, m2;
2
3 // Thread1 // Thread2
4 m1. l ock ( ) ; m2. l o ck ( ) ;
5 m2. l ock ( ) ; m1. l o ck ( ) ;
6 m2. unlock ( ) ; m1. unlock ( ) ;
7 m1. unlock ( ) ; m2. unlock ( ) ;
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Obecná informatika

Z následuj́ıćıch 4 témat budou vybrána 4.

3.1 Kombinatorika

3.1.1 Vytvořuj́ıćı funkce

Definice (Vytvořuj́ıćı funkce). Vytvořuj́ıćı funkce posloupnosti a0, a1, . . . = (an)
∞
n=0 ∈ R je funkce

proměnné x definována jako součet f(x) =
∞∑
n=0

anx
n.

Gen. funkce Posloupnost Vzorec
∞∑
n=0

xn (1, 1, 1, 1, . . .)
1

1− x
∞∑
n=0

anxn (1, a, a2, a3, . . .)
1

1− ax
∞∑
n=0

(x2)n (1, 0, 1, 0, . . .)
1

1− x2
∞∑
n=0

(−1)nxn (1,−1, 1,−1, . . .) 1

1 + x
∞∑
n=0

nxn (0, 1, 2, 3, 4, . . .)
x

(1− x)2

Tabulka 3.2 Typické vytvořuj́ıćı funkce a jejich vlastnosti.

Př́ıklad (Použit́ı vytvořuj́ıćıch funkćı k řešeńı lineárńıch rekurenćı). V několika kroćıch:

• Na vstupu máme rekurentńı rovnici pro an.

• Rovnici vynásob́ıme xn. (dostaneme tak anx
n)

• Přeṕı̌seme jako sumu, tedy
∞∑
n=0

anx
n.

• Sumy si pro zjednodušeńı rozeṕı̌seme: Si = a22 + a3x
3 + . . . = f(x)− a1x− a0, apod.

• Sumy dáme opět do rovnosti (např. S1 = S2 − S3) a vyjádř́ıme funkci f(x).

• Pokud je to potřeba, rozlož́ıme f(x) na parciálńı zlomky.

• Rozeṕı̌seme f(x) jako mocninnou řadu a źıskáme explicitńı vzorec pro an.
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Věta (Zobecněná binomická věta). Pro d ∈ R plat́ı (1 + x)d =
∞∑
n=0

(
d

n

)
xn, pro |x| < 1.

Definice (Catalanova č́ısla). Catalanova č́ısla (Cn)
∞
n=0 udáváj́ı počet binárńıch strom̊u s n vnitřńımi

vrcholy. Plat́ı
1

n+ 1

(
2n

n

)
, neboli počet korektńıho uzávorkovańı.

Př́ıklad (Odvozeńı Catalanova č́ısla). Mějme funkci:

C(x) :=
∞∑
n=0

Cnx
n, C0 = 1, a Cn = C0Cn−1 + C1Cn−2 + ...+ Cn−1C0 =

n−1∑
i=0

CiCn−i−1

∞∑
n=1

Cnx
n =

∞∑
n=1

(
n−1∑
i=0

CiCn−i−1

)
xn =⇒

C(x)− 1 = x
∞∑
n=0

(
n∑

i=0

CiCn−i

)
xn = x · C2(x)

Dostáváme tak: C(x) = 1 + xC2(x), což si m̊užeme zapsat jako kvadratickou rovnici:

xC2(x)− C(x) + 1 =⇒

{
1+

√
1−4x
2x

= C+(x) neńı řešeńım - diverguje
1−

√
1−4x
2x

= C−(x) konverguje k 1 při x→ 0

Poč́ıtáme tak dál a vyjádř́ıme vzorec pro n-tý člen:

Cn := [xn]
1−
√
1− 4x

2x
= [xn+1]

1−
√
1− 4x

2
= −1

2
[xn+1]

√
1− 4x =

= −1

2
(−4)n+1[xn+1](1− x)

1
2

ZBV
= −1

2
(−4)n+1[xn+1]

(
1
2

n+ 1

)
=

= (−1)n22n+1 ·
1
2
(1
2
− 1)(1

2
− 2) · ... · (1

2
− n)

(n+ 1)!
= (−1)n22n+1 ·

1
2
(−1

2
)(−3

2
) · ... · (−2n−1

2
)

(n+ 1)!
=

= 2n · 1 · 3 · ... · (2n− 1)

(n+ 1)!
=

1 · 3 · ... · (2n− 1)

(n+ 1)n!
· 2 · 4 · ... · 2n

n!
=

1

n+ 1

(2n)!

(n!)2
=

1

n+ 1

(
2n

n

)
.

3.1.2 Odhady faktoriálu a kombinačńıch č́ısel

Věta (Odhad faktoriálu). Plat́ı odhad: e
(n
e

)n
≤ n! ≤ en

(n
e

)n
.

D̊ukaz. Rozeṕı̌seme n! za pomoci vlastnost́ı logaritmů jako součet: ln(n!) =
n∑

i=1

ln(i) =
n∑

i=2

ln(i).

• Dolńı odhad: Budeme sč́ıtat “schody” nad křivkou:

ln(n!) ≥
∫ n

1

ln(x) dx = [x ln(x)− x]n1 = n ln(n)− n+ 1

n! ≥ en lnn−n+1 = e
(n
e

)n
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• Horńı odhad: Podobně jako dolńı odhad, jen budeme sč́ıtat “schody” pod křivkou:

n−1∑
i=1

ln(i) = ln((n− 1)!) ≤ n ln(n)− n+ 1

Ve výsledku dostaneme: n lnn− n+ 1 ≥ ln((n− 1)!)

en lnn−n+1 ≥ (n− 1)!

n · en lnn−n+1 ≥ n!

n · e
( e
n

)n
≥ n!

Věta (Odhad kombinačńıho č́ısla). Pro 1 ≤ k ≤ n plat́ı:
(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

D̊ukaz. Budeme využ́ıvat vztahu

(
n

k

)
=

n!

k!(n− k)!

• Dolńı odhad:(
n

k

)
=
n(n− 1)(n− 2) · . . . · (n− k + 1)

k(k − 1) · . . . · 1
=
n

k
· n− 1

k − 1
· n− 2

k − 2
· . . . · n− k + 1

1
≥
(n
k

)k
Nerovnost plat́ı, protože n

k
je nejmenš́ı a zbytek je rostoućı posloupnost.

• Horńı odhad: (
n

k

)
=
n(n− 1)(n− 2) · . . . · (n− k + 1)

k!
≤ nk(

k
e

)k =
(e · n

k

)k

Nerovnost plat́ı, protože

(
k

e

)k

je dolńı odhad k!.

Věta (Odhad binomického č́ısla
(
2m
m

)
). Plat́ı odhad: ∀m ∈ N0 :

4m

2
√
m
≤
(
2m

m

)
≤ 4m√

2m
.

D̊ukaz. Definujme P :=

(
2m
m

)
22m

a dokažme, že
1

2
√
m
≤ P ≤ 1√

2m
.

P :=

(
2m
m

)
22m

=
(2m)!
m!·m!

2 · 2 · ... · 2︸ ︷︷ ︸
2m

=
1 · 2 · 3 · ... · 2m

(2 · 4 · ... · 2m)(2 · 4 · ... · 2m)
=

1 · 3 · 5 · ... · (2m− 1)

2 · 4 · 6 · ... · 2m

• Horńı odhad:

P 2 =
1 · 1 · 3 · 3 · 5 · 5 · ... · (2m− 1) · (2m− 1)

2 · 2 · 4 · 4 · 6 · 6 · ... · (2m) · (2m)
=

= 1 · 1 · 3
2 · 2

· 3 · 5
4 · 4

· 5 · 7
6 · 6

· ... · (2m− 3) · (2m− 1)

(2m− 2) · (2m− 2)
· 2m− 1

(2m) · (2m)
≤

≤ 2m− 1

(2m) · (2m)
<

1

2m
, a proto tedy P ≤ 1√

2m
.
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• Dolńı odhad:

P 2 =
1 · 1 · 3 · 3 · 5 · 5 · ... · (2m− 1) · (2m− 1)

2 · 2 · 4 · 4 · 6 · 6 · ... · (2m) · (2m)
=

=
1

2
· 3 · 3
2 · 4

· 5 · 5
4 · 6

· ... · (2m− 1) · (2m− 1)

(2m− 2) · (2m)
· 1

2m
≥

≥ 1

4m
, a proto tedy P 2 ≥ 1

4m
a P ≥ 1

2
√
m
.

3.1.3 Ramseyovy věty

Definice (Klika). Klika v grafu G = (V,E) je množina vrchol̊u, t.̌z. každé dva jsou spojené hranou.
Nejvěťśı kliku G znač́ıme ω(G).

Definice (Nezávislá množina). Nezávislá množina v grafu G = (V,E) je množina vrchol̊u, t.̌z. žádné
dva nejsou spojené hranou. Nejvěťśı nezávislou množinu G znač́ıme α(G).

Definice (Ramseyovo č́ıslo).

R(k, l) = min{N ∈ N | každý graf G na alespoň N vrcholech obsahuje ω(G) ≥ k nebo α(G) ≥ l}.

Věta (Ramseyova grafová dvoubarevná). Necht’ k, l ∈ N, potom existuje N ∈ N takové, že ve všech
grafech s alespoň N vrcholy, plat́ı ω(G) ≥ k nebo α(G) ≥ l.

Věta (Ramseyova – nekonečná pro dvojice). Pro každé t ∈ N (počet barev) a obarveńı c :
(N
2

)
→

{1, 2, . . . , t} existuje nekonečná množina A ⊆ N taková, že pro všechny dvojice {a1, a2} ∈
(
A
2

)
má

c({a1, a2}) stejnou hodnotu.

D̊ukaz (nekonečnou indukćı). Postupným rozeb́ıráńım množiny N dojdeme až k hledané množině A.
Indukci začneme t́ım, že označ́ıme A1 = N a nastav́ıme i = 1.

V množině Ai zafixujeme libovolný vrchol vi, zbylé vrcholy v ∈ Ai \ {vi} rozděĺıme do množin
B1

i , B
2
i , . . . , B

t
i podle barvy c({vi, v}) hrany, která je spojuje s vi. Vı́me, že množina Ai je nekonečná,

proto alespoň jedna z uvedených stejnobarevných podmnožin Bj
i muśı být také nekonečná. Tuto

množinu označ́ıme za Ai+1 a pokračujeme v indukci.
Nemáme zaručeno, že pokaždé vybereme podmnožinu stejné barvy, podle které jsme vybrali

předchoźı množinu. Protože je ale indukce nekonečná, alespoň jednu barvu muśıme zvolit nekoneč-
někrát. Vrcholy vi, které odpov́ıdaj́ı této barvě, tvoř́ı hledanou množinu A.

Věta (Ramseyova – nekonečná pro p-tice). Pro každé t ∈ N (počet barev), p ∈ N a obarveńı c :
(N
p

)
→

{1, 2, . . . , t} existuje nekonečná množina A ⊆ N, taková že pro všechny p-tice {a1, . . . , ap} ∈
(
A
p

)
má

c({a1, . . . , ap}) stejnou hodnotu.

Věta (Ramseyova – konečná pro p-tice). Pro každé t ∈ N (počet barev), p ∈ N, existuje N ∈ N t.̌z.
∀n ≥ N a obarveńı c :

({1,...,n}
p

)
→ {1, 2, . . . , t} existuje konečná množina A ⊆ {1, . . . , n} velikosti k,

taková, že pro všechny p-tice {a1, . . . , ap} ∈
(
A
p

)
má c({a1, . . . , ap}) stejnou hodnotu.

Odhady Ramseyova č́ısla.

Věta. Necht’ R(k, 1) = R(1, l) = 1. Pak plat́ı R(k, l) ≤ R(k − 1, l) +R(k, l − 1)− 1 a z toho:

R(k, l) ≤
(
k + l − 2

k − 1

)
=

(
k + l − 2

l − 1

)
.

Věta. Necht’
(
n
k

)
·
(
1
2

)(k2)−1
< 1. Potom R(k, k) > n.

Důsledek. Pro ∀k ≥ 3 : R(k, k) > 2k/2.
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3.1.4 Extremálńı kombinatorika

Extrémálńı kombinatorika studujemaximálńı nebominimálńı velikosti množin (nebo struktur), které
splňuj́ı určité vlastnosti, často za podmı́nek vylučuj́ıćıch jiné konfigurace. Např́ıklad kolik hran může
mı́t graf bez trojúhelńıku.

Definice. Pro n ∈ N a graf H definujeme ex(n,H) jako nejvěťśı |E| na n vrcholech v grafu G =
(V,E), neobsahuj́ıćı H jako podgraf.

ex(n,H) = max{|E|;G = (V,E) : |V | = n,H ⊆ G}.

Př́ıklad. Např́ıklad ex(n,K3) =
∣∣∣E (K⌊n2 ⌋,⌈n2 ⌉)∣∣∣ = ⌊n2⌋ · ⌈n2⌉ = n2

4

Definice (Turán̊uv graf). Turán̊uv graf na n vrcholech s r partitami, značený Tn,r, je úplný r-
partitińı graf na n vrcholech, jehož partity maj́ı velikosti ⌊n

r
⌋ a ⌈n

r
⌉. Potom tn,r = počet hran Tn,r.

Věta (Turán). ∀r ≥ 2 : ex(n,Kr+1) = tn,r =

(
1− 1

r

)
n2

2
.

(Neboli, jak by měl vypadat graf s co nejv́ıce hranami, aby neobsahoval Kr jako podgraf).

Definice (k-uniformńı hypergraf). k-uniformńı hypergraf je dvojice (V,E), kde E je množina k-
prvkových podmnožin V .

Definice. f(n, k) := Nejvěťśı počet hyperhran v k-uniformńım hypergrafu na n vrcholech, v němž
žádné dvě hyperhrany nejsou disjunktńı.

Poznámka. Pro n < k : f(n, k) = 0, protože neexistuj́ı hyperhrany.

Poznámka. Pro k ≤ n < 2k : f(n, k) =
(
n
k

)
, protože každé dvě množiny z

(
V
k

)
se prot́ınaj́ı.

Definice (Slunečnice). Slunečnice se středem S a l ĺıstky je l-tice množin L1, . . . , Ll taková, že

∀i ̸= j : Li ∩ Lj = S. Tedy E =
{
{1} ∪ e′ | e′ ∈

({2,...,n}
k−1

)}
.

Věta (Erdös-Ko-Rado). Pro libovolné k a n ≥ 2k plat́ı f(n, k) =
(
n−1
k−1

)
.

Obrázek 3.2 Př́ıklad slunečnice pro l = 6, s množinami L1, . . . , L6 a středem S = L1∩L2∩L3∩L4∩L5∩L6.
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3.1.5 Samoopravné kódy

Definice (Abeceda a slovo). Abeceda Σ je konečná množina symbol̊u. Slovo délky n je posloupnost
n symbol̊u. Všechna slova délky n je Σn.

Definice (Hammingova vzdálenost). Pro x, y ∈ Zn
2 je Hammingova vzdálenost

d(x, y) := |i ∈ [n] : xi ̸= yi|.

Definice (Hammingova váha). Hammingova váha ||x|| := |i ∈ [n] : xi ̸= 0|.

Definice (Minimálńı vzdálenost). Minimálńı vzdálenost pro kód C ∈ Zn
2 je minimum z Hamingových

vzdálenost́ı:
∆(C) := min

x,y∈C

x ̸=y

d(x, y).

Definice ((n, k, d)-kód). (n, k, d)-kód je množina C ∈ Zn
2 taková, že |C| = 2k a ∆(C) = d.

Definice (Lineárńı kód). Lineárńı kód je kód C ∈ Zn
2 , který je vektorový podprostor Zn

2 .

Definice (Generuj́ıćı matice kódu C). Generuj́ıćı matice kódu C pro lineárńı (n, k, d)-kód je matice
G ∈ Zk×n

2 , jej́ı̌z řádky tvoř́ı bázi C.

Definice (Kódováńı). Necht’ C je (n, k, d)-kód pro k ∈ N, tak kódováńı pro C je bijekce Zk
2 → C.

Definice (Dekódováńı). Dekódováńı (n, k, d)-kódu C je funkce g : Zn
2 → C taková, že

∀x ∈ Zn
2 : d(x, g(x)) = min

y∈C
d(x, y)

. Neboli přiřazujeme nejblǐzš́ı slovo; slovo s nejmenš́ı vzdálenost́ı.

Definice (Duálńı kód k C “orotgonálńı doplněk”). Duálńı kód k C je

C⊥ := {⟨x, y⟩ = 0 | y ∈ Zn
2 , ∀x ∈ C}.

Definice (Kontrolńı matice). Necht’ C je lineárńı (n, k, d)-kód. Kontrolńı matice kódu C je matice,
jej́ı̌z řádky tvoř́ı bázi C⊥.

Definice (Hammingovy kódy). Necht’ r ∈ N, r ≥ 2, necht’ Kr je matice s r řádky a 2r − 1 sloupci,
jej́ı̌z sloupce jsou nenulové a r̊uzné. Potom Hammingovy kódy Hr jsou kódy s kontrolńı matićı Kr.

Definice (Koule). Koule B(x, t) := {d(x, y) ≤ t | y ∈ Zn
2} je okoĺı poloměru t kolem x v Zn

2 .

Věta (Hamming̊uv odhad). Pokud existuje (n, k, d)-kód C, tak pro t = ⌊d−1
2
⌋ a V (n, t) =

t∑
i=0

(
n

i

)
:

2k ≤ 2n

V (n, t)
.

D̊ukaz. Plyne z toho, že x, y ∈ C, kde x ̸= y: B(x, ⌊d−1
2
⌋) ∩B(y, ⌊d−1

2
⌋) ̸= ∅.

Definice (Perfektńı kód). Kód C je perfektńı, pokud pro něj plat́ı Hamming̊uv odhad s rovnost́ı.

Př́ıklad (Př́ıklady perfektńıch kód̊u). Perfektńı kódy jsou např́ıklad Hammingovy kódy nebo “opa-
kovaćı kód s lichou délkou”
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3.2 Diferenciálńı a integrálńı počet ve v́ıce rozměrech

3.2.1 Riemann̊uv integrál

Jednorozměrný

Definice (Děleńı). Děleńı intervalu [a, b] je posloupnost P = (t0, . . . , tn), kde

a = t0 < t1 < · · · < tn−1 < tn = b.

Definice (Horńı/dolńı Riemannovy součty). Pro omezenou funkci f : J = [a, b] → R a děleńı P
definujeme dolńı a horńı součty:

s(f, P ) =
n∑

j=1

mj(tj − tj−1), resp. S(f, P ) =
n∑

j=1

Mj(tj − tj−1),

kde
mj = inf{f(x) : tj−1 ≤ x ≤ tj}, a Mj = sup{f(x) : tj−1 ≤ x ≤ tj}.

Definice (Horńı/dolńı Riemann̊uv integrál). Horńı a dolńı Riemann̊uv integrál f přes [a, b] je:∫ b

a

f(x) dx = sup{s(f, P ) : P děleńı} a

∫ b

a

f(x) dx = inf{S(f, P ) : P děleńı}.

Definice (Riemann̊uv integrál funkce). Riemann̊uv integrál funkce f přes [a, b] je:

(R)

∫ b

a

f(x) dx, pokud

∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

Vı́cerozměrný

Definice (n-rozměrný kompaktńı interval). n-rozměrný kompaktńı interval (v En) je

J = [a1, b1]× · · · × [an, bn].

Definice (Děleńı intervalu). Děleńı intervalu J je posloupnost děleńı P = (P 1, ..., P n):

P j : aj = tj,0 < tj,1 < · · · < tj,nj−1 < tj,nj
= bj.

Definice (Cihly intervalu). Interval̊um

[t1,i1 , t1,i1+1]× · · · × [tn,in , tn,in+1]

ř́ıkáme cihly děleńı P . Množinu všech cihel znač́ıme B(P ).
Je to skoro disjunktńı děleńı intervalu J . R̊uzné cihly z B(P ) se totǐz setkávaj́ı jen v podmnožinách
okraj̊u, tedy v množinách objemu 0, d́ıky čemuž plat́ı:

vol(J) =
∑
{vol(B) : B ∈ B(J)}.

Definice (“Supremum/infimum” na kompaktńım intervalu). Je dána omezená f : J → R na n-
rozměrném kompaktńım intervalu J a B ⊆ J je n-rozměrný kompaktńı podinterval intervalu J .
Položme

m(f,B) = inf{f(x) : x ∈ B} a M(f,B) = sup{f(x) : x ∈ B}.

Definice (Horńı/dolńı součty). Pro děleńı P intervalu J a omezenou funkci f : J → R definujeme

sJ(f, P ) =
∑
{m(f,B) · vol(B) : B ∈ B(P )},

SJ(f, P ) =
∑
{M(f,B) · vol(B) : B ∈ B(P )}.
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Definice ((Horńı/dolńı) Riemann̊uv integrál). Množiny {s(f, P ) | P děleńı} a {S(f, P ) | P děleńı}
jsou shora/zdola omezené a m̊užeme definovat dolńı/horńı Riemann̊uv integrál funkce f přes J jako∫

J

f(x) dx = sup{s(f, P ) | P děleńı} a

∫
J

f(x) dx = inf{S(f, P ) | P děleńı}.

Jsou-li si rovny, máme Riemann̊uv integrál funkce f přes J , znač́ıme:∫
J

f(x) dx nebo prostě

∫
J

f

Věta (Kritérium existence Riemannova integrálu). Riemann̊uv integrál
∫
J
f(x) dx existuje právě

když ∀ε > 0 existuje děleńı P takové, že

SJ(f, P )− sJ(f, P ) < ε

Věta (Riemann̊uv integrál pro spojité funkce). Každá spojitá funkce f : J → R na n-rozměrném
kompaktńım intervalu má Riemann̊uv integrál

∫
J
f .

Věta (Fubiniova věta). Vezměme součin J = J ′ × J ′′ ⊆ Em+n interval̊u J ′ ⊆ Em, J
′′ ⊆ En. Necht’

existuje ∫
J

f(x,y) dxy

a necht’ pro každé x ∈ J ′, resp. y ∈ J ′′, existuje∫
J ′
f(x,y) dx a

∫
J ′′
f(x,y) dy

Potom je ∫
J

f(x,y) dxy =

∫
J ′

(∫
J ′′
f(x,y) dy

)
dx =

∫
J ′′

(∫
J ′
f(x,y) dx

)
dy

3.2.2 Funkce v́ıce proměnných

Definice (Parciálńı derivace). Pro funkci f(x1, ..., xn) a bod a definujme funkci

ϕk(t) = f(a1, ..., ak−1, t , ak+1, ...an)

Parciálńı derivace4 funkce f podle proměnné xk v bodě a je (obvyklá) derivace funkce ϕk v bodě ak

lim
h→0

ϕk(ak + h)− ϕk(ak)

h
= lim

h→0

f(a1, ..., ak−1, ak + h, ak+1, ...an)− f(a)
h

.

Znač́ıme ji:
∂f(a)

∂xk
nebo:

∂f

∂xk
(a).

Definice (Totálńı diferenciál). Funkce f má totálńı diferenciál v bodě a, existuje-li funkce µ spojitá
v okoĺı U bodu o ∈ Rn taková, že µ(o) = 0 a č́ısla A1, ..., An pro která

f(a+ h)− f(a) =
n∑

k=1

Akhk + ||h||µ(h).

S použit́ım skalárńıho součinu jde též zapsat jako

f(a+ h)− f(a) = Ah+ ||h||µ(h)
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Pravidlo Vzorec pro parciálńı derivaci Př́ıklad

Součet
∂

∂x

(
f(x) + g(x)

)
=
∂f

∂x
+
∂g

∂x

∂

∂x
(x2 + y) = 2x+ 0

Násobeńı
∂

∂x

(
f(x) g(x)

)
=
∂f

∂x
g(x) + f(x)

∂g

∂x

∂

∂x
(x · y) = 1 · y + x · 0

Děleńı
∂

∂x

(
f(x)

g(x)

)
=

∂f
∂x
g(x)− f(x) ∂g

∂x(
g(x)

)2 ∂

∂x

(
x

y

)
=

1 · y − x · 0
y2

Chain rule
∂z

∂x
=

n∑
k=1

∂f

∂uk
· ∂uk
∂x

z = u2,
u = x+ y

⇝ ∂z
∂x

= 2u · ∂u
∂x

= 2(x+ y) · 1

Tabulka 3.3 Pravidla pro parciálńı derivace

Lemma (Spojitost, parciálńı derivace a totálńı diferenciál). Necht’ má funkce f totálńı diferenciál v

bodě a. Potom je f spojitá v a, a má všechny parciálńı derivace v a s hodnotami
∂f(a)

∂xk
= Ak.

Věta (Spojité parciálńı derivace a totálńı diferenciál). Necht’ má f spojité parciálńı derivace v okoĺı
bodu a. Potom má v a totálńı diferenciál.

Věta (O záměnnosti). Mějme funkci f(x, y) takovou, že existuj́ı parciálńı derivace ∂2f
∂x∂y

a ∂2f
∂y∂x

, které

jsou spojité v nějakém okoĺı bodu (x, y). Potom:

∂2f(x, y)

∂x∂y
=
∂2f(x, y)

∂y∂x

Věta (Lagrangeova věta ve v́ıce proměnných). Necht’ má f spojité parciálńı derivace v konvexńı
otevřené množině U ⊆ En. Potom pro libovolné dva body x, y ∈ U ∃0 ≤ θ ≤ 1 takové, že:

f(y)− f(x) =
n∑

j=1

∂f(x+ θ(y − x))

∂xj
(yj − xj), resp. f(y)− f(x) = ∇f(c)(y− x),

kde c = x+ θ(y − x) (konvexńı kombinace x,y) a ∇f(p) = ( ∂f
∂x1
, . . . , ∂f

∂xn
)T je gradient funkce f .

Výpočet extrémů pomoćı parciálńıch derivaćı.

Mějme funkci f : Rn → R, f(x1, . . . , xn).

1. Najdeme stacionárńı body tak, že polož́ıme prvńı parciálńı derivace rovny nule:

∂f

∂x1
(x1, . . . , xn) = 0,

∂f

∂x2
(x1, . . . , xn) = 0, . . . ,

∂f

∂xn
(x1, . . . , xn) = 0.

2. V těchto bodech vyšetř́ıme druhé derivace pomoćı Hessiánu:

Hf (x) =



∂2f

∂x21

∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f

∂x22
· · · ∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f

∂xn∂x2
· · · ∂2f

∂x2n


, pro f(x, y) jen jednoduše: Hf =

[
fxx fxy
fyx fyy

]
.

3. Typ extrému urč́ıme pomoćı kritéria pozitivńı/negativńı definitnosti Hessiánu:

• Hf pozitivně definitńı =⇒ lokálńı minimum, (v R2 pokud det(H) > 0 a fxx > 0)

• Hf negativně definitńı =⇒ lokálńı maximum, (v R2 pokud det(H) > 0 a fxx < 0)

• Hf indefinitńı =⇒ sedlový bod. (v R2 pokud det(H) < 0)
4Geometricky odpov́ıdá tečně funkce v daném bodě a př́ıslušné ose.
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Existence extrémů pro funkce v́ıce proměnných.

Věta. Pokud je f spojitá na kompaktńı množině K ⊂ Rn , pak dle Weierstrassovy věty nabývá f
na K svého maxima i minima.

Věta (Nutná podmı́nka pro lokálńı extrém). Mějme funkci f : D ⊆ Rm → R. Pokud má f v bodě
a ∈ D lokálńı extrém, potom plat́ı jedna z podmı́nek:

(1) ∀i = 1, . . . ,m : ∂f(a)
∂xi

= 0, nebo derivace neexistuje.

(2) Bod a je na hranici D.

Věta (Postačuj́ıćı podmı́nka pro extrém). Mějme funkci f : D ⊆ Rm → R, bod a uvnitř D a dále

plat́ı, že ∂2f
∂xi∂xj

jsou spojité v a, a ∂f(a)
∂xi

= 0 (podezřelý z extrému). Pak:

(1) Pokud D2f(a) je pozitivně definitńı, pak f nabývá v a lokálńıho minima.

(2) Pokud D2f(a) je negativně definitńı, pak f nabývá v a lokálńıho maxima.

(3) Pokud D2f(a) je indefinitńı, pak f v a nenabývá lokálńıho extrému.

Tato matice D2f(a) se nazývá Hessova matice a znač́ı se H(a).

Vázané extrémy.

Ćılem je hledat extrémy nějakého zobrazeńı f(x) na nějaké omezené množině {x : g(x) = 0}.

Věta (O hledáńı extrému funkćı s vazbami). Bud’te f, g1, ..., gk reálné funkce definované na otevřené
množině D ⊆ En. Necht’ maj́ı spojité parciálńı derivace. Necht’ je hodnost matice

M =


∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

...
∂gk
∂x1

. . . ∂gk
∂xn


maximálńı, tedy k ≤ n, v každém bodě oboru D.
Jestlǐze funkce f nabývá v bodě a = (a1, ..., an) lokálńıho extrému podmı́něného vazbami

∀i ∈ {1, ..., k} gi(x1, ..., xn) = 0

Pak existuj́ı č́ısla λ1, ..., λk, Lagrangeovy multiplikátory, taková, že ∀i ∈ 1, ..., n plat́ı

∂f(a)

∂xi
+

k∑
j=1

λj ·
∂gj(a)

∂xi
= 0

nebo ekvivalentně přes gradienty jako ∇f(a) + λ · ∇g(a) = 0

Ilustračńı př́ıklad: Necht’ f(x, y) = xy a g(x, y) = x2 + y2 − 1. Podle věty hledáme

∇f(x, y) + λ∇g(x, y) = 0, g(x, y) = 0.[∂f
∂x
∂f
∂y

]
+ λ

[ ∂g
∂x
∂g
∂y

]
= 0[

y
x

]
+ λ

[
2x
2y

]
= 0 ⇝

y = −2λx,
x = −2λy.

Máme tři rovnice o třech neznámých. Urč́ıme x = 4λ2x, a máme x = 0, nebo 4λ2 = 1 (pro λ = ±1
2
).

Dosad́ıme do g(x, y) = x2 + y2 − 1 a dopoč́ıtáme y. Následně dosad́ıme body do f(x, y) a zjist́ıme,

že v bodech
(
± 1√

2
,± 1√

2

)
nabývá f = 1

2
maxima, v bodech

(
± 1√

2
,∓ 1√

2

)
nabývá f = −1

2
minima

a body (0,±1) dávaj́ı f = 0 a nejsou tud́ıž extrémy.
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3.2.3 Metrický prostor

Definice (Metrický prostor). Necht’ X je množina, d : X ×X → R funkce taková, že plat́ı:

• ∀x, y ∈ X : d(x, y) ≥ 0, d(x, y) = 0 ⇐⇒ x = y

• ∀x, y ∈ X : d(x, y) = d(y, x)

• ∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z) (trojúhelńıková nerovnost)

pak (X, d) je metrický prostor.

Př́ıklad. Metrické prostory jsou např́ıklad: (R, |x− y|), (C, |x− y|).
Definice (Euklidovský prostor En). Definujeme jako metrický prostor (Rn, d), kde d:

d((x1, ..., xn), (y1, ..., yn)) =

√∑
i

(xi − yi)2

Pro nás zvlášt’ d̊uležitý, známý v podobě vektorového prostoru Rn se skalárńım součinem ⟨u|v⟩ a
normou ∥u∥ =

√
uu a vzdálenost́ı d(u, v) = ||u− v||

Definice (Diskrétńı prostor). Definujeme jako (X, d), kde d(x, y) = 1 pro x ̸= y

Definice (Podprostor). Bud’ (X, d) metrický prostor. Pak (Y, d′) je podprostor, kde Y ⊆ X a ∀x, y ∈
Y : d′(x, y) = d(x, y).

Uzavřené a otevřené množiny

Definice (Okoĺı). Necht’ (X, d) je metrický prostor, pak ∀x ∈ X, ∃ε > 0:

Ω(x, ε) = {y ∈ X | d(x, y) < ε}.

Formulaci Ω(x, ε) se ř́ıká otevřená koule s poloměrem ε okolo x.

Definice (Otevřená množina). U ⊆ (X, d) je otevřená, pokud je okoĺım každého svého bodu, neboli

∀x ∈ U ∃δ > 0 : Ω(x, δ) ⊆ U = (x− δ, x+ δ) ∩ U.

Definice (Uzavřená množina). Necht’ V ⊆ (X, d). Pokud každá posloupnost (an) ⊆ V má lim an =
a ∈ X, pak a ∈ V a V nazveme uzavřenou množinou. (Alternativě, pokud je X \ V otevřená.)

Př́ıklad. Uváž́ıme-li interval (0,∞) s Euklidovskou metrikou, pak

• [1, 2] je pouze uzavřený . . . (∀x ∈ [1, 2] ∄δ > 0 : Ω(x, δ) ⊆ [1, 2])

• (0, 1] je také pouze uzavřený . . . (∀ lim na (0, 1] konverguj́ıćı v (0,∞) maj́ı lim v (0, 1])

• (1,∞) je pouze otevřený. . . . (Např lim an = lim 1 + 1
n
= 1 ∈ (0,∞), ale 1 /∈ (1,∞).)

• (0,∞) je jak otevřený, tak uzavřený

Spojitost funkce na metrickém prostoru

Definice (Spojité zobrazeńı). f : (X, d)→ (Y, d′) je spojité zobrazeńı, pokud

(∀x ∈ X)(∀ε > 0)(∃δ > 0)(∀y ∈ X) : d(x, y) < δ =⇒ d′(f(x), f(y)) < ε.

Definice (Konvergence). Posloupnost (xn)n v metrickém prostoru (X, d) konverguje k x ∈ X, pokud

∀ε > 0 ∃n0 : ∀n ≥ n0 : d(xn, x) < ε.

Věta (Složeńı spojitých zobrazeńı je spojité). Pokud jsou f : (X1, d1) → (X2, d2) a g : (X2, d2) →
(X3, d3) spojité, pak je spojité i g ◦ f : (X1, d1)→ (X3, d3).

Věta (Věta o konvergenci). Zobrazeńı f : (X1, d1) → (X2, d2) je spojité ⇐⇒ pro každou (xn)n
konvergentńı v (X1, d1), posloupnost (f(xn))n konverguje v (X2, d2) a plat́ı lim

n
f(xn) = f(lim

n
xn).
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Kompaktnost

Definice (Kompaktńı množina). Množina je kompaktńı, pokud je uzavřená a omezená.

Definice (Kompaktńı metrický prostor). Metrický prostor (X, d) je kompaktńı, pokud každá po-
sloupnost v něm obsahuje konvergentńı podposloupnost.

Věta (Extrémy spojité funkce na kompaktńım prostoru). Bud’ (X, d) kompaktńı. Potom každá spo-
jitá funkce f : (X, d)→ R nabývá minima i maxima (t.j. nejsou nekonečné).

Stejnoměrná spojitost

Definice (Stejnoměrná spojitost). Řekneme, že f : (X, d)→ (Y, d′) je stejnoměrně spojitá, pokud

(∀ε > 0)(∃δ > 0)(∀x ∈ X)(∀y ∈ X) : d(x, y) < δ =⇒ d′(f(x), f(y)) < ε.

V porovnáńı s definićı normálńı spojitosti je rozd́ıl v pozici kvantifikátor̊u ∀x, y (v definici spo-
jitosti jsou na úplném začátku). To odpov́ıdá tomu, že pro spojitost požadujeme okénko pouze pro
jeden bod a ne pro celou funkci, jak je tomu u stejnoměrné spojitosti.

Intuice. Geometrický význam je ten, že pro libovolnou vzdálenost ε v y existuje δ t. ž. okénko
o velikosti (δ, ε) umı́stěné do libovolného mı́sta v grafu neńı grafem protnuto nahoře ani dole. Na
obrázku 3.3 je vidět, že funkce

√
x stejnosměrnou spojitost splňuje, kdežto funkce 1

x
nikoliv.

Obrázek 3.3 Geometrický význam stejnosměrné spojitosti pro f(x) = 1/x a g(x) =
√
x na intervalu R+.

Věta (Spojitost zobrazeńı na kompaktńım prostoru). Pokud je (X, d) kompaktńı, pak je každé spojité
zobrazeńı f : (X, d)→ (Y, d′) stejnoměrně spojité.
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3.3 Pokročilé algoritmy a datové struktury

3.3.1 Dynamické programováńı

Princip. Začneme s rekurzivńım algoritmem, který je exponenciálně pomalý. Odhaĺıme opakované
výpočty stejných podproblémů. Uděláme si tabulku (cache), do které zapisujeme, které podproblémy
jsme už vyřešili. Cache lze vyplňovat bez rekurze, zvoĺıme vhodné pořad́ı podproblémů. Źıskáme tak
stejně rychlý, ale jednodušš́ı algoritmus. (Topologicky uspořádáme DAG).

Nejdeľśı rostoućı podposloupnost.

Chceme naj́ıt podposloupnost která je ostře rostoućı. Problém si nejprve rozděĺıme na hledáńı počtu
prvk̊u (největš́ı možný).
Necht’ NRP(i) je délka Nejdeľśı Rostoućı Podposloupnosti zač́ınaj́ıćı prvkem xi.

Algorithm 17: NRP(i): Nejdeľśı Rostoućı Podposloupnost Θ(n2)

1 d← 1
2 for j = i+ 1, . . . , n do
3 if xj > xi then
4 d← max(d, 1 + NRP(j))
5 end

6 end
7 return d

Rekurze se můžeme zbavit a tabulku vyplňovat postupně od největš́ıho i k nejmenš́ımu. Budeme
tedy poč́ıtat T [i], což bude délka nejdeľśı ze všech rostoućıch podposloupnost́ı zač́ınaj́ıćıch xi.

Algorithm 18: NRP2(i): Nejdeľśı Rostoućı Podposloupnost iterativně Θ(n2)

1 x0 ← −∞
2 for i = n, . . . , 0 do
3 T [i]← 1 ▷ tabulka (cache)
4 for j = i+ 1, . . . , n do
5 if xj > xi & T [i] < 1 + T [j] then
6 T [i]← 1 + T [j] ▷ lepš́ı řešeńı
7 end

8 end

9 end
10 return délka T [0]

Editačńı vzdálenost – Levenstein O(n ·m).

Máme následuj́ıćı edatačńı operace: změna/ vložeńı/ smazáńı jednoho znaku.
Definujme L(x1 . . . xn, y1 . . . ym) jako délku nejkratš́ı posloupnosti editačńıch operaćı, která převede
x1 . . . xn na y1 . . . ym.

Plat́ı následuj́ıćı podmı́nky:

(1) Pokud x1 = y1: L(x2 . . . xn, y2 . . . ym)

(2) Změna x1 na y1: 1 + L(x2 . . . xn, y2 . . . ym)

(3) Vložeńı y1: 1 + L(x1 . . . xn, y2 . . . ym)

(4) Smazáńı x1: 1 + L(x2 . . . xn, y1 . . . ym)

Celkem tak máme L(ϵ, ϵ) = 0, a :
L(x1 . . . xn, y1 . . . ym) = min((1)(2)(3)(4)).
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Otoč́ıme směr výpočtu a tabulku T s výsledky podproblémů budeme vyplňovat bez použit́ı re-
kurze. Představ́ıme-li si ji jako matici, každý prvek záviśı pouze na těch, které lež́ı napravo a dol̊u
od něj. Tabulku proto můžeme vyplňovat po řádćıch zdola nahoru, zprava doleva. T́ım źıskáme
jednodušš́ı algoritmus, který běž́ı v čase Θ(nm).

Algorithm 19: Edit(x1 . . . xn, y1 . . . ym): Levenstein iterativně Θ(n2)

1 for i = 1, . . . , n+ 1 do T [i,m+ 1]← n− i+ 1.
2 for j = 1, . . . ,m+ 1 do T [n+ 1, j]← m− j + 1.
3 for i = n, . . . , 1 do
4 for j = m, . . . , 1 do
5 if xi = yj then δ ← 0 else δ ← 1.
6 T [i, j]← min(δ + T [i+ 1, j + 1], 1 + T [i+ 1, j], 1 + T [i, j + 1]) ▷ všechny zp̊usoby

7 end

8 end
9 return L(x1 . . . xn, y1 . . . ym) = T [1, 1].

3.3.2 Grafové algoritmy

Komponenty silné souvislosti orientovaných graf̊u.

Necht’ G(V ) je orientovaný graf a →,↔ jsou relace na V vyznačuj́ıćı:

• u→ v je hrana z u do v,

• u↔ v je u→ v & v → u.

Definice (Silná souvislost). Řı́káme, že graf je silně souvislý ⇐⇒ relace ↔ má 1 komponentu.

Definice (Komponenty silné souvislosti). Podgrafy indukované tř́ıdami ↔.

Definice (Graf komponent). Pro graf G definujeme graf komponent C(G) jako:

• V (C(G)) := komponenty G,

• C1, C2 ∈ E(C(G)) ⇐⇒ ∃v1 ∈ C1, v2 ∈ C2 : v1v2 ∈ E(G).

Algorithm 20: Rozklad grafu na komponenty silné souvislosti: Θ(n+m)

1 Sestroj́ıme GT ▷ otočeńı orientaćı všech hran, lze d́ıky C(GT ) ∼= C(G)T

2 Z ← prázdný zásobńık
3 Opakované DFS na GT , při opouštěńı vrcholu přidáme do Z
4 Pole ∀v : komp(v)← ∅ ▷ komp je pole komponent
5 for v ∈ Z do
6 odeb́ıráme v ze zásobńıku Z
7 if komp(v) = ∅ then
8 DFS(v) v G, nechod́ıme do vrchol̊u s komp ̸= ∅, navšt́ıveným vrchol̊um nastav́ıme

komp(−)← v.
9 end

10 end
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Toky v śıt́ıch.

Definice (Pr̊utok). Pr̊utok f ∗ : E → R definujeme pro tok f jako: f ∗(uv) = f(uv)− f(vu).

Definice (Śıt’ rezerv). Śıt’ rezerv k toku f v śıti S = (V,E, z, s, c) je śıt’ R(S, f) := (V,E, z, s, r), kde
r(e) je rezerva hrany e při toku f .

Definice (Blokuj́ıćı tok). Pokud na každé orientované zs-cestě P , ∃e ∈ P : f(e) = c(e).

Definice (Vrstevnatá śıt’). Śıt’ je vrstevnatá (pročǐstěná), pokud všechny jej́ı vrcholy a hrany lež́ı
na nejkraťśıch cestách ze z do s.

Dinitz̊uv algoritmus.

Začne s nulovým tokem a bude ho vylepšovat pomoćı nějakých pomocných tok̊u v śıti rezerv, až se
dostane k maximálńımu toku. Počet potřebných iteraćı přitom bude záviset na tom, jak vydatné
pomocné toky seženeme – na jednu stranu bychom chtěli, aby byly podobné maximálńımu toku,
na druhou stranu jejich výpočtem nechceme trávit př́ılǐs mnoho času. Vhodným kompromisem jsou
blokuj́ıćı toky.

Algorithm 21: Dinitz̊uv algoritmus: O(n2m)

Data: Śıt’ (V,E, z, s, c)
Result: Maximálńı tok f

1 f ← nulový tok
2 while existuje cesta ℓ do
3 R← śıt’ rezerv, smažeme z f hrany s nulovou rezervou.
4 ℓ← délka nejkratš́ı cesty ze z do s v R ▷ BFS
5 if žádná taková cesta neexistuje then
6 zastav́ıme se
7 end
8 Pročist́ıme śıt’ R.
9 g ← blokuj́ıćı tok v R

10 Zlepš́ıme tok f pomoćı g.

11 end
12 return tok f .

Algorithm 22: Blokuj́ıćı Tok: O(nm)

Data: Vrstevnatá śıt’ R s rezervami r
Result: Blokuj́ıćı tok g

1 g ← nulový tok
2 while existuje v R orientovaná cesta P ze z do s do
3 ε← mine∈P (r(e)− g(e))
4 forall e ∈ P do
5 g(e)← g(e) + ε
6 if g(e) = r(e) then
7 smažeme e z R.
8 end
9 Dočist́ıme śıt’ pomoćı fronty.

10 end

11 end
12 return tok g.
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Lemma (O korektnosti). Pokud se algoritmus zastav́ı, vydá maximálńı tok.

Lemma. V každém pr̊uchodu Dinicova algoritmu vzroste l alespoň o 1.

Goldberg̊uv algoritmus

Hledá maximálńı toku v śıti. Je jednodušš́ı než Dinic̊uv algoritmus a má po pár snadných úpravách
stejnou, nebo dokonce lepš́ı časovou složitost.

Goldberg̊uv algoritmus začne s ohodnoceńım hran, které ani nemuśı být tokem, a postupně ho
upravuje a zmenšuje, až se z něj stane tok, a to dokonce tok maximálńı.

Definice (Vlna). Funkce f : E → R+
0 je vlna v śıti (V,E, z, s, c), splňuje-li obě následuj́ıćı podmı́nky:

• ∀e ∈ E : f(e) ≤ c(e) (vlna nepřekroč́ı kapacity hran),

• ∀v ∈ V \ {z, s} : f∆(v) ≥ 0 (přebytek ve vrcholech je nezáporný).

Každý tok je tedy vlnou, ale opačně tomu tak být nemuśı. V pr̊uběhu výpočtu se tedy potřebujeme
postupně zbavit nenulových přebytk̊u ve všech vrcholech kromě zdroje a spotřebiče. K tomu bude
sloužit následuj́ıćı operace:

Definice (Převedeńı přebytku). Převedeńı přebytku po hraně uv m̊užeme provést, pokud f∆(u) > 0
a r(uv) > 0. Proběhne tak, že po hraně uv pošleme δ = min(f∆(u), r(uv)) jednotek toku, podobně
jako v předchoźıch algoritmech bud’ přičteńım po směru nebo odečteńım proti směru.

Rádi bychom postupným převáděńım všechny přebytky přepravili do spotřebiče, nebo je naopak
přelili zpět do zdroje. Chceme se ovšem vyhnout přeléváńı přebytk̊u tam a zase zpět, takže vrchol̊um
přǐrad́ıme výšky — to budou nějaká přirozená č́ısla h(v).

Přebytek pak budeme ochotni převádět pouze z vyšš́ıho vrcholu do nižš́ıho. Pokud se stane, že
nalezneme vrchol s přebytkem, ze kterého nevede žádná nenasycená hrana směrem dol̊u, budeme
tento vrchol zvedat — tedy zvyšovat mu výšku po jedné, než se dostane dostatečně vysoko, aby z
něj přebytek mohl odtéci.

Algorithm 23: Goldberg̊uv algoritmus: O(n2m)

Data: Śıt’ (V,E, z, s, c)
Result: Maximálńı tok f

1 Nastav́ıme počátečńı výšky: ▷ zdroj ve výšce n, ostatńı ve výšce 0
2 h(z)← n
3 h(v)← 0 pro všechny v ̸= z
4 Vytvoř́ıme počátečńı vlnu: ▷ všechny hrany ze z na maximum
5 f ← všude nulová funkce
6 f(zv)← c(zv), kdykoliv zv ∈ E
7 while existuje vrchol u /∈ z, s takový, že f∆(u) > 0 do
8 if existuje hrana uv s r(uv) > 0 a h(u) > h(v) then
9 převedeme přebytek po hraně uv.

10 else
11 h(u)← h(u) + 1. ▷ zvedneme u
12 end

13 end
14 return Maximálńı tok f .
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Toky v celoč́ıselně ohodnocených grafech

Mějme nějaký bipartitńı graf (V,E). Přetvoř́ıme ho na śıt’ (V ′, E ′, z, s, c) následovně:

• Nalezneme partity grafu, levou a pravou.

• Všechny hrany zorientujeme zleva doprava.

• Přidáme zdroj z a vedeme z něj hrany do všech vrchol̊u levé partity.

• Přidáme stok s a vedeme do něj hrany ze všech vrchol̊u pravé partity.

• Všem hranám nastav́ıme jednotkovou kapacitu.

Najdeme maximálńı celoč́ıselný tok a jelikož ∀e : c(e) = 1, muśı po každé hraně téci bud’ 0 nebo 1.
Do výsledného párováńı vlož́ıme právě ty hrany p̊uvodńıho grafu, po kterých teče 1.

3.3.3 Algoritmy vyhledáváńı v textu

Definice. Necht’ J je délka jehly, S délka sena. Dále budeme pracovat s následuj́ıćımi pojmy:

• Podslovo α[i : j] ≡ α[i]α[i+ 1] . . . α[j − 1].

• Prefix α[: j] ≡ α[0 : j], Suffix α[i :] ≡ α[i : |α|].
• Stav algoritmu: Nejdeľśı prefix jehly, který je suffixem sena.

• Dopředná funkce: rozš́ı̌reńı prefixu s→ s+ 1 přidáńım jednoho symbolu ι[s].

• Zpětná funkce Z(s) přǐrad́ı α jeho nejdeľśı suffix r̊uzný od α, který je prefixem jehly.

Knuth-Morris-Prat. Θ(J + S)

Aalgoritmus pro hledáńı jednoho vzoru v textu. Stavy oč́ıslujeme 0, . . . , J .

• Nejprve spoč́ıtáme prefix funkci (pole nejdeľśıch vlastńıch prefix̊u, které jsou zároveň sufixy).

• Při prohledáváńı textu využ́ıváme prefixovou funkci k tomu, abychom se při neúspěchu nemuseli
vracet, ale abychom přeskočili části textu, kterou už jsme porovnali.

Algorithm 24: KmpKrok(s, x) – jsme ve stavu s, přečetli jsme znak x.

1 while ι[s] ̸= x ∧ s ̸= 0 do s← Z[s]. ▷ zpětné hrany
2 if ι[s] = x then s← s+ 1. ▷ dopředná hrana
Result: Nový stav s.

Algorithm 25: KmpHledej(σ)

1 s← 0
2 for znaky x ∈ σ do
3 s← KmpKrok(s, x)
4 if s = J then Ohláśıme výskyt.

5 end
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Algorithm 26: KmpKonstrukce(ι) – jehla ι délky J . (konstrukce automatu)

1 Z[0]← ∅ Z[1]← 0
2 s← 0
3 for i = 2, . . . , J do
4 s← KmpKrok(s, ι[i− 1])
5 Z[i]← s

6 end
Result: Pole zpětných hran Z.

Aho-Corasick. Θ(J + S + V )

Hledáńı v́ıce řetězc̊u najednou v textu. V je počet výskyt̊u v seně S.
Máme ι1, . . . , ιN s délkami Ji a seno σ délky S.

Definice (Zkratková hrana). Řekne, jaký je nejdeľśı vlastńı suffix slova α, který je jehlou.

• Zpet(s) – č́ıslo stavu, kam vede zpětná hrana (nebo ∅, pokud žádná nevede),

• Zkratka(s) – kam vede zkratková hrana (obdobně),

• Slovo(s) – zda tu konč́ı nějaké slovo (a pokud ano, tak které),

• Dopředu(s, x) – kam vede dopředná hrana označená ṕısmenem x.

Algoritmus prob́ıhá následovně:

(1) Nejprve vytvoř́ıme trie (prefixový strom)
všech vzor̊u.

(2) Pak přidáme tzv. fail odkazy mezi uzly pro
přechod při neúspěchu.

(3) Nakonec procháźıme text znak po znaku
a sledujeme přechody v automatu, přičemž
při každém kroku v́ıme, zda právě skončil
některý z hledaných vzor̊u.

Algorithm 27: AcKrok(s, x) – jsme ve stavu s, přečetli jsme znak x

1 while Dopredu(s, x) = 0 ∧ s ̸= koren do
2 s← Zpet(s)
3 end
4 if Dopredu(s, x) ̸= 0 then s← Dopredu(s, x)
Result: Nový stav s.
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Algorithm 28: AcHledej(σ) – seno σ a zkonstruovaný automat

1 s← koren
2 for znaky x ∈ σ do
3 s← AcKrok(s, x)
4 q ← s
5 while q ̸= 0 do
6 if Slovo(q) ̸= 0 then
7 Ohlasime Slovo(q)
8 end
9 q ← Zkratka(q)

10 end

11 end

Algorithm 29: AcKonstrukce(ι1 . . . ιn)

1 zalozime strom s korenem r
2 vkladame do stromu slovo ι1 . . . ιn ⇝ Dopredu(−,−), ⇝ Slovo(−)
3 Zpet(r)← 0
4 F ← fronta, vlozime do ni syny korene
5 synum korene nastavime zpetnou hranu na koren, neboli Zpet(−)← r
6 while F ̸= 0 do
7 vybereme z fronry vrchol → i
8 for syny s vrcholu i do
9 z ← AcKrok(Zpet(i)), znak na hrane {is})

10 Zpet(s)← z
11 if Slovo(z) ̸= 0 then
12 Zkratka(s)← z
13 else
14 Zkratka(s)← Zkratka(z)
15 end
16 Vlozime s do F

17 end

18 end

3.3.4 Algebraické algoritmy

Poznámka. Pro připomenut́ı. Pracujeme s r̊uznými tvary komplexńıch č́ısel:

• Algebraický tvar: z = a+ bi, a, b ∈ R, dále z̄ = a− bi.

• Goniometrický tvar: z = |z| (cosφ+ i sinφ).

• Exponenciálńı tvar: Eulerova formule eiφ = cosφ+ i sinφ.

Definice (Primitivńı n-tá odmocnina z 1). Čı́slo ω ∈ C je primitivńı n-tá odmocnina z 1, pokud
ωn = 1 a žádné z č́ısel ω1, ω2, . . . , ωn−1 neńı rovno 1.

Poznámka. Pro sudé n je ωn/2 = −1.
Plat́ı totǐz (ωn/2)2 = ωn = 1, takže ωn/2 je druhá odmocnina z 1. Takové odmocniny jsou jenom dvě:
1 a −1, ovšem 1 to být nem̊uže, protože ω je primitivńı.
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Definice (Diskrétńı Fourierova transformace (DFT)). Diskrétńı Fourierova transformace je zobra-
zeńı F : Cn → Cn, které vektoru x = (x0, . . . , xn−1) přiřad́ı vektor y = (y0, . . . , yn−1) daný předpisem

yj =
n−1∑
k=0

xk · ωjk,

kde ω je pevně zvolená primitivńı n-tá odmocnina z jedné. Vektor y se nazývá Fourier̊uv obraz
vektoru x.

Algorithm 30: Algoritmus FFT – Rychlá Fourierova Transformace Θ(n log n)

Data: Č́ıslo n = 2k, primitivńı n-tá odmocnina z jedničky ω a vektor (p0, . . . , pn−1)
koeficient̊u polynomu P .

Result: Graf polynomu P , tedy vektor (y0, . . . , yn−1), kde yj = P (ωj).
1 if n = 1 then
2 y0 ← p0
3 return (y0)

4 else
5 (s0, . . . , sn/2−1)← FFT(n/2, ω2, (p0, p2, p4, . . . , pn−2))
6 (ℓ0, . . . , ℓn/2−1)← FFT(n/2, ω2, (p1, p3, p5, . . . , pn−1))
7 for j = 0, . . . , n/2− 1 do
8 yj ← sj + ωj · ℓj
9 yj+n/2 ← sj − ωj · ℓj

10 end
11 return (y0, . . . , yn−1)

12 end

Definice (Fourierova Transformace). Fourierova transformace vektoru v⃗ ∈ Cn je dána maticovým
násobeńım:

F(v⃗)k = (Ω · v⃗)k =
n−1∑
j=0

v⃗j · ωjk

kde Ω =


1 1 1 · · · 1
1 ω1 ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

 je Fourierova matice.

Definice (Inverzńı Fourierova Transformace IFFT). Inverzńı Fourierova transformace je:

F−1(v⃗)k =
1

n

n−1∑
j=0

v⃗j · ω−jk,

což odpov́ıdá maticovému násobeńı s komplexně sdruženou matićı Ω̄:

Ω̄ =


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
...

...
. . .

...

1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)2


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Věta (Vlastnosti Fourierovy matice). Fourierova matice splňuje Ω · Ω̄ = n · In, kde In je jednotková
matice řádu n.

Poznámka (Výpočet IFFT). Pro praktický výpočet IFFT použijeme stejný algoritmus FFT, ale:

• Mı́sto ω použijeme ω−1 (nebo ekvivalentně ω̄).

• Výsledek nakonec vyděĺıme n.

3.3.5 RSA

Notace: Zadefinujeme si:
p, q ∈ N · · · · · · · · · · · · · velká prvoč́ısla, t.ž.: p ̸= q
(N, e) · · · · · · · · · · · · · · · · dvojice, veřejný kĺıč, kde N = p · q
φ(N) = (p− 1)(q − 1) Eulerova funkce
e ∈ N, 0 < e < φ(N) šifrovaćı exponent
d ∈ N · · · · · · · · · · · · · · · · dešifrovaćı exponent

Zároveň muśı plati platit gcd(e, φ(N)) = 1 a dále se hod́ı k výpočt̊um následuj́ıćı vztahy:
y = xe (mod N) · · · · · · zašifrováńı plaintextu, výsledkem je ciphertext
x = yd (mod N) · · · · · · dešifrováńı ciphertextu, výsledkem je plaintext
d · e ≡ 1 (mod φ(N)) .. źıskáńı d (Euklidovým algoritmem)

Dešifrováńı se dá lehce odvodit: yd ≡ xe·d ≡ x1 ≡ x (mod N).

Popis algoritmu: Bob si vygeneruje nahodná p, q a vypoč́ıtá z nich N = p · q. Dále vypoč́ıtá
Eulerovu funkci φ(N) a následně vygeneruje č́ıslo e ∈ N, pro které plat́ı gcd(e, φ(N)) = 1. T́ımto
č́ıslem zašifruje plaintext x vztahem y = xe (mod N). Pak už jen nalezne č́ıslo d ∈ N euklidovým
algoritmem d · e ≡ 1 (mod φ(N)). Veřejný kĺıč, dvojici (N, e), pošle Alici spolu s ciphertextem y.

Alice přijme veřejný kĺıč (N, e) a ciphertext y. Pouze Alici je znám soukromý kĺıč (N, d), využije
ho k dešifrováńı y. To udělá vztahem x = yd (mod N).

Eva nemá možnost si zprávu přeč́ıst, protože nezná dešifrovaćı exponent d. Musela by ho uhád-
nout, což neńı pravděpodobné, nebo by musela znát prvoč́ısla p, q. Kdyby znala p, q mohla by si
jednoduše dopoč́ıtat φ(N) a následně d tak, jak jsme to udělali my. Bezpečnost RSA tedy stoj́ı na
tom, že útočńık neńı schopen rozložit N = p · q na p, q, proto je potřeba je volit dostatečně velká.

3.3.6 Aproximačńı algoritmy

Máme nějakou množinu př́ıpustných řešeńı a každé z nich ohodnoceno cenou c(x). Mezi nimi hledáme
optimálńı řešeńı s minimálńı cenou c∗. Vystač́ıme si s α-aproximaćı – př́ıpustné řešeńı má cenu
c′ ≤ αc∗ pro α > 1.

Definice (Poměrová chyba). Poměrová chyba je poměr mezi výstupem a optimem je nejvýše α.

Definice (Relativńı chyba). Relativńı chyba nepřekroč́ı (c′ − c∗)/c∗.

Aproximačńı schémata.

Definice (PTAS - Polynomial-Time Approximation Scheme). Algoritmus je PTAS, pokud ∀ϵ > 0
najde v čase polynomiálńım v n řešeńı s relativńı chybou nejvýše ϵ. Formálně:

|ALG−OPT|
OPT

≤ ϵ,

kde OPT je optimálńı řešeńı a ALG je řešeńı algoritmu.
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Definice (FPTAS - Fully Polynomial-Time Approximation Scheme). Algoritmus je FPTAS, pokud
je PTAS a nav́ıc jeho časová složitost je polynomiálńı jak v n, tak v 1

ϵ
. Formálně:

Časová složitost = O
(
p

(
n,

1

ϵ

))
kde p je nějaký polynom.

Př́ıklad. Problém batohu má FPTAS. Problém TSP v obecných grafech má PTAS, ale ne FPTAS.

Poznámka. FPTAS je silněǰśı požadavek než PTAS, protože vyžaduje polynomiálńı závislost na 1/ϵ,
ne jen na n.

Problém obchodńıho cestuj́ıćıho (TSP).

Definice (Problém TSP). Mějme neorientovaný graf G s nezáporně ohodnocenými hranami d(e) ≥ 0.
Cı́lem je naj́ıt nejkraťśı hamiltonovskou kružnici v G. Předpokládáme, že graf je úplný a splňuje
trojúhelńıkovou nerovnost:

∀x, y, z ∈ V : d(x, y) + d(y, z) ≥ d(x, z)

Algorithm 31: TSP – 2-aproximace

1 Najdi minimálńı kostru T grafu G.
2 Projdi kostru Eulerovským sledem (délka 2T ).
3 Odstraň duplicity ve vrcholech pomoćı “zkratek” (využit́ım trojúhelńıkové nerovnosti).

Poznámka. Výsledná délka kružnice je ≤ 2T ≤ 2OPT, kde OPT je délka optimálńıho řešeńı.

Věta. Bez trojúhelńıkové nerovnosti nelze TSP aproximovat (pokud P ̸= NP ).

Problém batohu.

Definice (Problém batohu). Mějme batoh s kapacitou H a množinu předmět̊u 1, . . . , n s:

• Hmotnostmi h1, . . . , hn,

• Cenami c1, . . . , cn.

Cı́lem je naj́ıt podmnožinu P ⊆ {1, . . . , n} takovou, že:

h(P ) =
∑
i∈P

hi ≤ H a c(P ) = max
∑
i∈P

ci.

Algorithm 32: Aproximace problému batohu

1 Odstraň všechny předměty s hi > H.
2 Spoč́ıtej cmax = maxi ci a zvol M = ⌈n

ε
⌉ pro libovolné ε > 0. 5

3 Kvantujeme ceny: pro i = 1, . . . , n necht’ ĉi = ⌊ci · M
cmax
⌋.

4 Vyřeš́ıme upravený problém batohu s ĉ1, . . . , ĉn dynamickým programováńım.
5 Vrát́ıme předměty z optimálńıho řešeńı kvantovaného problému.

Poznámka. Zaokrouhlováńı hmotnost́ı by mohlo vést k nepř́ıpustným řešeńım, ale zaokrouhlováńı
cen je bezpečné.

Věta. Algoritmus poskytuje (1− ε)-aproximaci v čase O(n3/ε).
5Zvoĺıme přirozené M < cmax a zobraźıme [0, cmax]→ {0, . . . ,M}. Tedy každou cenu ci znásob́ıme poměrem M

cmax
.

Každé ci jsme změnili nejvýše o cmax

M , proto celkovou cenu nejvýše o n · cmax

M . Po odstraněńı všech hi > H plat́ı

c∗ > cmax, proto chyba aproximace ≤ n · c
∗

M . Chybu omeźıme shora ε > 0 jako ε · c∗ a muśıme tak zvolit M ≥ n
ε .
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3.3.7 Paralelńı tř́ıděńı komparátorových śıt́ı

Definice (Komparátorová śıt’). Komparátorová śıt’ je hradlová śıt’ složená z komparátor̊u. Na vstupu
má 2 č́ısla a výstopem je vlevo menš́ı č́ıslo, vpravo věťśı č́ıslo.

Př́ıklad (Bubble sort O(n)). Př́ıkladem je Bubble sort, který jsme schopni udělat lineárńı:

Bitonické tř́ıděńı.

Definice (Čistá bitonická posloupnost). Posloupnost x0, . . . , xn−1 je čistě bitonická, pokud existuje
index k takový, že:

• x0 ≤ x1 ≤ · · · ≤ xk (rostoućı část)

• xk ≥ xk+1 ≥ · · · ≥ xn−1 (klesaj́ıćı část)

k

<

< >

>

Definice (Bitonická posloupnost). Posloupnost je bitonická, pokud je cyklickou rotaćı nějaké čistě
bitonické posloupnosti.

Definice (Separátor). Separátor je obvod, který:

• Rozděĺı bitonickou posloupnost délky n na dvě polovičńı posloupnosti.

• Zajist́ı, že všechny prvky v prvńı polovině jsou menš́ı než všechny prvky v druhé polovině.

Vlastnosti. Plat́ı následuj́ıćı vlastnosti:
• Hloubka obvodu: 1 (jedna vrstva komparátor̊u)

• Počet hradel: n
2
(∀ komparátor 2 vstupy a 2 výstupy)

• Časová složitost: O(1)

Poznámka. Za pomoci bitonických “tř́ıdiček” a “slévaček”
jsme takto schopni vytvořit jednoduše Merge stort. (viz.
Obr.)
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3.4 Pokročilá diskrétńı matematika

3.4.1 Barveńı graf̊u

Definice (Vrcholová barevnost). Vrcholová barevnost χ(G) grafu G je nejmenš́ı počet barev, kterými
lze obarvit vrcholy G. (Tedy žádné dva sousedńı vrcholy nemaj́ı stejnou barvu).

Poznámka. Pro graf G znač́ıme:

• Maximálńı stupeň jako ∆(G),

• Minimálńı stupeň jako δ(G),

• Velikost největš́ı kliky jako ω(G),

• Velikost největš́ı nezávislé množiny jako α(G).

Věta. Pro graf G plat́ı vztah: χ(G) ≥ |V (G)|
α(G)

.

Definice (Degenerovanost). Graf G je d-degenerovaný ≡ každý podgraf H grafu G má δ(H) ≤ d.

Poznámka. Pokud G je ∆(G)-degenerovaný, pak χ(G) ≤ ∆(G) + 1.

Definice (Hranové barveńı). Hranové barveńı je funkce b : E(G) → B (barvy) taková, že pokud
e ̸= f ∈ E a e, f maj́ı společný vrchol, pak b(e) ̸= b(f).

Definice (Hranová berevnost). Hranová barevnost G (“chromatický index”) χ′(G) je minimálńı
počet barev pro hranové barveńı G. Plat́ı χ′(G) ≤ χ(G).

Věta (Brooks). Necht’ G je souvislý graf který neńı úplný a neńı lichá kružnice. Pak

χ(G) ≤ ∆(G).

D̊ukaz. Indukćı na počtu vrchol̊u: pokud má graf vrchol stupně < ∆, odebereme ho a zpětně snadno
dobarv́ıme. Pokud je ∆-regulárńı, najdeme “třešničku”:

Třešnička:
x

y

z

Odebereme z, dobarv́ıme G−z ∆ barvami. Pokud x a y maj́ı r̊uzné barvy, tak lze z dobarvit rovnou.
Pokud maj́ı stejnou barvu, barvy přeháźıme tak, aby se uvolnila barva pro z. Výjimkou, kdy to selže,
je jen úplný graf nebo lichá kružnice.

Věta (Vizing). Pro každý graf G plat́ı, že

∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

D̊ukaz. Postupujeme hladově – každou hranu barv́ıme postupně jednou z 1, . . . ,∆ + 1 barev. Dále
rozděĺıme na př́ıpady; hledáme volné a použitelné vrcholy. Pokud u koncových vrchol̊u neńı volná
barva, tak pomoćı přehazováńı barev na alternativńıch řetězćıch vždy uvolńıme vhodnou barvu.

Poznámka. Plat́ı, že ω(G) ≤ χ(G). A také ω(Ḡ) = α(G).

Definice (Perfektńı graf). Graf G je perfektńı, pokud ∀H ≤ G : χ(H) = ω(H).

Věta (Slabá o perfektńıch grafech). Graf G je perfektńı ⇐⇒ Ḡ je perfektńı.

Věta (Silná o perfektńıch grafech). Graf G je perfektńı ⇐⇒ G ani Ḡ neobsahuje jako indukovaný
podgraf lichý cyklus délky ≥ 5.

Poznámka. Perfektńı grafy jsou např́ıklad Kn nebo bipartitńı grafy.

Definice (Chordálńı graf). Graf je chordálńı, pokud neobsahuje Ck, k ≥ 4 jako indukovaný podgraf.
(každá kružnice má chordu (tětivu))
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3.4.2 Párováńı v grafech

Definice (Párováńı). Párováńı je množina hran M taková, že každý vrchol je incidentńı s nejvýše
jednou hranou v M . Tedy ∀e ̸= e′ ∈M : e ∩ e′ = ∅.

Definice (Největš́ı párováńı). Největš́ı párováńı je párováńı nejvěťśı velikosti. Velikost je nejvýše n
2
.

Definice (Perfektńı párováńı). Perfektńı párováńı je párováńı, kde každý vrchol je incidentńı s právě

jednou hranou. (Neboli pokud v párováńı neexistuje žádný volný vrchol. |M | = |V |
2
.)

Poznámka. Grafy s lichým početem vrchol̊u nemaj́ı perfektńı párováńı.

Tutteho a Petersenova věta.

Definice (Tutteho podmı́nka). Plat́ı ∀S ⊆ V : odd(G − S) ≤ |S|, kde odd znač́ı počet lichých
komponent grafu.

Věta (Tutte). Graf G má perfektńı párováńı ⇐⇒ plat́ı Tutteova podmı́nka.

Proof. Obměnou ”⇒ ”: Ř́ıkáme, že pokud neplat́ı Tutteho podmı́nka, pak nemá perfektńı párováńı.
Necht’ ∃S ⊆ V t. ž. odd(G − S) > |S|. V perfektńım párováńı se alespoň 1 vrchol z každé liché

komponenty muśı spárovat s nějakým z S, ale těch neńı dostatek.

Věta (Petersen). Každý 3-regulárńı 2-souvislý6 graf má perfektńı párováńı.

D̊ukaz. Vezměme si libovolnou S ⊆ V . Ukážeme, že splňuje Tutteho podmı́nku.
Pokud odd(G− S) = 0, jsme hotovi.
Předpokládejme, tedy že v G− S existuje lichá komponenta K. Potom plat́ı:∑

v∈V (K)

degG(v) = 3|V (K)| = 2|E(K)|+ počet hran vycházej́ıćı mimo K, což je liché č́ıslo.

Počet hran mezi K a S muśı být alespoň 2, jinak máme most, je to tedy alespoň 3.
Maximálńı počet hran z S je 3|S|, tud́ıž lichých komponent může být nejvýše 3|S|

3
, tedy |S|.

Edmonds̊uv kytičkový algoritmus.

Definice (Volný vrchol). Volný vrchol je vrchol, který nevid́ı žádnou hranu párováńı.

Definice (Stř́ıdavá cesta). Stř́ıdavá cesta je cesta, kde jsou všechny vnitřńı vrcholy incidentńı s
párovaćı hranou a nav́ıc tato hrana lež́ı na cestě.

Definice (Volná stř́ıdavá cesta). Volná stř́ıdavá cesta je taková stř́ıdavá cesta, jej́ı̌z koncové vrcholy
jsou volné.

Definice (Kytka). Kytka je tvořena stonkem a květem:

• stonek je stř́ıdavá cesta z v1 (i nulové) délky konč́ıćı volným vrcholem.

• květ je lichá “stř́ıdavá” kružnice s vrcholem v1, ke kterému přiléhaj́ı dvě
hrany /∈M .

v1

květ

stonek

Algoritmus. (Edmonds̊uv). Na vstupu párováńı M a zlepš́ı jej nebo jej prohláśı za největš́ı.

• Hledáme stř́ıdavé cesty, které zvyšuj́ı velikost M .

• Pokud naraźıme na kytku, zkontrahuje ji do jednoho supervrcholu.

• Kytka se rekurzivně zpracuje a po nalezeńı párováńı ve sbaleném grafu se rozbaĺı zpět do
p̊uvodńı struktury.

6Vrcholově i hranově, pro 3-regulárńı grafy je to to samé; alternativně můžeme ř́ıct graf bez most̊u a artikulaćı.
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3.4.3 Kresleńı graf̊u na plochách.

Definice (Homeomorfismus). Necht’ X ⊆ Rn, Y ⊆ Rm. Potom homeomorfismus z X na Y je funkce
f : X 7→ Y , která je spojitá, bijekce a f−1 je spojitá.
Řı́káme, že X, Y jsou homeomorfńı, X ∼= Y , pokud mezi nimi existuje homeomorfismus.

Definice (Plocha). Plocha je kompaktńı (uzavřená, omezená), souvislá, 2-rozměrná varieta bez hra-
nice (dostatečně malé okoĺı každého bodu je homeomorfńı otevřenému okoĺı v R2).

Konstrukce ploch.

Přidáńı ucha. “Teleport, do kterého když vejdeme, tak na druhé straně vyjdeme opačně (otočeně).”
Vyř́ızneme dva kruhy, vezmeme plášt’ válce bez dna a vrchu, ohneme a přileṕıme na d́ıry po kruźıch.

Přidáńı křiž́ıtka. “Teleport, do kterého když vejdeme, tak nás to přesune naproti.”

Definice (Orientovaná plocha). Pro g ∈ {0, 1, . . .} necht’
∑

g znač́ı plochu zvniklou ze sféry přidáńım
g uš́ı, tak ř́ıkáme, že

∑
g je orientovatelná plocha rodu g.

Definice (Neorientovaná plocha). Pro g ∈ {1, 2, . . .} necht’
∏

g znač́ı plochu zvniklou ze sféry
přidáńım g kř́ı̌źıtek, tak ř́ıkáme, že

∏
g je neorientovatelná plocha rodu g.

 na torus  na torus Peterson na torus v projektivní rovině

Eulerova charakteristika.

Definice (Nakresleńı grafu). Nakresleńı grafu G = (V,E) na plochu Γ je zobrazeńı φ t. ž.:

• každému vrcholu v ∈ V přiřad́ı bod φ(v) ∈ Γ

• každé hraně e ∈ E přiřad́ı prostou (neprot́ınaj́ıćı se) křivku φ(e) ∈ Γ spojuj́ıćı konce φ(x), φ(y)

• vrcholy se nepřekrývaj́ı: x, y ∈ V : x ̸= y =⇒ φ(x) ̸= φ(y)

• hrany se překrývaj́ı nejvýše ve sd́ılených vrcholech: e, f ∈ E : e ̸= f =⇒ φ(e) ∩ φ(f) =
{φ(x) | x ∈ e ∩ f}

• vrcholy, které nelež́ı na hraně se s ńı neprot́ınaj́ı: e ∈ E, x ∈ V : x ̸∈ e =⇒ φ(x) ̸∈ φ(e)

Definice (Stěna nakresleńı). Souvislá komponenta Γ \

((⋃
e∈E

φ(e)

)
∪

(⋃
x∈V

φ(x)

))
.

Definice (Buňkové nakresleńı). Každá stěna je homeomorfńı otevřenému kruhu v R2.

Definice (Eulerova charakteristika). Eulerova charakteristika plochy Γ je

χ(Γ) =

{
2− g Γ ∼=

∏
(g ≥ 1)

2− 2g Γ ∼=
∑

(g ≥ 0)

= 2−# kř́ı̌źıtek− 2 ·# uš́ı.
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Věta (Zobecněná Eulerova formule). Necht’ máme nakresleńı grafu G = (V,E) na ploše Γ, které má
S stěn. Pak |V | − |E|+ |S| ≥ χ(Γ). Pokud je buňkové, tak dokonce |V | − |E|+ |S| = χ(Γ).

Důsledek. Každý graf G nakreslitelný na plochu Γ splńı |E| ≤ 3|V | − 3χ(Γ), pokud |V | ≥ 4.

Věta. Necht’ Γ je plocha, Γ ̸= Σ0 a necht’ G je graf nakreslený na Γ.

Potom G obsahuje vrchol stupně δ(G) ≤
⌊

5+
√

49−24χ(Γ)

2

⌋
.

Poznámka. Plat́ı vztah
∑
f∈S

delka(f) = 2|E| =
∑
v∈V

deg(v).

3.4.4 Grafové minory

Definice (Minor). Necht’ H,G jsou grafy. Pak H je minor G (resp. G obsahuje H jako minor),
znač́ıme H ⪯ G, pokud H lze źıskat z G posloupnost́ı mazáńı vrchol̊u, mazáńı hran nebo kontrakćı
hran.

Vlastnosti. Pro grafové minory plat́ı následuj́ıćı vlastnosti:

• ⪯ je transitivńı (prostě spoj́ım posloupnosti operaćı),

• H podgraf G =⇒ H minor G,

• G rovinný =⇒ jeho minory jsou také rovinné.

Věta (Kuratowski). G rovinný ⇐⇒ neobsahuje děleńı K5 ani K3,3 jako podgraf.

Věta (Kuratowski-Warner). G rovinný ⇐⇒ neobsahuje K5 ani K3,3 jako minor.

3.4.5 Množiny a zobrazeńı

Definice (Tř́ıda). Pokud je φ(x) formule, tak výraz {x | φ(x)} nazýváme tř́ıdový term. Definuje
“soubor” všech množin x, pro které plat́ı φ(x). Tomuto souboru ř́ıkáme tř́ıda určená formuĺı φ(x).

Poznámka. Každá množina je zároveň i tř́ıdou, protože x = {z | z ∈ x}.

Definice (Vlastńı tř́ıda). Tř́ıdu, která neńı množinou, nazýváme vlastńı tř́ıda.

Definice (Tř́ıdové operace). Pro tř́ıdy A a B definujeme

• A ∩B = {x |x ∈ A ∧ x ∈ B},

• A ∪B = {x |x ∈ A ∨ x ∈ B},

• A \B = {x |x ∈ A ∧ x /∈ B}, . . . př́ıpadně A−B

•
⋃
A = {x | (∃a)(a ∈ A ∧ x ∈ a)},

•
⋂
A = {x | (∀a)(a ∈ A→ x ∈ a)}

• A ⊆ B ≡ (∀x)(x ∈ A→ x ∈ B), . . .A je podtř́ıdou B

• A ⊂ B ≡ A ⊆ B ∧ A ̸= B, . . .A je vlastńı podtř́ıdou B

• P(A) = {x |x ⊆ A}.
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Definice (Kartézský součin). Kartézský součin tř́ıd A a B je tř́ıda

A×B = {(a, b) | a ∈ A ∧ b ∈ B}.

Kartézský součin tř́ıd A1, A2, . . . An definujeme induktivně jako

A1 × · · · × An = (A1 × · · · × An−1)× An = {(a1, . . . an)}
∧n

i=1 ai ∈ Ai.

Lemma. Jsou-li x a y množiny, potom je x× y také množina.

Definice (Binárńı relace). Binárńı relace je libovolná tř́ıda R ⊆ V × V . Namı́sto (x, y) ∈ R ṕı̌seme
x R y. Podobně lze definovat n-árńı relaci jako R ⊆ V n.

Definice. Pro (binárńı) relaci R a tř́ıdu X definujeme tř́ıdy

• R−1 = {(v, u) | u R v}, . . . inverzńı relace k relaci R

• Dom(R) = {u | (∃v)(u R v)}, . . . definičńı obor relace R

• Rng(R) = {v | (∃u)(u R v)}, . . . obor hodnot relace R

• R↾X = R ∩ (X × V ) ⊆ R, . . . zúžeńı relace R na tř́ıdu X

• R[X] = Rng(R↾X) ⊆ Rng(R). . . . obraz tř́ıdy X relaćı R

Definice. Relace odpov́ıdaj́ıćı relačńım symbol̊um jazyka teorie množin jsou

• E = {(x, y) | x ∈ y}, . . . náležeńı

• Id = {(x, y) | x = y}. . . . identita

• ∆X = Id ↾X . . . identita na tř́ıdě X

Definice (Skládáńı relaćı). Pro relace R a S definujeme relaci

R ◦ S = {(u,w) | (∃v)(u R v ∧ v S w)}

Definice (Zobrazeńı). Relace F je zobrazeńı (funkce) ≡

(∀u)(∀v)(∀w)
(
((u, v) ∈ F ∧ (u,w) ∈ F )→ v = w

)
.

Namı́sto u F v ṕı̌seme F (u) = v, při definováńı ṕı̌seme F : u 7→ v.

Poznámka. F je zobrazeńı ⇐⇒ (∀x ∈ Dom(F ))(∃!y ∈ Rng(F ))(F (x) = y).

Definice (Prosté zobrazeńı, bijekce). Řekneme, že zobrazeńı F je

• prosté ≡ F−1 je zobrazeńı, tedy ∀x, y ∈ X : f(x) = f(y) =⇒ x = y, . . . injekce

• zobrazeńı tř́ıdy X do tř́ıdy Y ≡ Dom(F ) = X ∧ Rng(F ) ⊆ Y , ṕı̌seme F : X → Y ,

• na ≡ F : X → Y ∧ Rng(F ) = Y , tedy ∀y ∈ Y ∃x ∈ X : f(x) = y, . . . surjekce

• bijekce mezi tř́ıdami X a Y ≡ je to prosté zobrazeńı X na Y .

Definice (Suma). Pro každou množinu x existuje množina s, která je sjednoceńım všech množin
uvnitř x. Této množině ř́ıkáme suma množiny x a znač́ıme ji

⋃
x.

(∀x)(∃s) : (∀z)
(
z ∈ s ⇐⇒ (∃y)(y ∈ x ∧ z ∈ y)

)
.

Definice (Potenčńı množina). Pro každou množinu x existuje množina všech jej́ıch podmnožin. Této
množině ř́ıkáme potenčńı množina množiny x a znač́ıme ji P(x).

(∀x)(∃p) : (∀z)(z ∈ p ⇐⇒ z ⊆ x).
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3.4.6 Subvalence a ekvivalence množin

Definice (Ekvivalence). Relace R je na tř́ıdě X ekvivalence ≡ je reflexivńı, symetrická a tranzitivńı.

Definice (Tř́ıdy ekvivalence). Necht’ R je ekvivalence na tř́ıdě X. Pro x ∈ X definujeme tř́ıdu

[x]R = {y | y ∈ X ∧ x R y} = R[{x}] ∩X,

kterou nazýváme ekvivalenčńı tř́ıda prvku x.

Definice. Pro množiny x a y definujeme relace

1. x ≈ y ≡ existuje bijekce f : x→ y,

2. x ⪯ y ≡ existuje prosté zobrazeńı f : x→ y,

3. x ≺ y ≡ x ⪯ y ∧ x ̸≈ y.

Věta (Cantor, Schröder, Bernstein). x ≈ y ⇐⇒ (x ⪯ y ∧ y ⪯ x).

Konečné a spočetné množiny

Definice (Tarski – konečnost). Množina x je konečná ≡ každá neprázdná a ⊆ P(x) má maximálńı
prvek v̊uči inkluzi. Pokud je x konečná, tak ṕı̌seme Fin(x).

Poznámka. Množina x je konečná ⇐⇒ každá neprázdná a ⊆ P(x) má minimálńı prvek v̊uči
inkluzi.

Lemma. Je-li x konečná a y nekonečná, potom x ≺ y.

Definice (Dedikendovská konečnost). Množina x je dedekindovsky konečná ≡ (∀y)(y ⊂ x → y ≺
x).

Lemma. Je-li x konečná, potom je i dedekindovsky konečná.

Definice (Spočetnost). Množina x je

• spočetná ≡ x ≈ ω,

• nejvýše spočetná ≡ je spočetná nebo konečná,

• nespočetná ≡ neńı nejvýše spočetná.

Věta. Plat́ı

1. každá shora omezená podmnožina A ⊆ ω je konečná,

2. každá shora neomezená podmnožina A ⊆ ω je spočetná.

Věta. Jsou-li A, B spočetné množiny, pak A ∪B a A×B jsou také spočetné.
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Mohutnosti množin r̊uzných č́ısel

Věta. Množiny Q,Z jsou spočetné.

Věta (Cantorova). Pro každou množinu x plat́ı x ≺ P(x).

Důsledek. Množina P(ω) je nespočetná.

Věta. ω2 ≈ P(ω) ≈ R ≈ (0, 1).

Věta. Množiny Q a R nejsou ekvivalentńı.

D̊ukaz. (Cantorovou diagonálńı metodou).
Vı́me, že R ≈ (0, 1). Pro spor předpokládejme, že existuje bijekce N ≈ (0, 1). Tedy všechna reálná
č́ısla v tomto intervalu lze zapsat jako oč́ıslovaný seznam prvk̊u aij ∈ {0, 1, . . . , 9}.

r1 = 0.a11a12a13a14 . . .

r2 = 0.a21a22a23a24 . . .

r3 = 0.a31a32a33a34 . . .

. . .

Nyńı sestroj́ıme nové reálné č́ıslo r = 0.b1b2b3b4 . . . takto: bi =

{
1, je-li aii ̸= 1

2, je-li aii = 1
.

T́ımto jsme zajistili, že r se lǐśı od každého ri alespoň v i-té cif̌re. Tedy r ̸= ri pro všechna i. Přitom
ale r ∈ (0, 1), takže mělo být v seznamu, což je spor.

3.4.7 Dobré uspořádáńı

Definice (Uspořádáńı). Relace R ⊆ V × V je na tř́ıdě X

• trichotomická ≡ (∀x, y ∈ X)(x R y ∨ y R x ∨ x = y), . . . porovnatelnost

• ostré uspořádáńı ≡ je ireflexivńı a tranzitivńı na X,

• uspořádáńı ≡ je reflexivńı, slabě antisymetrická a tranzitivńı na X,

• lineárńı uspořádáńı ≡ je trichotomická a uspořádáńı na X.

Pokud je R uspořádáńı, tak mı́sto x R y ṕı̌seme x ≤R y. Pro ostré uspořádáńı ṕı̌seme x <R y.

Definice. Necht’ R je uspořádáńı na tř́ıdě A a X ⊆ A. Prvek a ∈ A je

• horńı mez tř́ıdy X ≡ (∀x ∈ X)(x ≤R a), . . . také majoranta

• maximálńı prvek tř́ıdy X ≡ a ∈ X ∧ (∄x ∈ X)(a <R x),

• největš́ı prvek tř́ıdy X ≡ a ∈ X a je to horńı mez X,

• supremum tř́ıdy X ≡ je nejmenš́ı prvek tř́ıdy všech horńı meźı X.

Nejvěťśı prvek, resp. supremum znač́ıme maxR(X), resp. supR(X); pokud existuj́ı. Obdobně definu-
jeme minorantu, minimálńı prvek, nejmenš́ı prvek a infimum.

Definice. Řekneme, že uspořádáńı R je na množině A

• husté ≡ (∀x, y ∈ A)
(
x < y → (∃z ∈ A)(x < z < y)

)
,

• dobré ≡ každá neprázdná B ⊆ A má nejmenš́ı prvek,

• úplné ≡ každá neprázdná, shora omezená B ⊆ A má supremum.
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Ordinálńı a kardinálńı č́ısla

Ordinálńı č́ısla jsou zobecněńı přirozených č́ısel a udávaj́ı typy dobře uspořádaných množin. Pomoćı
ordinálńıch č́ısel pak lze nadefinovat kardinálńı č́ısla, což jsou speciálńı ordinálńı č́ısla, která měř́ı
mohutnosti množin. Ordinálńı č́ısla definujeme tak, aby byla dobře uspořádána relaćı ∈, takže na
nich budeme moci provádět takzvanou transfinitńı indukci.

Definice. Tř́ıda X je tranzitivńı ≡ y ∈ x ∈ X → y ∈ X.

Definice (Ordinálńı č́ıslo). Množina x je ordinálńı č́ıslo ≡

1. x je tranzitivńı,

2. relace ∈ je dobré ostré uspořádáńı na x.

Tř́ıdu všech ordinálńı č́ısel znač́ıme On

Definice (Kardinálńı č́ısla). Ordinálńı č́ıslo α nazveme kardinálńım č́ıslem, pokud každé menš́ı or-
dinálńı č́ıslo β < α má i menš́ı mohutnost (tj. α nelze bijektivně zobrazit na žádnou podmnožinu β).
Označ́ıme-li jako Cn tř́ıdu všech kardinálńıch č́ısel, m̊užeme zapsat tuto definici ve tvaru:

α ∈ Cn ⇐⇒ (∀β)(β < α =⇒ ¬(β ≈ α)).
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